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Abstract

A popular way to estimate the causal effect
of a variable x on y from observational data
is to use an instrumental variable (IV): a
third variable z that affects y only through
z. The more strongly z is associated with x,
the more reliable the estimate is, but such
strong IVs are difficult to find. Instead,
practitioners combine more commonly avail-
able IV candidates—which are not necessar-
ily strong, or even valid, IVs—into a single
“summary” that is plugged into causal ef-
fect estimators in place of an IV. In genetic
epidemiology, such approaches are known as
allele scores. Allele scores require strong
assumptions—independence and validity of
all IV candidates—for the resulting estimate
to be reliable. To relax these assumptions,
we propose Ivy, a new method to combine IV
candidates that can handle correlated and in-
valid IV candidates in a robust manner. The-
oretically, we characterize this robustness, its
limits, and its impact on the resulting causal
estimates. Empirically, we show that Ivy can
correctly identify the directionality of known
relationships and is robust against false dis-
covery (median effect size < 0.025) on three
real-world datasets with no causal effects,
while allele scores return more biased esti-
mates (median effect size > 0.118).

1 Introduction

A goal of causal inference is to ascertain the causal re-
lationship between a pair of variables (the risk factor
x and the outcome y) from observational data. This is
difficult because causal relationships can be distorted
by confounders: common causes of the risk factor and
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the outcome that may be unobserved. To address this
difficulty, a third variable, called an instrumental vari-
able (IV), can be used to estimate causal effect. In-
formally, an IV only affects the outcome through its
effect on the risk factor. IV methods are widely used
in practice (Angrist and Krueger, 1991; Mokry et al.,
2015; Walker et al., 2017; Millwood et al., 2019). In
particular, we are motivated by Mendelian randomiza-
tion (MR) (Burgess and Thompson, 2015), a represen-
tative use case in which genetic markers serve as I'Vs
to infer causation among clinical variables.

IV methods are most reliable when the IV z is strongly
associated with the risk factor z, but such strong IVs
are often difficult to identify in practice. Instead, prac-
titioners typically rely on more readily available IV
candidates. These variables may not be strong, or even
valid, IVs, but can be used in lieu of an unavailable
strong IV. To this end, a two-phase approach can be
used: first, synthesize: combine the IV candidates into
a summary variable, and secondly, estimate: plug the
summary variable into a causal effect estimator.

In MR, a popular, state-of-the-art approach for the
synthesis phase is allele scores. The summary vari-
ables generated by allele scores are meant to reduce
bias in causal estimates (Angrist and Pischke, 2008;
Davies et al., 2015). In the words of Burgess et al.
(2017), allele scores are a “recent innovation” in MR
and are a “recommended]” way to utilize plentiful IV
candidates—but with the caveat that if an IV candi-
date is not actually a valid IV, allele scores may lead
to “potentially misleading estimates.” Indeed, allele
score methods suffer two main weaknesses: they im-
plicitly assume that the IV candidates (1) are all valid
IVs and (2) are independent conditioned on the sum-
mary variable (Sebastiani et al., 2012). When these
assumptions are not met, as often happens in practice,
the resulting estimate may turn out to be unreliable.!

To improve robustness against invalidity and depen-
dencies among the IV candidates while still reaping
the benefits of the two-phase approach (e.g., modular-
ity and bias reduction), we propose Ivy, a novel way
to synthesize a summary IV from IV candidates. Ivy

'See Appendix A for an extended discussion.
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produces a summary IV by modeling it as a latent
variable, and inferring its value based on the statisti-
cal dependencies among the IV candidates. Ivy is in-
spired by recent advances in the theory of weak super-
vision, leveraging results on structure learning (Varma
et al., 2019). Ivy targets the synthesis phase and is
orthogonal to the effect estimation phase: the sum-
mary IV it generates can directly be plugged into I'V-
based causal effect estimators, whether they are classi-
cal (Wald, 1940; Angrist et al., 1996), robust (Bowden
et al., 2016; Kang et al., 2016), or modern (Hartford
et al., 2017; Athey et al., 2019).

We provide theoretical bounds on the robustness of our
approach against invalidity or dependencies among the
IV candidates. Specifically,

e We analyze the parameter estimation error for Ivy.
Under weaker assumptions than allele scores, and
with sufficiently many samples, Ivy’s error scales
as O(1/4/n) for n samples. Even outside of this
regime, when Ivy may fail to identify all invalid IVs
or dependencies, the resulting error is mild (scaling
linearly in the number of misspecified dependencies
and undetected invalid IVs).

e We translate the error in the parameter estimation
into bounds for a downstream parametric causal
effect estimator —the Wald estimator—which is a
commonly used estimator in MR.

e We further adapt our analysis to show how, in con-
trast to Ivy, allele scores may produce unreliable es-
timates in the presence of invalidity or dependency
among IV candidates.

Empirically, we show that Ivy can more reliably es-
timate causal effects compared to allele score meth-
ods, even with low-quality uncurated IV candidates
with potential dependencies and invalidity. On three
real-world datasets with no causal effects, Ivy yields
median effect size less than 0.025, while allele scores
return more biased estimates (median effect size >
0.118). This result aligns with our theoretical insights
into Ivy and allele scores.

2 Background

We consider a two-phase approach to estimating causal
effects with IV candidates. First, the IV candidates are
combined to form a summary (the synthesis phase).
Second, in the effect estimation phase, this summary
is plugged into an estimator, along with the risk fac-
tor and outcome, to produce an effect. Our approach
tackles the first phase, and is orthogonal to the second
phase. We give background on these ideas below.

We seek to infer the causal relationship between a risk
factor z and an outcome y. This relationship may be

distorted by a confounder ¢, which is a common cause
of both x and y. To handle confounding, an instru-
mental variable z may be used. z directly induces a
change in x independent of c. This change will alter
the value of y only through the causal link between
x and y, enabling us to measure the causal link (Fig-
ure la). We focus on the setting where z, y, ¢, and z
are binary, although our procedure can be extended to
handle continuous z, y, and ¢. A valid IV is a variable
satisfying Definition 1; otherwise, it is invalid.

Definition 1 (Burgess and Thompson (2015)). An in-
strumental variable z satisfies (i) Relevance: z is not
independent of the risk factor, i.e. z £ x; (ii) Exclusion
Restriction: z can only influence the outcome through
x,ie z Lyl x ¢ (iii) Unconfoundedness: z is inde-
pendent of the confounder, i.e. z L c.

Figure la depicts the setting where a valid IV is ob-
servable. The dashed confounder node ¢ indicates that
IV methods can deal with unobserved confounders be-
tween x and y. By contrast, estimating effects with-
out accounting for confounding may lead to failure in
distinguishing between spurious correlation and causa-
tion. The following is a well-known example of spuri-
ous correlation in epidemiology, dismissed by a careful
use of IVs.

Example 1. The concentration of high-density
lipoprotein (HDL) is negatively correlated with the oc-
currence of coronary artery disease (CAD) and thus
appears protective, but recent studies suggest that there
is no causal link. The correlation is spurious due
to confounders such as the concentration of other
lipid species (Rye and Ong, 2015). Nonetheless, the
strength of this spurious correlation led to a hypoth-
esized causal link, but drugs developed to raise HDL
levels failed to prevent CAD (Schwartz et al., 2012).
This spurious correlation was later dismissed by a se-
ries of MR studies (Voight et al., 2012; Holmes et al.,
201/4; Rader and Hovingh, 201/).

2.1 TV Synthesis

The more strongly a valid IV is associated with the risk
factor, the more reliable the resulting causal effect es-
timate. However, finding such strong IVs is challeng-
ing in practice. Instead, practitioners often combine
more widely available IV candidates—variables that
are weakly associated with the risk factors, intercor-
related, or even invalid IVs—into a summary IV. One
way to view this procedure is that the summary IV is a
prediction of a latent variable that, while unobserved,
can serve as a strong IV.

Allele Scores The use of unweighted/weighted al-
lele scores (UAS/WAS) to synthesize a summary IV
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Figure 1: IV method settings (unobserved variables are dashed; the dashed arrow between x and y is the causal
relationship we seek to estimate, dashed edges are dependencies that we seek to infer): (a) the traditional setting
with observed strong IV z, (b) a simple setting where we do not see z, but see noisy weak IV candidates w1, we, w3
independent conditioned on z, (c) a more challenging setting that Ivy can handle where some IV candidates have
dependencies (ws, w3), others are invalid (w4 violates unconfoundedness, w; and wg violate exclusion restriction,

and wg violates relevance).

is a popular leading approach in MR (Burgess and
Thompson, 2013; Davies et al., 2015; Burgess et al.,
2016). UAS weights each IV candidate equally while
WAS weights them based on their associations to the
risk factor. While allele scores can mitigate bias in-
duced by weak IV candidates, they assume that these
IV candidates are all valid and independent condi-
tioned on the summary (Figure 1b). Thus, depen-
dencies (Sebastiani et al., 2012) or invalidity (Burgess
et al., 2017) in IV candidates (Figure 1c) can still result
in unreliable effect estimates when using the summary
variable. Our proposed approach, Ivy, can be viewed
as a generalization of allele scores to lessen these is-
sues.

2.2 Effect Estimation

In the effect estimation phase, the risk factor z, the
outcome y, and the summary (or, when available, the
strong IV) z are used in an estimation procedure to
obtain an estimate of the causal effect of x on y.

In MR, the standard estimator is the Wald ratio
B2y/ B2z, where ., and 3., are the logistic regression
coefficients of predicting = and y using z, respectively.
While Ivy can be plugged into other estimators, we
analyze the estimation phase for the commonly used
Wald estimator in MR.

3 IV Synthesis With Ivy

We describe the Ivy framework for instrumental vari-
able synthesis. We begin with our problem setup and
assumptions. Then we present Ivy (Algorithm 1) and
its components. Next, we theoretically characterize
the model parameter estimation error in Ivy due to
invalid IV candidates, misspecified dependencies, and
sampling noise. Finally, we bound the impact of this
error on downstream causal effect estimation.

3.1 Problem Setup

We seek to use a valid, but unobserved IV z € {—1,1}
to infer the causal relationship between the risk fac-
tor € {—1,1} and the outcome y € {—1,1}. This
causal relationship is obscured by potentially unob-
served confounders ¢ € {—1, l}d. The data generation
process among x,v, z, and ¢ follows some probability
distribution D. Although we do not directly observe
z, we do observe m IV candidates w € {—1,1}"". Only
some of these m IV candidates are valid.

If the IV z could be observed, we could directly plug it
into a causal effect estimator; unfortunately, z is rarely
known in practice. Thus, the primary challenge is to
reliably infer z from w, i.e. to estimate the distribution
P(z | w), and to characterize how this impacts the
reliability of downstream causal inference.

Notation We use “IV candidate” and “candi-
date” interchangeably. We call candidates that are
valid/invalid TVs “valid/invalid candidates”. We de-
note the index set of the valid candidates as V' C [m],
where [m] = {1,2,...,m}. We use wy to repre-
sent the subvector of the vector w indexed by V (i.e.
the subvector corresponding to the valid candidates).
When the subscript is omitted, ||-|| denotes the 2-norm.

Inputs and Outputs We have access to data
{(.%‘(i), y@), w(i))}?zlz n samples each of the risk x, the
outcome y, and the m IV candidates. Our goal is to
produce a causal effect estimate é,_,, of x on y.

3.2 Assumptions

We explain the assumptions made by Ivy, in particular
comparing to those made by allele scores. These are
described in further depth in Section B.2.

First, we describe assumptions on validity. We assume
the majority of IV candidates are valid IVs, and for the
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invalid candidates (i ¢ V'), w; L z. These assumptions
weaken those of allele scores, which assume that all
candidates are valid IVs.

Next, we continue with assumptions on dependen-
cies. To allow for dependencies, we model the can-
didates and z via an Ising model (the canonical binary
maximum-entropy distribution with pairwise depen-
dencies). We write the density of the model as

S exp(0iz + Siev 0 wiz + X jepbiww;), (1)

where Z is a normalization constant, F is the set of
pairwise dependencies between valid IVs, and the 6*
terms are the model parameters. While allele scores
require the maximal level of sparsity in the model (no
dependencies, so that E is empty), our assumptions
are weaker: we only require that for each valid IV
candidate w; there are at least two others that are
independent of w; and each other conditioned on z,
and, conversely, that candidates that are dependent
(i.e., in E) are all mutually dependent. Lastly, we
require that on average, valid IV candidates agree with
z more often than not. We discuss identifiability of
causal effects in Appendix B.3.

3.3 Algorithmic Framework

We describe the Ivy framework (Algorithm 1). First,
because our data may include both valid and invalid
IV candidates, and because even the valid candidates
may have dependencies, we learn a set of valid can-
didates and dependencies directly from our data (Al-
gorithm 2). Next, we learn the mean parameters of
the joint distribution of our estimated valid w;’s and
z, without observing z (Algorithm 3). Concretely,
(u*,0%), the true mean parameters?, are E[wz] and
E[wwT] (where E[wz] is a vector with entries E[w;z]).
We observe the w’s, so we can easily estimate O* by
O. More challenging is to estimate p*, since we do not
observe z; we use our learned dependencies and valid-
ity to estimate p* by . Finally, in Algorithm 4 we use
i and O to form an estimate 2 of z. We also describe
how to use Z in a generic IV-based estimator F' to get
a causal effect estimate (the estimation phase). We
describe the components of Algorithm 1 in detail.

Step 1: Identify Valid IV Candidates and their
Dependencies. Inputs: data and hyperparameters.
Outputs: estimated set of valid candidates V and esti-
mated dependency set E of V. Our method for learn-
ing the valid IVs and their dependencies is an applica-
tion of recent approaches for structure learning (Varma
et al., 2019) in graphical models. The main challenge

2These are expectations of the sufficient statistics in (1).
E|[z] is also a parameter; we assume it is known, but it can
also be estimated (see, for example, Ratner et al. 2019).

Algorithm 1 Ivy Algorithmic Framework
Input: Data {(w(i), (@) y(i))}?zl.
1: V,E « STRUCTURELEARN (data, A, v, T1, T)
2: i + PARAMLEARN (data,V, E)

3: Ggyy < CAUSALEST (Estimator, data, v, i)
Output: Causal effect estimate d,—y.

Algorithm 2 Valid IV and Dependency Learning
(STRUCTURELEARN)

Input: Data {w(i)}jzl, params. A, v, 11, and T5.

1: Compute sample covariance matrix S from w(’s.
2: (S,L) < argmin L(S — L, X) + X\, (Y|IS|l1 +HIL|l«)s
L=0,5—L>0

where £ is a loss function.

3: ¢« argmin, | L — 07T || p

4V {j:[(B0;] = Th}

5: E — {(7”]) : 7”] € ‘A/aZ <]7’§1,j > T2}

Output: Estimated valid IV candidate set V, esti-

mated dependency set E.

is that without observing z, all of the valid IV candi-
dates will appear to be correlated, although may be in-
dependent conditioned on z. Meanwhile, the valid and
invalid candidates form mutually-independent compo-
nents. We recover both the graph structure and the
covariances between the IV candidates (valid and in-
valid) and z via a robust PCA approach. This enables
us to estimate which IVs are valid and their statistical
dependencies. The procedure is given in Algorithm 2.

Concretely, the identification of the valid candidates
and their dependencies translates to decomposing a
rank-one matrix and a sparse matrix from their sum
(Line 2 of Algorithm 2). Here, the candidate validity
ends up being encoded in the rank-one component L
and the dependencies are encoded in the sparse compo-
nent S. Thus, we can threshold the vector correspond-
ing to the rank-one matrix L to obtain the valid IVs
and then threshold the corresponding submatrix of §
containing valid IVs to obtain the dependencies. There
are several choices of loss functions. For our analysis,

we use £(S— L, %) = +tr((S—L)S(S—L)) —tr(S—L).

Step 2: Estimate Parameters of the Candidate
Model. Inputs: data, G = (V,E’) Outputs: esti-
mated parameters O, . In Algorithm 3, we learn the
mean parameters. We leverage conditional indepen-
dencies encoded in our estimated dependency struc-
ture to obtain these parameters without ever observ-
ing z, via the agreements and disagreements of the IV

candidates. We adapt Ratner et al. (2019).

Specifically, we set a; = w;z for all j € V. Then
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Algorithm 3 Parameter Learning (PARAMLEARN)

Input: Data {w®}"_ G = (V,E) where V are esti-

mated valid candldates E are edges among them.
(@ )( (}'))T

vty

Q « {(i,7) : wi, w; are disconnected in G\ {z}}

Form matrix Mg, and vector ¢ from O

{ + argmin, | Mgl —

|| < exp((/2)

: Recover sgn(fi)

Output Estimated model mean parameters O s b

Form estimated matrix O « + ZZ LW

SSRANE O A

Algorithm 4 Synthesis & Causal Effect Estimation
(CAUSALEST)

Input: Data {(w(i), @, y(i))}j:
eters O,/l, V, E, causal effect estimator F(+).

for i € [n] do > Synthesize

1» estimated param-

1:

2: z(’)<—P (Z|w )

3: end for ‘ ‘ ‘

4 gy F ({(z(w,x(z),y(w)}j:l). > Estimate
Output: Causal effect estimate Gy, .

the mean parameter p; := Ela;] = E[w;z]. Since

z* = 1, Elaa;] = E[(wiz)(w;z)] = Elwjw;]. We
can estimate E[w;w;] from data. Moreover, if w; and
wj; are independent conditioned on z (i.e. (7,7) is an
edge in Q), then E[a;a;] = E[a;]E[a;], which means
logE?[a;] + logE2[a;] = logE?[w;w;]. We form a
system of equations Mgl = ¢, with ¢ the vector of
log E?[w;w;] terms and £ the vector of log E?[a;] terms.
The matrix Mg, is formed by taking each (4, j) & Q) and
adding a row with a 1 in positions ¢ and j and 0’s else-
where. We solve this to get estimates fi; of E[a;] up to
sign; using the assumption that valid candidates agree
with z the majority of the time, we recover the signs.
This gives /i (and O was estimated earlier).

Step 3: Synthesize IV and Estimate Causal Ef-
fect Inputs: data, O, i, V, E, and causal effect es-
timator F'(-). Outputs: causal effect estimate éig—y.
Finally, in Algorithm 4, we generate a probabilisti-
cally synthesized version of z called Z from our model
parameterized by O, 1. We obtain samples of z based
on these to account for the uncertainty in the synthe-
sized summary IV, concluding synthesis. We then feed
these samples, along the risk factor and the outcome,
to a causal effect estimator in the estimation phase,
producing a causal effect estimate.

3.4 Theoretical Analysis

We theoretically analyze Ivy and provide bounds on
its parameter estimation error. We further analyze
the error in downstream causal effect estimation using
the Wald estimator—a common estimator of causal
effects in MR—as a proof-of-concept. We focus on
the scaling with respect to the number of samples n
and the number of IV candidates m. We present a
simplified bound that explains the conceptual result,
and provide a more general version in Appendix B.4.

Parameter Estimation Bound We show how the
gap between the parameters p* of (1) and our esti-
mated [ decays with the number of samples.?> We fix
Ruin, the lowest correlation between valid candidates,
and Chn, the lowest accuracy for a valid candidate.
Then, let cg,c1 be constants and d be the largest de-
gree of a valid IV candidate in G.

Theorem 1. Let fi be the result of Algorithm 1 run on
n samples of m IV candidates, where m > co. Denote
w* to be the mean parameter of (1). If n > c1d*m,
then with probability at least 1 — %,

16m3

min

17

Eflla = w7 <

Remark The bound on the estimation error goes to
0 as O(1/+y/n), while it scales as O(m°/2) in the num-
ber of IV candidates. The bound also depends on the
smallest correlation between a pair of valid IVs; the
smaller this term, the more samples we need to accu-
rately estimate p*. |[MT| is the largest singular value
of the pseudoinverse of M := Mg, i.e., the true M
formed with the edges from Gj it indicates the cost of
solving our problem (which is independent of n).

Under the assumptions in Section 3.2, Ivy can han-
dle invalid candidates and dependencies in G. This is
because with sufficiently many samples (the require-
ment n > c;d?>m), the structure learning component
correctly identifies valid candidates and the correct de-
pendencies among them, with high probability. The
more dependencies that have to be estimated (that
is, the larger the number of sources m and degree d),
the more samples we need. However, once we pass a
threshold, we are operating only over valid IVs and a
correct model, enabling the estimation error to go to
zero. In Appendix B.4, we present a more technical
result, applicable to the low-sample regime. In that
case, the structure learning component may not iden-
tify all invalid IVs and may leave some edges, and we
bound the impact of these unidentified invalid IVs and
misspecified dependencies.

3In Appendix B.4 we bound E[[|O —O*||] with Lemma 1.
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Application to Allele Scores UAS implicitly fol-
lows the conditionally independent model above. Our
framework helps obtain new insights on its behavior.
Specifically, when the ground truth model is not con-
ditionally independent, we can explain the approxima-
tion error in the parameters estimated by UAS.

As long as there is at least one misspecified depen-
dency, the parameter error in UAS cannot go to
zero. Specifically, let n — oo and suppose there is
a dependency between w; and ws, but we miss it.
Then, we do not have conditional independence, so
Elwiws] # Ela1]E[az]. Form ¢' with Ela;]E[as] and
q with E[wiws]. We can write ¢’ — ¢ = dey for some
0 # 0, since ¢ is only incorrect in one position. Then,
1 — ol = |MT(d = )| = 1M (er) | = 3]|[M e]| >

%, which is a lower bound that is independent of n.

Thus we obtain that E[||p’ — p*||] > 0.

Causal Effect Estimation Error Next, we bound
the causal effect estimation error when using Ivy’s
synthesized IV. We bound the mean squared error
E[(Gzsy — @ _,,)?] between the effect with Ivy’s ver-
sion of z and that with the true z, as a function of the
parameter error E[||fi— p*||] we obtained in Theorem 1.

We use the popular Wald estimator as an example.
Let 57, and f7, be the population-level coefficients of
z from the logistic regressions to predict z and y un-
der D, and ng ng the corresponding regression coeffi-
cients of 2. Define a;_,, := 3}, /5%, as the population-
level Wald estimator. Suppose that the population-
level logistic loss of D satisfies Lemma 3 in Appendix
B.5, so that it is A-strongly convex. Again suppose
m > cg,n > cid*m and large enough such that for
some Kk € (07 1)7 maX{'ﬁéy - :y‘7 ‘Biw - B:xl} < Kﬁ:aj’
and let ¢y be a constant.

Theorem 2. Run Algorithm 1 on n samples of m
IV candidates to synthesize Z’s that are plugged into
the Wald estimator to obtain the causal effect estimate
Oz—y. Then, the error in the estimate Guz—y compared

to the true effect aj_,, is bounded as follows:

1 6000com 3 (82, +87,)> 1+ M)
N 2 2 zx z
E[(am—w - O‘::—w) ] < \/; ’ Rmink(l—ﬁg25§§ ’

Theorem 2 quantifies how the estimation error of z
propagates to the downstream Wald estimator. The
error goes to 0 as 1/4/n, suggesting that, under the
conditions we described, we can indeed perform reli-
able causal inference from weak IV candidates. Our
final observation is that model misspecification may
lead to nonzero error in the causal estimates (see Sec-
tion B.7): with even one misspecified dependency,
E[||p' — p*||]] > 0 with positive probability. We can
lower bound (G, — @, )% in terms of E[[|/ — p*|],
concluding that (4, —aj_,,)* > 0 for such cases.

4 Experiments

We empirically validate that the summary IVs syn-
thesized by Ivy lead to reliable causal effect estimates
when plugged into standard causal effect estimators on
real-world healthcare datasets. Specifically,

e In Section 4.1, we show, in clinically-motivated sce-
narios where only uncurated (potentially dependent
or invalid) IV candidates are available, that Ivy can
synthesize a summary IV that leads to more reliable
effect estimates than allele scores.

e In Section 4.2, in scenarios with hand-picked curated
(putatively valid and conditionally independent) IV
candidates, we show that Ivy performs comparably
well to allele scores.

e In Section 4.3, we evaluate the Ivy framework on
synthetic data and further focus on its robustness
against violation of key assumptions.

We describe the datasets, methods, and evaluation
metrics and then report our primary findings.*

Datasets In collaboration with cardiologists, we se-
lected real-world health data collected from the UK
Biobank (Sudlow et al., 2015) for a variety of cardiac
conditions. Because heart diseases are a major class of
conditions affected by many factors, we examined five
factors (for instance, we study the LDL-CAD link, as
in Burgess et al. 2016). The most challenging aspect
of selecting datasets for causal inference is the lack
of ground truth effects. As a result, we have three
desiderata for our dataset choices:

e We need some risk-outcome pairs where strong clini-
cal evidence exists to support that there is no causal
relationship, while for other pairs, there is strong ev-
idence of a positive relationship;

e We require standard pairs that have previously been
tested against in the MR literature;

e To evaluate performance in the favorable setting
where IV candidates are valid and conditionally in-
dependent, we need access to curated sets of candi-
dates.

The five risk factors we use are high-density lipoprotein
(HDL), low-density lipoprotein (LDL), systolic blood
pressure (SBP), C-reactive protein (CRP), and vita-
min D (VTID). The outcome is occurrence of coro-
nary artery disease (CAD). Single-nucleotide polymor-
phisms (SNPs) associated with these factors are used
as IV candidates. These pairs are well-understood by
clinicians, enabling us to use these pairs as proxies
to the ground truth (Collaboration, 2011; Lieb et al.,
2013; Holmes et al., 2014; Manousaki et al., 2016). Us-

4In Appendix C, we give further details about our setup
and additional experiments.
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Figure 2: Wald ratios in estimating the causal effects
of three risk factors (HDL, C-reactive protein, and vi-
tamin D) to the occurrence of coronary artery disease
using uncurated IVs. Goal: 0 causal effect.

ing the risk factors, outcome, and IV candidates, we
extract 11 datasets from the UK Biobank for our ex-
periments (details in Table A.2).

Methods Ivy produces a summary in the synthe-
sis phase, so we compare to allele scores—UAS and
WAS—in Sections 4.1-4.3, as they also produce a sum-
mary IV. Additionally, we report results of logistic re-
gression (Assn), which is a proxy for the confounded
association between the risk factor and the outcome.

Metric After the synthesis phase, we use the sum-
mary IV in the estimation phase by plugging it into a
causal effect estimator, along with the risk factor and
the outcome. In all experiments, we use the Wald ra-
tio to estimate effects. We report the median Wald
ratio and its 95% confidence interval (CI). In MR, a
CI that covers the origin is interpreted as no causal ef-
fect, while strictly positive/negative CIs indicate pos-
itive/negative causal effects.

4.1 MR with Uncurated IVs

We first use the summary variable synthesized by Ivy
to draw causal inference in common clinical scenarios
where only low-quality IV candidates are available. As
shown in Figure 2, Ivy dismisses known spurious corre-
lations on all three of the real-world datasets (median
effect size < 0.025); in comparison, allele scores yield
more biased estimates (median effect size > 0.118).
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Figure 3: Wald ratios in estimating the causal ef-
fect between high(low)-density lipoprotein and coro-
nary artery disease using curated IVs. Goal in (a): 0
causal effect. Goal in (b): positive causal effect.

Specifically, we test spurious relationships between
three potential risk factors (HDL, CRP, and VTD)
and CAD: these are known to be noncausal, so the
true effect size is 0. We compare Ivy with UAS, WAS,
and Assn. Results are in Figure 2. Both UAS and
WAS return negative causal effects for HDL (UAS me-
dian: -0.494; WAS median: -0.366; Figure 2a) and
CRP (UAS median: -0.118; WAS median: -0.159; Fig-
ure 2b) with negative CIs. By contrast, Ivy does not
identify a causal effect (Ivy median: 0.025 and 0.001
for HDL and CRP, respectively), with CIs covering
the origin. In Figure 2¢, the Cls of all three meth-
ods cover the origin, indicating successful dismissal.
Nonetheless, the median estimates of UAS (0.153) and
WAS (0.133) are skewed towards the positive direction,
while Ivy’s is very close to the origin (-0.012).

Ivy tends to have a wider confidence interval compared
to allele scores, as it selects only a subset of IV candi-
dates. Allele scores make use of all candidates regard-
less of their validity, and may be hurt by one or more
being invalid. In all cases, Association (Assn) fails to
dismiss spurious correlation, highlighting the impor-
tance of the use of IVs for debiasing causal estimates.

4.2 MR with Curated IVs

Next, we use a summary IV using a set of curated
(putatively valid and conditionally independent) can-
didates with both known non-causal and known causal
pairs. While all methods work, for the positive LDL-
CAD relationship, Ivy retains the positive perfor-
mance of WAS over UAS. The results are in Figure 3.

Concretely, since we are now in the fortunate (but
rarer) setting in which the IV candidates are “good,”
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Figure 4: Dismissing spurious correlations when z is
invalid. As the invalidity of z, i.e., the accuracy of wg
in predicting z, increases, all methods eventually fail.
However, Ivy is the most robust.

we expect that both Ivy and allele scores provide rea-
sonable estimates. We use the known noncausal rela-
tionship between HDL and CAD (Example 1) and the
known positive causal relationship between LDL and
CAD. Ivy is compared with UAS, WAS, and Assn. In
terms of dismissing spurious correlation (Figure 3a),
the 95% CIs of all three IV-based methods (Ivy, UAS,
WAS) cover the origin, indicating successful dismissal.
Notably, the median estimate of Ivy is closest to the
origin (-0.005) compared to other methods (UAS me-
dian: -0.081; WAS median: -0.241), suggesting a po-
tentially less biased estimate from Ivy. Again, Assn
fails to dismiss spurious correlation even in this “eas-
ier” setting.

In terms of identifying a true causal relationship (Fig-
ure 3b), all three IV-based methods correctly identify
the direction of the causal relationship (UAS median:
0.419; WAS median: 0.999; Ivy median: 1.074), as
indicated by the positive Cls of the causal estimates.
The lengths of the CIs of the three IV-based methods
are also comparable to each other. On this dataset,
Ivy yields an estimate most similar to that of WAS—
matching the property that Ivy mimics allele scores in
the setting where IV-candidates are high-quality.

4.3 Synthetic Experiments

Now we use synthetic data, controlling candidate prop-
erties and the ground-truth. We validate the robust-
ness of Ivy and compare the effect to the ground-truth.

Robustness We investigate how robust Ivy is to an
important violation of our main assumptions (that all
the invalid candidates are independent of z). Then,
the summary z itself may be an invalid IV. We show
that Ivy yields a causal estimate that is more robust
to this case compared to allele scores. Of course, when
the invalidity is sufficiently strong, eventually Ivy also
fails to dismiss a spurious correlation (Figure 4b).

We use the spurious correlation model in Figure 4a.
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Figure 5: Wald ratios in causal effect estimation using
synthetic data. The true causal effects are 0 and 0.15.

The candidate wg serves as a confounder between the
risk factor and the outcome. Here z is invalid because z
is associated with wg, and we increase this association
strength (red edge) to force more invalidity. We ex-
pect Ivy to downweight the influence of wg while UAS
and WAS may not. Indeed, Ivy performs well when
z is nearly valid (i.e., nearly independent of wg), and
gradually degrades (blue curve), while allele scores im-
mediately struggle. Eventually, increasing the amount
of invalidity causes Ivy to fail as well.

Dismissing Spurious Correlations Next, we gen-
erate synthetic data with no causal effect along with
valid and invalid IVs and adding dependencies. The
results are in Figure 5a. Ivy recovers the dependency
structure and identifies the invalid candidates. As a
result, Ivy can successfully dismiss the spurious cor-
relation by identifying no causal effects (Ivy median:
0.042) while both UAS and WAS fail to do so by yield-
ing estimates that are consistent with the direction of
the spurious correlation (UAS median: 0.266, WAS
median: 0.509).

Positive Causal Effects We use synthetic data
with positive effects and dependent, partially invalid
IV candidates. Experimental results are reported in
Figure 5b. Ivy provides a median estimate (0.146)
that is closest to the true effect (0.150) while both UAS
(0.440) and WAS (0.545) return median estimates that
are biased towards the observational association.

5 Conclusion

We introduce Ivy, a framework that synthesizes from
IV candidates a summary IV used for downstream
causal inference. Through theoretical analysis and em-
pirical studies, we demonstrate the robustness and lim-
itation of Ivy in handling invalidity and dependencies
among IV candidates.
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