Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li

A Regret Bounds

The following lemma bounds the expected per-round regret of any randomized algorithm that chooses the perturbed solu-
tion in round ¢, 6;, as a function of the history.

Lemma 2. Let py > P (Egyt), ps < Py (E3,.), and ps > po. Then on event E1 4,

. 2
By [An] < fomas(cr + 62) (1 + ) y
pP3 — P2

By [los g | + Amacpe.
Proof. Let A; = x]—ﬁ* - :EZTO* and ¢ = ¢1 + ¢o. Let
S, = {Z € K] : cllaill g1 > Ai}

be the set of undersampled arms in round ¢. Note that 1 € S, by definition. We define the set of sufficiently sampled arms
as Sy = [K] \ S;. Let J; = argmin ;g, ||$iHG;1 be the least uncertain undersampled arm in round t.

In all steps below, we assume that event £ ; occurs. In round ¢ on event E ¢,
Ap, < fimax A1, = [ A 10, —x;0,) < A 16, —x, 6 - _
Iy S Hmax 81, = HPmax (BJ, 25,06 = 21,06 ) S fmax (B, + 25,00 — 27,0 JFC(”fo,”Gt 1+ ||$Jt||Gt 1)
< /:cmaxc (”xItHG;l + 2||IJt||G;1) )

where the first inequality holds because f[iax 1S the maximum derivative of u, the second is by the definitions of events
E 4 and Ey 4, and the last follows from the definitions of I; and J;. Now we take the expectation of both sides and get

Eu (A7) = B (A 1{Ea Y] + By [AL1{ Bz }] < fimax B [l2n,llgor + 2020 ;| + A P (Bzt) -

The last step is to replace E; [Hth ||G:1} with E; [||1:1t ||G:1} . To do so, observe that

E, [||x1t||G;1} > E, [||x1t||G;1 I € St} Pe (I € 5) > [lesllg- i (I € 52)

where the last inequality follows from the definition of .J; and that S; is F;_;-measurable. We rearrange the inequality as
Iz llgr < Ee [chh ”Gt_l} /Py (I, € S;) and bound P, (I; € S;) from below next.

In particular, on event Ey 4,

> P <x1r9~t > m%x x;-rét, Eo ¢ occurs> > P (xfét > xl—e*, Ey occurs)
JESE

2 ]P)t (.’ﬁ;rét > xfﬁ*) — ]Pt (EQ’t) 2 ]P)t (x;rét — x?ét > Cl”‘xl”G;l) — Pt (E‘Qyt) .

Note that we require a sharp inequality because I; € S, is not guaranteed on event {32' €S, : :EZT ét > maX;eg, x?ét}
The fourth inequality holds because on event Fy ; N Eo 4,

x;—ét < ije* + c||xj||G;1 < ije* +A; =10,

holds for any j € S;. The last inequality holds because 21 0. < x{ 0; + c1]|z1/|¢-1 holds on event Ey ;. Finally, we use
the definitions of ps and p3 to complete the proof. O

The regret bound of GLM-TSL is proved below.
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Theorem 3. The n-round regret of GLM-TSL is bounded as

2
< _
R(n) < fimax(c1 + ¢2) (1 + 015 = 1/n) X

2dn 1og(2n/d) + (7' + 3)Amax )

where

a4 = C1y/ /:Lmax7

c1 = ofigi \/dlog(n/d) + 2logn,
Cy =C1 \/2,[1/;11111 ,[J/max log(Kn) )

and the number of exploration rounds T satisfies

Amin(Gr) > max {o?f12 (dlog(n/d) + 2logn), 1} .

Proof. Fix T € [n]. Let
By = {||§t — b2 < 1}

and py > P (E47t) fort > 7. Letpy > P (E'Lh E47t), po > P, (Egyt) on event Ey ;, and ps < P, (E3.). By elementary
algebra, we get

R(n) < En:E[A]t] + TApax

t=1

§ Z E [Alt]l{E4,t }] + (T + p4n)Amax

t=1

< ZE [ApL{Er ¢, Ea}] + (7 + (p1 + pa)n) Amax

t=1

= ZE [E¢ [An] {Eve, Eqe}] + (74 (p1+ pa)n) Amax -

t=r1

To get p1 < 1/n, we set ¢1 as in Lemma 8. Now we apply Lemma 2 to E, [Ar,] 1{E1 ;, E4,.} and get

+ (T + (pl +p2 +p4)n)Amaxa
p3 — P2

. 2 -
B < s+ (14 =2 ) B [z -
t=1

where a and ¢, are set as in Lemma 4. For these settings, p» < 1/n and p3 > 0.15. To bound >_;"__ ||z, ||G;1, we use
Lemma 2 in Li et al. [2017]. Finally, to get p, < 1/n, we choose 7 as in Lemma 9. O

The regret bound of GLM-FPL is proved below.
Theorem 5. The n-round regret of GLM-FPL is bounded as

2
< [ 015 —2/n
R(n) < fimax(c1 + ¢2) (1 T 0.15 — 2/n> .

2dnlog(2n/d) + (7 + 4) Amax ,

where

S
\

- Clﬂmaxv
c1 = opl \/dlog(n/d) + 2logn,

Cy = Clﬂ;liln /:Lmax V 2 IOg(KTL) )
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and the number of exploration rounds T satisfies
Amin(G7) > max{4c?(12 (dlog(n/d) 4+ 2logn),
8a2,u:ni2n logn, 1}.

Proof. The proof is almost identical to that of Theorem 3. There are two main differences. First, a and ¢y are set as in
Lemma 6. For these settings, p, < 2/n and p; > 0.15. Second, 7 is set as in Lemma 10. O

B Technical Lemmas

We need an extension of Theorem 1 in Abbasi-Yadkori et al. [2011], which is concerned with concentration of a certain
vector-valued martingale. The setup of the claim is as follows. Let (F;)¢>0 be a filtration, (7;):>1 be a stochastic process
such that 7, is real-valued and F;-measurable, and (X;);>1 be another stochastic process such that X is R%-valued and
Fi—1-measurable. We also assume that () ); is conditionally R?-sub-Gaussian, that is

/\ZRQ]

VAeR: Eexp[\y]| Fi—1] < exp [ (10)

We call the triplet ((X})¢, (n:)¢, F) “nice” when these conditions hold. The modified claim is stated and proved below.

Lemma 7. Let ((X4)t, (n:)t, F) be a “nice” triplet, S; = ZZ=1 s Xs, Vi = ZZ=1 XX/ and for V.= 0, let g =
min{t > 1:V; = V}. Then for any 6 € (0,1) and F-stopping time T > 1 such that T > 1o holds almost surely, with
probability at least 1 — 0,

det(V,)? det(V,, )~32
||ST||€T1<2R210g< et(Vr)? det(Vr,) )

4]

Proof. The proof in Abbasi-Yadkori et al. [2011] can easily adjusted as follows. If ((X3)+, ()¢, F) is a “nice” triplet, then
for any § € (0, 1), Fo-measurable matrix V' > 0, and stopping time 7 > 1,

p <||ST||2V_1 < 2R?log (det(vf)z ‘;et(vf()“) |]~"0> >1-35. (11

Now, for t > 0, let X] = X, 44, 0} = Nry4t, and F} = Fr 4. Then ((X])i>1, (0)e>1, (F)e>0) is a nice triplet and the
result follows from (11). O]

We use the last lemma to prove the following result.

Lemma 8. Let c; = ofi,} \/dlog(n/d) + 2logn and T be any round such that Ayin(G) > 1. Then for any t > T,

P (E1, oceurs, [|0; — 6.]2 < 1) < 1/n.

Proof. Let S; = ZZ:(Yg — (X, 6,)) Xe. By Lemma 1, where Dy = {(Xg,u(XgTG*))}z: and Dy = {(Xy, Y2) Z;}
we have that

St = VQL(Dl, 9/)(§t — 9*) 5
|4

where 0" = af. + (1 — )0y for a € [0, 1]. We rearrange the equality as V~1S; = 6; — 6, and note that (1,4, Gy < V on
||0: — 6.]|]2 < 1. Now fix arm 4. By the Cauchy-Schwarz inequality and from the above discussion,

Th T
’xi 0, —x; 0.

<10c = b:llg,lzill g1 = (8 — 02) T Ge(8: — 0.)|lzill
=S VTIGV T Szl < fminllSell g1 il g1 -

By (13) in Lemma 9, which is derived using Lemma 7, ||S || Gt < o+/dlog(n/d) + 2logn holds with probability at least

1 —1/n in any round ¢ > 7. In this case, event E1 ; is guaranteed to occur when ¢, is set as in the claim. It follows that
E4 1 occurs on ||, — 0. ||2 < 1 with probability of at most 1/n. O
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The number of initial exploration rounds in GLM-TSL is set below.

Lemma 9. Let T be any round such that
>\min(GT) 2> max {0'2/..t;1i2n (d log(n/d) +2 IOg n), 1} .

Then forany t > 7, P ([|6; — 0.2 > 1) < 1/n.

Proof. Fix round ¢t and let S; = f,;} (Yo — u(X,60.)) Xo. By the same argument as in the proof of Theorem 1 in Li et al.
[2017], who use Lemma A of Chen et al. [1999], we have that

ISell g+ < Fmin v/ Amin(Gr) == [0y — 0.]2 < 1
Now fix 7 such that A,in(G,) > 1. Forany t > 7, G; = G and thus

1Sellg-1 < fimin v/ Amin (Gr) = 0; — 0.2 < 1. (12)
In the next step, we bound ||.S;| -+ from above. By Lemma 7,

1S:]12,-1 < 202 log(det(Gy)? det(G,)"%n)

12,

holds jointly in all rounds ¢ > 7 with probability at least 1 — 1/n. By Lemma 11 in Abbasi-Yadkori et al. [2011] and from
| X¢l2 < 1, we get log det(G¢) < dlog(n/d). By the choice of 7, det(G,) ™! < 1. It follows that

IStl%-1 < 0®(dlog(n/d) +2logn) (13)

for any ¢ > 7 with probability at least 1 — 1/n. Now we combine this claim with (12) and have that ||§; — 6,2 < 1 holds
with probability at least 1 — 1/n when

Amin(Gr) > 0?12 (dlog(n/d) + 2logn).
This concludes the proof. O

The number of initial exploration rounds in GLM-FPL is set below.

Lemma 10. Let 7 be any round such that

Amin(Gr) > max {4U2ﬂ;1i2n(dlog(n/d) +2logn), 8a’ji 2 logn, 1} .
Then for any t > 7, P (||0, — 0.2 > 1/2) < 1/n and P, (||§t — 02 > 1) < 1/nonevent ||0; — 0.|]> < 1/2.

Proof. Fix round t. Let S; be defined as in Lemma 9 and 7 be any round such that
Amin (G, ) > min {40?1_? (dlog(n/d) + 2logn), 1} .

Then by the same argument as in Lemma 9, P (|0; — 6.]|2 > 1/2) < 1/n holds for any ¢ > 7.
Now fix round ¢, history F;_1, and assume that [|0; — 6,2 < 1/2 holds. Let

t—1

Se=> Yo+ Zy— (X, 00) X, = ZZZXZ,
(=1

where the last equality holds because 34— (Y2 — (X, 6;)) X, = 0. Since [|6; — 6.||a < 1/2, the 0.5-ball centered at §;
is within the unit ball centered at 0. So, the minimum derivative of p in the 0.5-ball is not larger than that in the unit ball,
and we have by a similar argument to Lemma 9 that

_ 1. ~ _ 1
HStHG;l < §,Umin Amin(G) = Het - 9t||2 < 3 (14)
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— _1
By definition, HStHGt—l = ||[U]]z for U = G, ® 22: ZyXy. Since Z, are i.i.d. random variables that are resampled in

each round, we have U ~ N(0,a*14) given F;_1, and that ||U||ly < a\/2logn holds with probability at least 1 — 1/n
given F;_;. Now we combine this claim with (14) and have that ||f; — 0;||2 < 1/2 holds with probability at least 1 — 1/n
for any round ¢ such that

)‘min(Gt) > 8@2/.14;11211 10g n.

For any such round, when ||; — 6. ||> < 1/2 holds, PP, (||0~t — 0.2 < 1) > 1 — 1/n. This concludes our proof. O



