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Abstract

Recent work by Su, Boyd and Candes made
a connection between Nesterov’s accelerated
gradient descent method and an ordinary dif-
ferential equation (ODE). We show that this
connection can be extended to the case of
stochastic gradients, and develop Lyapunov
function based convergence rates proof for
Nesterov’s accelerated stochastic gradient de-
scent. In the gradient case, we show Nes-
terov’s method arises as a straightforward
discretization of a modified ODE. Estab-
lished Lyapunov analysis is used to recover
the accelerated rates of convergence in both
continuous and discrete time. Moreover, the
Lyapunov analysis can be extended to the
case of stochastic gradients. The result is a
unified approach to acceleration in both con-
tinuous and discrete time, and in for both
stochastic and full gradients.

1 Introduction

Recently Su et al. [2014] showed that Nesterov’s
method for accelerated gradient descent can be ob-
tained as the discretization of an Ordinary Differential
Equation (ODE). The work of Su et al. [2014] resulted
in a renewed interest in the continuous time approach
to first order optimization, for example Wibisono et al.
[2016], Wilson et al. [2016], Wilson et al. [2019]. The
goals of the approach are to: (i) develop new insights
into accelerated algorithms, and (ii) obtain new opti-
mization algorithms. However, so far there has limited
progress made on the second goal.

There is more than one ODE which can be discretized
to obtain Nesterov’s method Shi et al. [2018]. By dis-
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cretizing a specific choice of ODE, we show that: (i)
with a constant learning rate, we obtain Nesterov’s
method, (ii) with a decreasing learning rate, we obtain
an accelerated stochastic gradient descent algorithm.
We prove, using a Lyapunov function approach, that
for both the convex and strongly convex cases, the
algorithms converge at the optimal rate for the last
iterate of SGD, with rate constants which are better
than previously available.

1.1 Discussion of results
We write a stochastic gradient, §(x, &) = Vf(x,¢) as
9(x,§) = Vf(z) +e(x,8), (1)

and make the stochastic approximation assumption on
the error,

Ele] =0 and Var(e) = 0. (2)

Relaxing the assumption (2) to cover the finite sum
case is the subject of future work. Making the as-
sumption (2) allows our results to depend only on o2.
In what follows, G2, is a bound for E[g?].

In the convex case, the optimal rate for the last it-
erate of SGD (see Shamir and Zhang [2013]) is order
log(k)/vk with a rate constant that depends on GZ.
(Jain et al. [2019] remove the log factor, but only as-
suming that the number of iterations is decided in ad-
vance.) We obtain the O(log(k)/v'k) rate for the last
iterate, with a constant which depends on o, but is
independent of the L-smoothness. See Table 1. Below
we also present an algorithm with a learning rate pa-
rameterized by a. This algorithm has a convergence
rate of O(1/k*2%) which goes to 1/Vk as a — 3/4,
but the rate constant is not controlled. See Proposi-
tion 4.5 for the full expression for the rate for both
algorithms.

In the strongly convex case, we obtain the optimal
O(1/k) rate for the last iterate, with constants inde-
pendent of the L-smoothness bound of the gradient.
(The constant, L, appears in the algorithm for initial-
ization of the learning rate.) This improves on previ-
ous results, Nemirovski et al. [2009], Shamir and Zhang
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Table 1: Convergence rate E[f(zx) — f*] after k steps. for f a convex, L-smooth function. G? is a bound on
E[Vf(x)?], and o2 given by (2). hy is the learning rate. Ejy is the initial value of the Lyapunov function. Top:

convex case, D is the diameter of the domain, c is a free parameter. Bottom: p-strongly convex case, Cy 1= <

L
w

hi, = O(1/k) .
Shamir and Zhang [2013] | Acc. SGD (Proposition 4.5)
y ? c
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Nemirovski et al. [2009] | Shamir and Zhang [2013] | Jain et al. [2019] | Acc. SGD (Proposition 5.6)
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[2013], Jain et al. [2018], where the rate depends on G.
See Table 1.

1.2 Outline of our approach

SGD can be interpreted as a time discretization of the
gradient descent ODE, #(t) = —V f(z(t)), with per-
turbed gradients. Solutions of the ODE decrease a
rate-generating Lyapunov function, (18) below. We
extend this analysis to an ODE for accelerated gra-
dient descent, which also has an associated Lyapunov
function. The Lyapunov analysis in the accelerated
case is substantially more complex than in the gradi-
ent descent case. So, rather than proceeding directly,
we first perform an abstract Lyapunov function anal-
ysis which involves: (i) an ode, (ii) a rate-generating
Lyapunov function, and (iii) passing from determinis-
tic to stochastic gradients in the analysis.

The key step is to obtain the following inequality on a
rate-generating Lyapunov function.

E(tg+1,z6+1) < (1 —rphi)E(te, 21) + hefe. (3)

Here, hj is the learning rate, and rgp > 0 is a rate
constant. The term f§; depends on the error e; from
(1), and reduces to zero in the full gradient case e = 0.
When we take expectations in (3), E[8;] is propor-
tional to hyo?. The inequality (3) can be seen as a gen-
eralization of the fundamental lemma in Bottou et al.
[2016], where the objective is replaced by a Liapunov
function.

Schmidt et al. [2011] used a related approach, but they
considered the case where the magnitude of the er-
rors decrease quickly enough to obtain the rates in the
deterministic case. A continuous time version of the
analysis from Schmidt et al. [2011] was performed in
Attouch et al. [2016]. Serhat Aybat et al. [2019] re-
cently performed a similar Lyapunov analysis however

they do not obtain a rate.

1.3 Other related work

Continuous time analysis also appears in Flammarion
and Bach [2015], Lessard et al. [2016], and Krichene
et al. [2015], among many other recent works. The
Lyapunov approach to proving convergence rates ap-
pears widely in optimization, for example, see Beck
and Teboulle [2009] for FISTA.

Convergence rates for averaged SGD are available in a
wide setting, (Bottou et al. [2016], Lacoste-Julien et al.
[2012], Rakhlin et al. [2012], Qian et al. [2019]). In the
non-asymptotic regime, the last iterate of SGD is often
preferred in current applications. The optimal conver-
gence rate for SGD is O(1/k) in the smooth, strongly
convex case, and O(1/vk) in the convex, nonsmooth
case (Nemirovski et al. [2009], Bubeck [2014]).

When SGD is combined with momentum (Polyak
[1964], Nesterov [2013]) empirical performance is im-
proved, but this improvement is not always theoreti-
cally established (Kidambi et al. [2018]). Accelerated
versions of stochastic gradient descent algorithms are
comparatively more recent: they appear in Lin et al.
[2015] as well as in Frostig et al. [2015] and Jain et al.
[2018]. A direct acceleration method with a connec-
tion to Nesterov’s method can be found in Allen-Zhu
[2017].

Organization We organize the paper as follows.
Section 2 is devoted to the presentation of an abstract
Lyapunov analysis. We apply this analysis in the full
gradient, and the stochastic gradient case. In Section
3 we apply the abstract analysis to the gradient de-
scent ODE, in the case of convex and strongly convex
functions.
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Finally, in Sections 4 and 5 we study the acceler-
ated ODEs, and the related Lyapunov functions in
the convex and strongly convex cases, respectively. In
the convex case we show that the discretization of
(1st-ODE) below leads to Nesterov’s method with a
constant learning rate. However setting the learning
rate to hy = O(k~3/%) in (FE-C), (which is different
from the usual order £~/ rate) leads to an accelerated
stochastic gradient descent algorithm. In the strongly
convex case, we begin with the ODE, (1st-ODE-SC),
which is discretized with a learning rate hj to result in
(FE-SC). In the full gradient case, setting the constant
learning rate hy = 1/v/L leads to Nesterov’s method.
In the stochastic gradient case, setting hy = O(1/k)
as described in Proposition 5.6, leads to an accelerated
SGD algorithm.

Notation Let f be proper convex function, and
write x, = argmin, f(z) and f* = f(x.). We say
f is L-smooth if

W)~ F@) 4+ V@) @ -y) < Tyl @)
and f is p-strongly convex if
f@) + V@) y-2) < f) - Sle—yP, )

Write Cy := % for the condition number of f.

2 Abstract Lyapunov Analysis: going
from continuous to discrete time

In this section we present an abstract analysis show-
ing how to go from deterministic continuous time to
stochastic discrete time. We make a definition of the
continuous problem and start exposing the problem in
an abstract setting. Then, we show how this frame-
work can be extended to study the stochastic case. We
introduce abstract assumptions (e.g inequalities (8),
(14) and (15)) which are easily verified in the gradi-
ent case. These assumptions are later proven in the
accelerated case.

2.1 ODEs, Perturbed ODEs and
discretizations

Definition 2.1. Let g(t, z,p) be Ly-Lipschitz contin-
wous, and affine in the variable p,

9(t,z,p) = g1(t, 2) + g2(t, 2)p. (6)
Consider the Ordinary Differential Equation
() = g(t,2(t), Vf(2(1))) (ODE)
Referring to (1), Consider also the perturbed ODE,
(1) = g(t, 2(t), VF(2(1)))- (PODE)

(ODE) has unique solutions in all time for every ini-
tial condition z(0) = zg € R™. Moreover, if we assume
that e(t) is Lipschitz continuous in time, then (PODE)
has unique solutions in all time for every initial con-
dition z(0) = zp € R™. On the other hand, if we
wish to consider a model of e(t) which is more con-
sistent with random, mean zero errors, then (PODE)
is no longer well-posed as an ODE. However, we can
consider a Stochastic Differential Equation (Oksendal
[2013], Pavliotis [2016]), which would lead to similar
results to the discrete case where we take expectations
of the mean zero error term. We do not pursue the
SDE approach here to simplify the exposition.

Definition 2.2. For a given learning rate schedule
hr >0 andty, = Zf:o hi, the forward Euler discretiza-
tion of (ODE) corresponds to the sequence

Zhp1 = 2k + hg(te, 2, Vf(21)), (FE)

given an nitial value zo. Stmilarly, the forward Euler
discretization of (PODE) is given by

Zk1 = 2k + hig(te, 21, V f (21) + ex) (FEP)
The solution of (FE) or of (FEP) can be interpolated
to be a function of time z" : [0,7) — R™ by simply
setting 2(t,) = 21, along with piecewise constant or
piecewise linear interpolation between time steps. It
is a standard result from numerical analysis of ODE
theory (Iserles [2009]) that functions 2" converge to
z(t) with error of order hy, provided hj < 1/L,.

2.2 Lyapunov analysis for the unperturbed
ODE

First, we give the definition of a rate-generating Lya-
punov function for (ODE).

Definition 2.3. We say E(t,2) is a rate-generating
Lyapunov function for (ODE) if, for all t > 0,
E(t,z*) = 0 and VE(t,z*) = 0 where z* is a sta-
tionary solution of (ODE), i.e. g(t,z*,Vf(z*)) =0,
and if there are constants rg,ag > 0 such that

< —rpE(t,z) —aplg(t,z, V() (7)
Remark 2.4. We use a similar definition which is
used in the convex case, where now rg = 0 and the

constant ag is extended to be a function of time ag(t).
The analysis below does not change.

Then, we can deduce the following rate in the contin-
uous case.

Lemma 2.5. Let E be a rate generating Lyapunov
function for (ODE). Then

E(t,2(t)) < E(0,2(0)) exp(—rgt)
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Proof.

%E(t,z(t))
= E(t,2(t) + VE(L, 2(t)) - g(t, 2(1), VF(2(1)))

< —rpB(t, 2(t) — aplg(t, 2(t), Vf(2(1)))]?
by assumption (7). Gronwall’s inequality gives the re-

sult. O

2.3 Dissipation of F along (FEP)

Now we consider the discrete case where V f has been
replaced by a perturbed gradient Vf = Vf 4+ e and
then we compute the dissipation of E along (FEP).

First, we assume, in addition, there exists L > 0 such
that E satisfies,

E(titt, 2o41) — E(tr, 20) < OB, 21) (te1 — te)
L
+{(VE(te, 1), 2ke1 = 26) + 5 |ones — zl’ ()

Lemma 2.6. Let z, be the solution of (FEP). Sup-
pose E is a rate-generating Lyapunov function for
(ODE) which satisfies (8). Then if hy satisfies

2aE
h, < — 9
k > LE ) ( )
we have
E(titr1, zp+1) — E(tr, 2x) < —hprpE(ty, 2i) + hiBr
(10)

where By is defined by

Br == (VE(tw, z1), g2(tw, z1)ex)

1
+Lghy <g(tk7 2k, Vf(2k)) + 592(% 2k) ek, g2(tr, Zk)€k> .

2.4 Convergence in expectation: rg > 0

Now we consider the case where the error e; satisfies
(2). We require that hy, satisfies (9). (This assumption
is easy to enforce, since, in practice, we can perform
a few steps of the algorithm, and reset, so that until
hy, small enough). We consider the case rg > 0, which
applies to the strongly convex case.

By definition of B,

_ hxLggs(ty, Zk)20'2
= 5 ,

and then, taking the expectation in (10), we obtain

E[Bk]

E[E(tkt1, 2k41)]
h2 LEgs(te, 2) %02
5 .

< (1= hyre)E(te, zi) + (12)

Then, we deduce the following result

Proposition 2.7 (Case rg > 0). Assume that rg > 0
and go = max, ») g2(t, z) < +oo. If

2 r%
hp = — where o= 75,
rg(k+a 1E;") 2LEga o
then,
1
E[E(tk, Zk)] S (13)

alk+a1E;1Y)’
2.5 Convergence in expectation: rg =0

Since the convex case corresponds to the rg = 0 case,
the rate of convergence has to be incorporated into the
Lyapunov function. Then we assume that there exists
five constants a1, as, as, by, bo > 0 such that

" 2V}2 52
E[E(tg+1, 2k41)] — E(tk, 21) < (a1 + asty + asti)hio

(14)
and in addition, that

E[E(t, 2r)] > (but + bati) (ELf (21)] = f*).  (15)

We will see below that these conditions are easily veri-
fied in the non-accelerated case, and that it also holds
for the accelerated case. Then we obtain
Proposition 2.8. Assume that rg =0 and (14)-(15)
hold. If hy, = 1%, ty = Sor_| hy, then the following
holds:

e Case aj,a2,b1 > 0, a3 = by = 0: If a € [%,1),

then
E[f(zx)] = f*
1o po (e 4 oggegt ) o2
a € (2 1)
(11) < by (kT—>—1) ) 37
= . 2
%Eo+<2(§—”+%(1+log(k))>oz )
by (k173-1) ) @ =3

e Case a; = as = by =0, ag > 0 and by > 0: If
a € [%,1), then

E[f(xx)] — f~
(l—a)QE agc?(4a—2)02
2 Pt~ Hte—g 3
< bz(klfaifﬂ 2—,  ac€(31)

a C2C7'2
Tasz Bo+ 2357 (1+log(k))
b2(k1/471)2 )

3 Application to gradient descent

In this section, we apply our previous abstract analy-
sis to gradient descent for convex and strongly convex
functions. In this case, g from (6) is simply given by

g(t,Z,p) =D
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Let f be a pu-strongly convex, L-smooth function. Con-
sider

i(t) = =V f(z(t)) (16)
and its associated perturbed forward Euler scheme,
where the gradient is replaced by Vf =V f +e

Try1 — ok = —hi(Vf(zr) + ex),

with initial condition zg. Define the convex and
strongly convex Lyapunov functions

(17)

E¥(t,) = t(f(z) — ) + gla — 2P,
B(a) = f(a) ~ [ + e — a2

3.1 Continuous analysis

First, we show that the Lyapunov functions satisfy (8).

Proposition 3.1. e E€ is a Lyapunov function in
the sense of Definition 2.3 with rge = 0 and
age = t. In addition, E° satisfies (8) with
Lge = Lty + 1.

e F°¢ 4s a Lyapunov function in the sense of Defini-
tion 2.8 with rgse = p and agse = 1. In addition,
E*¢ satisfies (8) with Lgse = L + p.

Applying Lemma 2.5 to E° and E*®*¢, we recover the
usual rates.

Corollary 3.2. Let z be the solution of (16).
for allt >0,

fl@(t) = f* < g5lwo — 2.]?

f@(t) = £+ §la(t) — 2.]? < e7HE*(a0)

Then,

(cvz)
(st. cox)

3.2 Perturbed gradient descent

In the case where the gradient is replaced by a per-
turbed gradient Vf = Vf + e, where e is an error
term, by Lemma 2.5, the dissipation of E°¢ and E*¢
along (17) is given in the next proposition.
Proposition 3.3. Let x be the sequence generated by
perturbed gradient descent (17).

o Conver case: If hy satisfies, hy < %, and t, =
Zf:o hi, then, Ef satisfies

By < B+ hi By, (19)
where B == —(xp — 2% — 1 Vf(ak), ex)
+ hi(Ltgr + 1) (V f(z) + Sex. ex).
e Strongly convex case: If hy satisfies hy < LLW,
then, E}° satisfies
EiS < (1 = hpp) EZC 4 hi BiC, (20)

where 3¢ = (u(xp — %) + V f(2r), ex)
+ hie(L+ p) (V) + Ler,ex) .

3.3 Variable time step and convergence in
expectation

Now, consider the case of a variable time step hj and a
zero-mean and fixed Variance error e, i.e. ey satisfies

(2). From Proposition 3.3, since E[ff] = hi(Ltesa+1)o®

2
and E[3{¢] = 7}1%@;“)"2

h%([/tk+1 + 1)02
2

(1= phy) B +

E[Ef,,] < B+

2 L 2
E[E;,] < w.
In addition,
E[EL] = t (B[f (zx)] = f7),
which correpsond, for Ef, to (14) and (15) with

L(hg +1 L
alzy,agzg,@:o, blzlandbzz().
And, for E}¢, to the case where rgsc = p > 0 and
g3 = 1, then Proposition 2.7 and Proposition 2.8 give:

e Convex case (rge = 0): If

1 k
T, and ty = Y h{,

Proposition 3.4.
hi = ;% satisfies hj, <
then the following holds:

E[f(ze)] = f*
ey et
- %EU+(3C+LCZ(1+III(I€))§
k1/3 -1 )

e Strongly convex case (rgse = p >0): If

hif = 2 = F
e 75 ) M (oP e Y
and t, = Zf:o hi, then, if hi° satisfies hj® <

the following holds:

E[E(ry)] < 2(Cy 4 1)0? .
T uk+2(Cy + 1)o2Ege!

_2
L+4p’

4 Accelerated method: convex case

In the remainder of the paper, we will extend the anal-
ysis developed in Section 3 to the accelerated gradient
methods. In this section, we consider the case of con-
vex functions.

4.1 ODE and derivation of Nesterov’s
method

Nesterov’s method for a convex, L-smooth function,
f, can be written as [Nesterov, 2013, Section 2.2]

1
Thi1 = Yr — va(yk)
(C-Nest)

Yk+1 = Th+1 + (Tpt1 — xk)

L
k+3
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Su et al. [2014] made a connection between (C-Nest)
and the second order ODE
3
i+ T+ VS(2) =0 (A-ODE)

(A-ODE) can be written as the first order system

— v—x
x_ti ) o
v:—§Vf(x).

Our starting point is the following system of first order
ODEs, which is a perturbation of (21)

:irzg(v—x)— !

t VL
b= V@),

Vi(x)
(1st-ODE)

Solutions of (1st-ODE) decrease the same Lyapunov
function faster than solutions of (A-ODE). Write z =
(x,v) to write (1st-ODE) in the form (6)

g@aVﬂ@)QCgm)+(;%)Vﬂm.

¢ 2

The system (1st-ODE) is equivalent to the following
ODE

.3, v 1 D2 . 1V

B4 5o+ Vi) = - (D) a4 (Y1)

(H-ODE)

which has an additional Hessian damping term with
coefficient 1/v/L. Notice that (H-ODE) is a perturba-
tion of (A-ODE) of order %, and the perturbation
goes to zero as L — oo. Similar ODEs have been
studied by Alvarez et al. [2002], they have been shown
to accelerate gradient descent in continuous time in

Attouch et al. [2016].

There is more than one ODE which can be discretized
to obtain Nesterov’s method. Shi et al. [2018] intro-
duced a family of high resolution second order ODEs
which also lead to Nesterov’s method. In this context,
(H-ODE) corresponds to the high-resolution equation
with the parameter ﬁ Making the specific choice of

first order system (1st-ODE) considerably simplifies
the analysis, allowing for shorter, clearer proofs which
generalize to the stochastic gradient case (which was
not treated in Shi et al. [2018]).

The system (1st-ODE) can be discretized to recover
Nesterov’s method using an explicit discretization with
a constant time step h = %, as demonstrated in
Proposition 4.2.

Definition 4.1. Let hy > 0 be a decreasing sequence
of small time step/learning rate and ti an increas-
ing sequence of discrete time. The discretization of

(1st-ODE) corresponds to an explicit time discretiza-
tion with gradients evaluated at vy, the convexr combi-
nation of xp and v, defined below,

1 —ap = i (vp — @) — T2V f (),
Ukt — U = — 2V f (),
Yp = (1 = 2Z’—kk> op + .

(FE-C)

Then the following result holds.

Proposition 4.2. The discretization of (1st-ODE)
given by (FE-C) with h, = h = 1/v/L and t;, =
h(k+2) is equivalent to the standard Nesterov’s method
(C-Nest).

4.2 Perturbed gradient: discrete time

Replacing gradients with Vf = V f +e, the discretiza-
tion of (1st-ODE), (FE-C), with a time step hg, be-
comes

xMI—xM:yﬁwk—m»—g%wvww+em,

ik
tx
Vg1 — U = —hk?(Vf(yk) + ex),
(Per-FE-C)

where yy, is as in (FE-C), ¢ty = Zf:o h;.

Definition 4.3. Define the continuous time

parametrized Lyapunov function
EC(t,x,v5€) := (t—e)*(f(x) — ) +2lv—2*|* (22)
Define the discrete time Lyapunov function Ef by

E;©¢ = E*(ty, g, v; hi) = E*“(tg—1, Tk, vg; 0)
(23)

It is well-known that E*¢ is Lyapunov function for
(1st-ODE), see Su et al. [2014]. But note, compared
to Su-Boyd-Candés’ ODE (A-ODE), there is a gap in
the dissipation of the Lyapunov function E“%¢, which
will not be there if the extra term, —%Vf(x), was
missing, see Appendix C.2. In particular, if z and 2
are solutions of (A-ODE) and (1st-ODE) respectively,
then we can prove faster convergence due to the gap.

Proposition 4.4. Let xy, v, yr be sequences gener-

ated by (Per-FE-C)-(FE-C). Then, for hj < \%L,
B0 — ELO° < hiBr, (24)
where B = —tx(2(vy — x*) — %Vf(yk),eg +

2hity (V f(yx) + 5 ex)-
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4.3 Convergence in expectation

Assume ey satisfies (2). We deduce that E[S;] =
hitico?. Then, Proposition 4.4 gives

B - B < Wiiho®
In addition,
B[] > g A E[f(wr)] - 7
That corresponds to (14) and (15) with
a1:a2:0,a3:2,b1:0andb2:1. (25)

Then we can apply Proposition 2.8 to obtain the fol-
lowing convergence result.

< 1
e < N7 and

ty = Zle hi, then we have the following bound on
E[f(zk)] — f*

Proposition 4.5. Assume hy

(1-o? Ey + 202 a—1/2

c2 a—3/4 3
e e ($)
oz Eo + 2o?(1 + log(k)) 3
(k14 —1)2 T4

Remark 4.6. Since in (25), the parameters do not
depend on L. We observe that the rates of conver-
gence of E[f(xx)] — f* in the previous proposition do
not depend on the smoothness of f and are accelerated
compared to SGD (Proposition 3.4).

5 Accelerated method: Strongly
Convex case

This section is devoted to the analysis of (H-ODE-SC)
and in particular to its first order system
(1st-ODE-SC) in continuous and discrete time
using a Lyapunov analysis in the strongly convex
case. Then, we present a convergence rate for the
expectation of f.

5.1 ODE and derivation of Nesterov’s
method

In the case of a p-strongly convex function, f, Nes-
terov’s method can be written as follows [Nesterov,
2013, Section 2.2],

Try1 =Yk — TV (k)
1—,/c;t

f j—
g1 P )

This method can be seen as the discretization of
Polyak’s ODE

i+ 2/ 4+ Vf(z) =0,

(SC-Nest)

Yk+1 = Tht1 +

(A-ODE-SC)

which is an accelerated gradient method when f is
quadratic see Scieur et al. [2017], and can be rewritten
as the following first order system

{j: = /(v — ),

i = Vila - )~ V1) (26)

Here, as in the convex case, we are interested in a
perturbed version of (26),

{5“ = Vi(v —x) = =V f(2), (1st-ODE-SC)

b= iz —v) ~ LV f(@),

S

which corresponds to (6) where z = (z,v) and

9t 2,V f(z)) = Vi (Zji) + <_§> V().

This system is equivalent to the second order equation
with Hessian damping for a smooth f

. . 1 .

2V + V(@) = = (D) -+ VAV S(a).
(H-ODE-SC)

see Appendix D.1. The equation (H-ODE-SC) can

be seen as a combination between Polyak’s ODE,
(A-ODE-SC) and the ODE for Newton’s method.

Similarly to the convex case, notice that (H-ODE-SC)
can be seen as the high-resolution equation from Shi
et al. [2018] with the highest parameter value %
Using a Lyapunov analysis, we will show that the
same Lyapunov function of (A-ODE-SC) decreases
faster along (1st-ODE-SC). The asymptotic expo-
nential rates are retrieved in the continuous and dis-
crete setting, Proposition D.1. In addition, rewriting
(H-ODE-SC) as a first order system (SC-Nest) allows
us to derive Nesterov’s method using an explicit dis-
cretization with a time step h = %, Proposition 5.3,
and to extend the Lyapunov analysis in the perturbed
case.

Definition 5.1. Let hy > 0 be a decreasing sequence
of small time step/learning rate. Take an explicit Eu-

ler method for (1st-ODE-SC) evaluated at yy,, defined

below, and with hy./it replaced by A\ = 1J}:’;L;/\ﬁ/,7

Tpr1 — 2 = Ao — 21) — ZEV f(yr),
V1 — Uk = An(T) — vg) — %Vf(yk)
h

Y = (1= Ap)Tp + Ao, A = %

(FE-SC)
Remark 5.2. As in the convexr case, to obtain Nes-
terov’s method, we need to evaluate the gradient at
Yk, which is a perturbation of xy. In addition, in the
strongly convex case, we perturb by \/fi.
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Proposition 5.3. The discretization of
(1st-ODE-SC) given by (FE-SC) with h = 1/v/L
is equivalent to the standard Nesterov’s method
(SC-Nest).

5.2 Perturbed gradient: discrete time

Replacing gradients with Vf = V f + e, the discretiza-
tion of (1st-ODE-SC), (FE-SC), with a time step hy,
becomes

Tt1 — Tk = A (Vg — Tk) — %(Vf(yk) + ex),

Vkt1 — Uk = A (T — vk) — %(Vf(yk) +ex),

yr = (1 — A\p)xg + Apog, Ap = 1_?2;/5}?

(Per-FE-SC)

Definition 5.4. Define the continuous time Lyapunov
function, E**5¢, by

ac,sc * l’L *
E®S (I,U):f(l')—f —|—§|’U—£U |27 (27)
and the discrete in time Lyapunov function by

EZC’SC — Eac’sc(l‘k,vk) — f(xk) _ f* + %|UI€ _ m*|2.
(28)

In Appendix D.2, we show that E%%°¢ is, indeed, a

Lyapunov function for (1st-ODE-SC). Now, in the

next proposition, we give the dissipation of E®¢%¢
along (Per-FE-SC).

Proposition 5.5. Let xp, v, be two sequences gener-
ated by the scheme (Per-FE-SC) with initial condition
(zo,v0). Suppose that hy < ﬁ, then

Bt <0 (U = e/ EE™ + haBr, (29)

2hie (Vf(yr) + %, en)  —
<\/l7(9% —yr + v — %) — ﬁvf(yk)7€k>

where B =

5.3 Variable time step and convergence in
expectation

Now we consider the case where e, satisfies (2). From
Proposition 5.5, since E[8)] = hio?, we have

BIE{) < (1= VR B + hio®
Vi > 0,

We are in the case where rgacse =
Lpac.scgi = 2, then Proposition 2.7 gives

Proposition 5.6. If

2 "
ac,sc ac,sc
hy, = « =

VI(E + (atesc R0~ do?’

then, assuming that hy©* < \%L, the following holds:

4 2
E[E** (23)] < e
pk + do2 B

Remark 5.7. Observe that, as in the accelerated con-
vex case, the rate is independent of the smoothness
parameter L.

6 Conclusions

In this work, we obtained a modified algorithm for
stochastic gradient descent, based on a continuous
time approach. In both the convex and strongly con-
vex cases, we began with an ODE, which, when dis-
cretized with a constant learning rate, led to the Nes-
terov’s method in the full gradient case. However,
in the stochastic gradient case, allows for a variable
time step, led to an accelerated algorithm for SGD.
We proved a convergence rate for the last iterate of
the algorithm with an improved rate constant com-
pared to the prior results. The rate constant depends
on the variance of the stochastic gradient, but not on
the L-smoothness of the gradient.

The proof technique relied heavily on continuous time
analysis and abstract Lyapunov function analysis. We
chose a first order system of ODEs which could be
discretized with constant learning rate to recover Nes-
terov’s method. Then, switching to the stochastic gra-
dient case, we performed the abstract Lyapunov anal-
ysis, which gave convergence rates dependent on an
abstract Lyapunov function. We then applied these
abstract results to the Lyapunov functions and ODEs
corresponding to Nesterov’s method, to obtain a rate.
The resulting proofs were more organized and concise
that a direct analysis would have been. In addition,
the abstract Lyapunov function analysis could be used
to obtain rates for other stochastic algorithms, for ex-
ample saddle point problems.

The convergence rate depends on the initial value of
the Lyapunov function. This means that any time the
value of the Lyapunov function is below the estimate,
we can reinitialize to obtain a stronger estimate of the
convergence rate. In the worst case, it may be that
the estimate is not improved, but in practice, we can
bootstrap the estimate.

This work can be extended in the following ways. Since
we use a first order system to represent our ODE,
the analysis can be adapted without much difficulty
to the non-smooth case. Finally, the assumptions on
the stochastic gradients (2) could be relaxed: for ex-
ample, to cover the x dependent variance case for finite
sums.

Acknowledgments

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-18-1-0167 (A.O.).



M. Laborde, A. Oberman

References

Z. Allen-Zhu. Katyusha: The first direct acceleration
of stochastic gradient methods. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 1200-1205. ACM,
2017.

F. Alvarez, H. Attouch, J. Bolte, and P. Re-
dont. A second-order gradient-like dissipative
dynamical system with hessian-driven damping.-
application to optimization and mechanics. Journal
de mathématiques pures et appliquées, 81(8):747—
780, 2002.

H. Attouch, J. Peypouquet, and P. Redont. Fast con-
vex optimization via inertial dynamics with hessian

driven damping. Journal of Differential Equations,
261(10):5734-5783, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183-202,
2009.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimiza-
tion methods for large-scale machine learning. arXiv
preprint arXiv:1606.04838, 2016.

S. Bubeck. Convex Optimization: Algorithms and
Complexity. ArXiv e-prints, May 2014.

N. Flammarion and F. Bach. From averaging to accel-
eration, there is only a step-size. In Conference on
Learning Theory, pages 658-695, 2015.

R. Frostig, R. Ge, S. Kakade, and A. Sidford.
Un-regularizing: approximate proximal point and
faster stochastic algorithms for empirical risk min-
imization. In ICML, volume 37 of JMLR Work-
shop and Conference Proceedings, pages 2540-2548.
JMLR.org, 2015.

A. Iserles. A first course in the numerical analysis of
differential equations. Number 44. Cambridge uni-
versity press, 2009.

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli,
and A. Sidford. Accelerating stochastic gradient
descent for least squares regression. In S. Bubeck,
V. Perchet, and P. Rigollet, editors, Proceedings of
the 31st Conference On Learning Theory, volume 75
of Proceedings of Machine Learning Research, pages
545-604. PMLR, 06-09 Jul 2018.

P. Jain, D. Nagaraj, and P. Netrapalli. Making the last
iterate of sgd information theoretically optimal. In

Proceedings of the Annual Conference On Learning
Theory (COLT), pages 1752-1755, 2019.

R. Kidambi, P. Netrapalli, P. Jain, and S. Kakade. On
the insufficiency of existing momentum schemes for

stochastic optimization. In 2018 Information The-
ory and Applications Workshop (ITA), pages 1-9.
IEEE, 2018.

W. Krichene, A. Bayen, and P. L. Bartlett. Acceler-
ated mirror descent in continuous and discrete time.
In Advances in Neural Information Processing Sys-
tems 28, pages 2845—-2853. Curran Associates, Inc.,
2015.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler
approach to obtaining an o (1/t) convergence rate
for the projected stochastic subgradient method.
arXiv preprint arXiw:1212.2002, 2012.

L. Lessard, B. Recht, and A. Packard. Analysis
and design of optimization algorithms via integral

quadratic constraints. SIAM Journal on Optimiza-
tion, 26(1):57-95, 2016.

H. Lin, J. Mairal, and Z. Harchaoui. A universal cat-
alyst for first-order optimization. In Advances in
Neural Information Processing Systems 28, pages
3384-3392. Curran Associates, Inc., 2015.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
Robust stochastic approximation approach to
stochastic programming. SIAM Journal on opti-
mization, 19(4):1574-1609, 2009.

Y. Nesterov. Introductory lectures on convexr optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013.

A. M. Oberman and M. Prazeres. Stochastic Gradi-
ent Descent with Polyak’s Learning Rate. arXiv e-
prints, art. arXiv:1903.08688, Mar 2019.

B. Oksendal. Stochastic differential equations: an in-
troduction with applications. Springer Science &
Business Media, 2013.

G. A. Pavliotis. Stochastic processes and applications.
Springer, 2016.

B. T. Polyak. Some methods of speeding up the con-
vergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1-17,
1964.

X. Qian, P. Richtarik, R. Gower, A. Sailanbayev,
N. Loizou, and E. Shulgin. Sgd with arbitrary sam-
pling: General analysis and improved rates. In In-

ternational Conference on Machine Learning, pages
5200-5209, 2019.

A. Rakhlin, O. Shamir, and K. Sridharan. Mak-
ing gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the 29th
International Coference on International Confer-
ence on Machine Learning, ICML’12, pages 1571—
1578, Madison, WI, USA, 2012. Omnipress. ISBN
9781450312851.



A Lyapunov analysis for accelerated gradient methods: from deterministic to stochastic case

M. Schmidt, N. L. Roux, and F. Bach. Convergence
rates of inexact proximal-gradient methods for con-
vex optimization. In Proceedings of the 24th In-
ternational Conference on Neural Information Pro-
cessing Systems, NIPS’11, pages 1458-1466, Red
Hook, NY, USA, 2011. Curran Associates Inc. ISBN
9781618395993.

D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont. In-
tegration methods and accelerated optimization al-
gorithms. arXiv preprint arXiv:1702.06751, 2017.

N. Serhat Aybat, A. Fallah, M. Gurbuzbalaban, and
A. Ozdaglar. Robust Accelerated Gradient Methods
for Smooth Strongly Convex Functions. arXiv e-
prints, art. arXiv:1805.10579, May 2019.

O. Shamir and T. Zhang. Stochastic gradient de-
scent for non-smooth optimization: Convergence re-
sults and optimal averaging schemes. In Interna-

tional Conference on Machine Learning, pages 71—
79, 2013.

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su. Un-
derstanding the acceleration phenomenon via high-
resolution differential equations. arXiv preprint
arXiv:1810.08907, 2018.

W. Su, S. Boyd, and E. Candes. A differential equa-
tion for modeling nesterov’s accelerated gradient
method: Theory and insights. In Advances in Neural
Information Processing Systems, pages 2510-2518,
2014.

A. Wibisono, A. C. Wilson, and M. I. Jordan. A vari-
ational perspective on accelerated methods in opti-
mization. Proceedings of the National Academy of
Sciences, page 201614734, 2016.

A. Wilson, L. Mackey, and A. Wibisono. Acceler-
ating Rescaled Gradient Descent: Fast Optimiza-
tion of Smooth Functions. arXiv e-prints, art.
arXiv:1902.08825, Feb 2019.

A. C. Wilson, B. Recht, and M. I. Jordan. A lya-
punov analysis of momentum methods in optimiza-
tion. arXiv preprint arXiv:1611.02635, 2016.



