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Abstract

This paper proposes a simple approach to de-
rive efficient error bounds for learning multi-
ple components with sparsity-inducing regu-
larization. We show that for such regulariza-
tion schemes, known decompositions of the
Rademacher complexity over the components
can be used in a more efficient manner to
result in tighter bounds without too much
effort. We give examples of application to
switching regression and center-based clus-
tering/vector quantization. Then, the com-
plete workflow is illustrated on the problem of
subspace clustering, for which decomposition
results were not previously available. For all
these problems, the proposed approach yields
risk bounds with mild dependencies on the
number of components and completely re-
moves this dependence for nonconvex regu-
larization schemes that could not be handled
by previous methods.

1 INTRODUCTION

This paper focuses on learning problems involving mul-
tiple components. A good example is vector quanti-
zation (or center-based clustering), in which one is in-
terested in estimating a model (or codebook) made of
a finite number of components (or codepoints) that
can well approximate the observations of a random
variable. Other examples include subspace clustering,
where the data points are approximated by a collec-
tion of subspaces rather than codepoints, and switch-
ing regression, that works similarly but with random
input–output pairs and components that are functions
approximating the output given the input. In this
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paper, we propose a unified approach to derive gen-
eralization error bounds for all these problems which
yields bounds with a mild dependence on the number
of components for classes of interdependent compo-
nents. While generalization might not be the primary
goal in these problems, such error bounds can lead to
model selection strategies and have been the subject
of many studies, see, e.g., Bartlett et al. (1998); Biau
et al. (2008); Lauer (2019) and references therein.

More precisely, we show how to efficiently take into
account the invariance of the loss with respect to per-
mutations of the components to derive risk bounds in
multiple component learning problems. The proposed
approach is simple and applies to different problems
merely by plugging known decomposition results for
these problems. For products of independent compo-
nent classes, a decomposition result is one that decom-
poses the Rademacher complexity of the loss class into
a sum of Rademacher complexities over the component
classes. Previous works used such decompositions to
obtain risk bounds that grow linearly with the number
C of components. But for classes constrained in terms
of a sparsity-inducing complexity measure, such as an
`p-norm over the complexities of the components, our
approach yields risk bounds with a dependence on C
that varies for instance between O(

√
C) for p = 2 and

O(logC) for p = 1. Such sparsity-inducing regular-
ization schemes were already considered by Lei et al.
(2015); Maurer (2016), where similar dependencies
on the number of categories were obtained for multi-
class classification. However, the method of Lei et al.
(2015); Maurer (2016) relies on more complex argu-
ments involving structural results on Rademacher and
Gaussian complexities, duality, strong convexity and
other tools developed by Kakade et al. (2012). Here,
we develop the approach in Sect. 2 in a few lines with
simple arguments and without invoking other tools. In
addition, the proposed method also allows for the use
of nonconvex regularization by `p-quasi-norms with
p ∈ (0, 1), which favors even sparser models. While
the analysis of Lei et al. (2015); Maurer (2016) was
limited to p ≥ 1 and a logarithmic dependence on C,
our approach completely removes the dependence on
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C for nonconvex regularization with p < 1.

In Sect. 3, we apply our approach to switching re-
gression, i.e., the problem of learning a collection
of regression models from a mixed data set. For
sparsity-inducing regularization schemes, this allows
us to tighten the bounds of Lauer (2019) from a lin-
ear dependence on C to the ones discussed above
for the different values of p. Similar results are ob-
tained in Sect. 4 for vector quantization/clustering in
Hilbert space, for which the literature only provides
error bounds with either a radical dependence on C
in the finite-dimensional case (Bartlett et al., 1998)
or a linear one for infinite-dimensional Hilbert spaces
(Biau et al., 2008). Finally, Section 5 is dedicated to
the subspace clustering problem, which has a lot of
applications in computer vision, for instance for mo-
tion segmentation or face clustering (Vidal, 2011; Vi-
dal et al., 2016), but has not yet received much at-
tention from the viewpoint of learning theory and risk
bounds. This offers us the opportunity to illustrate the
complete workflow for the application of the proposed
approach.

Technically, our bounds are based on the analysis of
the Rademacher complexity of the loss class to de-
rive uniform risk bounds. More advanced tools, such
as those of Bartlett et al. (2005) or Mendelson (2014),
could be used to derive bounds with faster convergence
rates or even for unbounded variables. However, these
tools are particularly efficient to bound the risk of the
empirical risk minimizer, which, for all the multiple
component learning problems we consider, cannot be
easily computed (and there is no satisfactory convex
surrogate loss whose minimizer could be analyzed in-
stead). Therefore, we must focus on uniform error
bounds in order to apply them to the models returned
by practical algorithms.

Notation. We use [C] = {1, . . . , C} to refer to the set
of integers from 1 to C. Matrices are written in bold
and uppercase letters, while vectors are in non-bold
lowercase letters. Random variables are written in up-
percase letters. Thus, X will refer to a random vector,
whileX is a matrix. The identity matrix is denoted by
I. The Frobenius norm ‖A‖F of a matrix A ∈ Rm×n

of entries Aij is defined as ‖A‖F =
√∑m

i=1

∑n
j=1A

2
ij .

Tr(A) denotes the trace of the matrix A and we have

‖A‖F =
√

Tr(A>A). For a vector a ∈ RC and any

p ∈ (0,∞), ‖a‖p =
(∑C

k=1 |ak|p
)1/p

denotes its `p-

norm for p ≥ 1 or `p-quasi-norm for p ∈ (0, 1), while
‖a‖∞ = maxk∈[C] |ak| is its `∞-norm. Given two sets,
X and Y, YX stands for the set of functions from X
into Y.

2 GENERAL APPROACH

We focus on learning problems in which the aim is to
learn C ≥ 2 components from a set V on the basis
of data points zi ∈ Z, i = 1, . . . n. In the following,
Z will be instantiated either as X × Y for problems
with input space X and output space Y or just as X
in contexts without outputs.

Specifically, let Z be a random variable taking values
in Z. A particular problem is characterized by a loss
functional ` : VC × Z, which measures the pointwise
error of a model f = (fk)1≤k≤C made of C compo-
nents fk from V. Then, the aim is to minimize, over a
predefined model class F ⊂ VC , the risk

L(f) = E`(f, Z) (1)

on the basis of a sample of n independent copies Zi
of Z. In particular, we concentrate on the standard
strategy that minimizes the empirical risk

L̂n(f) =
1

n

n∑
i=1

`(f, Zi). (2)

However, we here focus on statistical aspects of learn-
ing and will not discuss algorithmic issues related to
the actual minimization of this quantity, which can be
highly nontrivial (Aloise et al., 2009; Lauer, 2016). In-
stead, we will particularly pay attention to the deriva-
tion of upper bounds on the risk that hold uniformly
over the class F , and thus not only for the empirical
risk minimizer which remains elusive in many practical
cases.

Before we expose our approach to the derivation of
such bounds, we first give a few definitions and start
with the one that characterizes the losses considered
in this paper.

Definition 1 (Permutation-invariant loss). A
permutation-invariant loss over C components from
a set V is a loss functional ` : VC × Z such
that, for any permutation (l(k))1≤k≤C of [C], any
f = (fk)1≤k≤C ∈ VC and any z ∈ Z,

`(f, z) = `((fl(k))1≤k≤C , z).

Definition 2 (Loss class). Given a bounded loss ` :
VC × Z → [0,M ] and a class F ⊂ VC , the loss class
induced by F is

LF =
{
`f ∈ [0,M ]Z : `f (z) = `(f, z), f ∈ F

}
.

Definition 3 (Rademacher complexities). Let T be a
random variable with values in T . For n ∈ N∗, let
T n = (Ti)1≤i≤n be an n-sample of independent copies
of T , let σn = (σi)1≤i≤n be a sequence of independent
random variables uniformly distributed in {−1,+1}.
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Let F be a class of real-valued functions with domain
T . The empirical Rademacher complexity of F given
T n = tn = (ti)1≤i≤n is

R̂n (F) = E sup
f∈F

1

n

n∑
i=1

σif (ti) ,

and its Rademacher complexity, Rn (F) = ER̂n (F),
is obtained by taking the expectation wrt. T n.

The regularization schemes for learning multiple com-
ponents that we consider are based on two levels
of complexity measures. On the first level, let ω :
V → [0,+∞) be a complexity measure for a single
component from V and, for any model f ∈ VC , let
Ω(f) = (ω(fk))1≤k≤C denote the vector of RC ob-
tained by a component-wise application of ω to f .
Then, at a second level, we measure the complexity
of the overall model f by the `p-(quasi-)norm of Ω(f).
Therefore, in this paper we will focus on the derivation
of error bounds for classes

F =
{
f ∈ VC : ‖Ω(f)‖p ≤ Λ

}
. (3)

Definition 4 (Ordered class F̃). Given a complexity
measure ω as defined above, we denote by f̃ an or-
dered version of f ∈ VC with its components ordered
in decreasing order of their complexity:

∀f = (fk)1≤k≤C ∈ VC , f̃ = (fl(k))1≤k≤C ,

where l(k) is the kth element of a permutation of [C]
that ensures

ω(f̃1) ≥ · · · ≥ ω(f̃C).

Then, for any class F ⊂ VC , the ordered class F̃ is
defined by reordering the elements of F :

F̃ =
{
f̃ : f ∈ F

}
.

Note that for classes built as F = FC0 = F0× · · · ×F0

for some F0 ⊂ V, the ordered class F̃ is a subset of F :
∀f ∈ FC0 , f̃ ∈ FC0 . This is also true for classes F as
in (3), which introduce a dependence between compo-
nents, encoded in the choice of `p-(quasi-)norm. For
instance, if we let p =∞, then F in (3) can be written
as a product of independent component classes:

F∞ =

{
f ∈ VC : max

k∈[C]
ω(fk) ≤ Λ

}
(4)

=

C∏
k=1

{fk ∈ V : ω(fk) ≤ Λ} .

But if we consider p ∈ (0,∞), then F in (3) cannot be
written as a mere product, since the complexity ω(fk)

influences the range of values allowed for ω(fj), j 6= k.
For such classes, the ordered class is a strict subset of
F : F̃ ⊂ F , and F̃ 6= F . The inclusion results from
the permutation-invariance of the `p-norm: ‖Ω(f̃)‖p =
‖Ω(f)‖p ≤ Λ; and this also implies that there are some
f ∈ F with ω(f2) > ω(f1) and thus that do not belong
to F̃ .

The interest of the ordered class F̃ and the fact that it
is a subset of F is highlighted by the following, which
shows that for permutation-invariant losses, we can
restrict the analysis to this subset of F .

Lemma 1. Given a bounded permutation-invariant
loss ` : VC × Z → [0,M ] and a class F ⊂ VC , the
risk of any f ∈ F can be bounded in terms of the
Rademacher complexity of the loss class induced by the
ordered class F̃ instead of F , namely, each of the fol-
lowing holds with probability at least 1− δ:

∀f ∈ F , L(f) ≤ L̂n(f) + 2Rn(LF̃ ) +M

√
log 1

δ

2n
,

∀f ∈ F , L(f) ≤ L̂n(f) + 2R̂n(LF̃ ) + 3M

√
log 2

δ

2n
.

Proof. By Definitions 1 and 4, L(f) = L(f̃) and
L̂n(f) = L̂n(f̃). Therefore, the lemma is just a direct
consequence of standard error bounds, e.g., Theorem
3.1 in Mohri et al. (2012), holding uniformly over the
ordered class F̃ instead of F .

For classes F as in (3) with dependent components,
a second interest lies in the fact that F̃ can be eas-
ily embedded in a product of independent component
classes with decreasing complexity:

Lemma 2. Let F be as in (3) with p ∈ (0,∞]. Then,

F̃ ⊆ Πp =

C∏
k=1

{
fk ∈ V : ω(fk) ≤ k−

1
p Λ
}
.

Proof. Assume p < ∞ (see (4) for the case p = ∞).
Then, with F as in (3), the permutation-invariance of
the `p-norm implies that, for all f ∈ F ,

‖Ω(f̃)‖pp = ‖Ω(f)‖pp ≤ Λp,

while, for any k ∈ [C],

‖Ω(f̃)‖pp =

C∑
l=1

ω(f̃l)
p ≥

k∑
l=1

ω(f̃l)
p ≥ kω(f̃k)p,

where the last inequality is due to the ordering of the
f̃k’s in Def. 4. Therefore, for all f̃ ∈ F̃ and all k ∈ [C],

ω(f̃k)p ≤ Λp

k
,

which proves the claimed set inclusion.
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Note that for p =∞ the product class Πp in Lemma 2
is exactly F due to (4), whereas for all finite p, Πp is

strictly larger than F and thus F̃ : there exist f in the
product of component classes with

∑C
k=1 ω(fk)p > Λp

that are thus not in F and not in F̃ ⊂ F . Therefore,
the inclusion provided by Lemma 2 is not tight, but
its interest lies at another level, namely, the fact that
decomposition results available for products of inde-
pendent classes can help us to bound the Rademacher
complexity of LF̃ .

Instead of deriving a generic framework with cumber-
some notations that would encompass many different
settings but would also hide the simplicity of the ap-
proach, the following illustrates the application of the
method on a few examples. In particular, we detail
below the settings of switching regression and center-
based clustering, for which decomposition results can
be found in the literature. Then, we will show in
Sect. 5 how to develop the complete workflow for sub-
space clustering from the definition of the loss function
to the derivation of efficient bounds, including the ob-
tention of a decomposition result.

For all these settings we shall derive error bounds with
a dependence on C characterized by p via the function

α(C, p) =


C, if p =∞
p
p−1C

1−1/p, if 1 < p <∞
1 + logC, if p = 1

1
1−p , if 0 < p < 1.

(5)

In particular, the dependence on C will be linear for
p = ∞ (the case of independent component classes),
radical for p = 2 (the most common case), logarith-
mic for p = 1 (a common choice for sparsity-inducing
regularization) and bounded by a constant for p < 1
(corresponding to nonconvex regularizers).

3 SWITCHING REGRESSION

In a regression problem, one must learn a model that
can accurately predict the real output Y ∈ Y ⊂ R
given the input X ∈ X . Switching regression refers to
the specific case where the process generating Y can
arbitrarily switch between different behaviors. The
difficulty then comes from the fact that the switch-
ings are not observed and the association of the data
points (xi, yi) ∈ Z = X × Y to these behaviors is
unknown. Thus, the aim is to learn a collection of
functions fk : X → R from a mixed training sample
including examples from multiple sources. An impor-
tant application is that of switched system identifica-
tion in control theory, see Paoletti et al. (2007); Lauer
and Bloch (2019) for an overview.

In such a context, the goal is to find f ∈ (RX )C so that

at least one of its components can accurately estimate
the output Y given X. The loss can thus be defined
on the basis of

min
k∈[C]

(y − fk(x))2.

More precisely, we assume that Y is bounded and,
without loss of generality, that Y = [−1/2, 1/2]. Thus,
we can clip the outputs of the components at 1/2 with-
out increasing the error and compute the loss with re-
spect to the clipped functions as in Lauer (2019):

`(f, x, y) = min
k∈[C]

(
y −min

{
1

2
,max

{
−1

2
, fk(x)

}})2

.

(6)
This ensures that the loss is bounded by 1 for all y ∈ Y.
In addition, it is easy to see that this loss remains
permutation-invariant in the sense of Definition 1.

Here, we focus on kernel machines and consider models
with components from a reproducing kernel Hilbert
space (RKHS) H ⊂ RX of reproducing kernel K (see
Berlinet and Thomas-Agnan (2004) for details). Thus,
we set V = H and the complexity measure ω to the
RKHS norm ‖ · ‖ in the approach described above,
which yields the risk bound in Theorem 1 below for
classes regularized by ‖Ω(f)‖p = (

∑C
k=1 ‖fk‖p)1/p.

Theorem 1. Let F ={
f ∈ HC :

∥∥[‖f1‖ . . . ‖fC‖
]∥∥
p
≤ Λ

}
and α(C, p)

be as in (5). Then, with probability at least
1 − δ on the random draw of the training sam-
ple (Zi)1≤i≤n = ((Xi, Yi))1≤i≤n, the switching
regression risk based on the loss (6) is uniformly
bounded for all f ∈ F by

L(f)≤ L̂n(f)+4α(C, p)
Λ
√∑n

i=1K(Xi, Xi)

n
+3

√
log 2

δ

2n
.

Proof. By the permutation-invariance of ` in (6), we
can apply Lemma 1 and the result follows from the
computation of the (empirical) Rademacher complex-
ity of LF̃ . Then, Lemma 2 gives F̃ ⊆ Πp and thus
LF̃ ⊆ LΠp

, which further yields

R̂n(LF̃ ) ≤ R̂n(LΠp).

Since Πp is a product of independent component
classes, the decomposition result in Theorem 3 of
Lauer (2019) then gives

R̂n(LF̃ ) ≤ 2

C∑
k=1

R̂n
({
fk ∈ H : ‖fk‖ ≤ k−

1
p Λ
})

,

while standard computations for RKHS balls (see, e.g.,
Bartlett and Mendelson (2002)) further ensure that

R̂n(LF̃ ) ≤
2Λ
√∑n

i=1K(Xi, Xi)

n

C∑
k=1

k−
1
p .
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Thus, the theorem is proved after a straightforward

check that
∑C
k=1 k

− 1
p ≤ α(C, p) holds for all C ≥ 2

and p ∈ (0,∞] (see Appendix A for details).

For independent component classes (p = ∞), this re-
sult coincides with that in Eq. (18) of Lauer (2019).
However, for p < ∞, the dependence on C improves
according to the definition of α(C, p) in (5). In partic-
ular, a radical dependence is obtained for p = 2, which
could only be obtained in Lauer (2019) through cover-

ing numbers and a loss in the order of log3/2 n in terms
of convergence rate. In addition, the dependence on C
further improves for smaller values of p.

4 VECTOR
QUANTIZATION/CLUSTERING

Let X be a Hilbert space and ‖·‖ denote its norm. The
aim of vector quantization, as described by Bartlett
et al. (1998), is to learn a subset {fk}Ck=1 ⊂ X of
C elements from X , called codepoints, that can well
represent the observations of the random variable X ∈
X . Specifically, we can limit the analysis to nearest
neighbors quantizers, for which the error of a model
f = (fk)1≤k≤C is measured via the loss

`(f, x) = min
k∈[C]

‖x− fk‖2. (7)

Then, the quantity (1) (with Z = X) is known as the
distortion of f for which upper bounds are of primary
importance.

This problem can also be seen as a center-based clus-
tering one, in which the goal is to divide the obser-
vations of X into C groups centered at the fk’s by
minimizing the empirical risk (2) based on (7). By con-
sidering the Voronöı partition of X associated to these
centers, Biau et al. (2008) interpret the quantity (1)
as the clustering risk measuring the performance of a
particular model f ∈ XC .

The setting just described enters our framework in a
straightforward manner with V = Z = X and ω =
‖ · ‖. We can thus easily obtain efficient bounds on the
clustering risk for regularized classes on the basis of
the results of Biau et al. (2008).

Theorem 2. Let X ∈ X be such that P (‖X‖ ≤ Λx) =
1, F = {f ∈ XC :

∥∥[‖f1‖ . . . ‖fC‖
]∥∥
p
≤ Λ}

and α(C, p) be as in (5). Then, with probability at
least 1− δ on the random draw of the training sample
(Xi)1≤i≤n, the clustering risk based on the loss (7) is

uniformly bounded for all f ∈ F by

L(f) ≤L̂n(f) + 2α(C, p)

(
2Λ
√∑n

i=1 ‖Xi‖2
n

+
Λ2

√
n

)

+ 3(Λ2
x + Λ2)

√
log 2

δ

2n
.

Proof. It is easy to see that the clustering loss (7) is
permutation-invariant in the sense of Definition 1 and
uniformly bounded by M = Λ2

x + Λ2. Thus, as for
the switching regression case, we can apply Lemmas 1
and 2. Then, it remains only to show that R̂n(LΠp)

is smaller than
∑C
k=1 k

− 1
p times a term independent

of k, C and p, in order to conclude with the use of∑C
k=1 k

− 1
p ≤ α(C, p) (see Appendix A).

This can be done by following the proof of Theorem 2.1
in Biau et al. (2008), which includes both a decompo-
sition result and the computation of the Rademacher
complexity of the loss class for Hilbert space balls. In
fact, the statements in Biau et al. (2008) do not con-
cern the empirical version of Rademacher complexity
and focus on products of similar classes so that the
result is C times the Rademacher complexity wrt. a
single component. However, Biau et al. (2008) give all
the ingredients to obtain the result in the form stated
here. For completeness, we give the details in Ap-
pendix B, which lead to

R̂n(LΠp
) ≤

C∑
k=1

(
2k−

1
p Λ
√∑n

i=1 ‖Xi‖2
n

+
k−

2
p Λ2

√
n

)
(8)

≤

(
2Λ
√∑n

i=1 ‖Xi‖2
n

+
Λ2

√
n

)
C∑
k=1

k−
1
p .

(9)

As for switching regression, this result encompasses
for p = ∞ the case of independent component classes
found in Biau et al. (2008). For p <∞, the improved
bound could also have been obtained by following the
approach of Lei et al. (2015) or Maurer (2016), which is
also very efficient for regularized classes constrained by∑C
k=1 ‖fk‖p ≤ Λp. However, as highlighted in the in-

troduction, this would have required p ≥ 1 and a much
heavier machinery, whereas our approach remains sim-
ple and provides a proof of Theorem 2 also valid for
nonconvex regularizers with p ∈ (0, 1) as an almost
direct consequence of previous decomposition results.
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5 SUBSPACE CLUSTERING

Subspace clustering differs from center-based cluster-
ing in that the components fk are subspaces of X in-
stead of points. In the following, we drop the notation
fk and instead focus on the subspace basis in the form
of matrices Bk ∈ Rd×dk .

Our starting point in Sect. 5.1 is a uniform bound on
the error when learning a single subspace. Then, we
extend this to multiple subspaces in Sect. 5.2 and fi-
nally tighten the bound for classes defined by `p-norm
regularization in Sect. 5.3.

5.1 Uniform Error Bounds for Subspace
Estimation

A d1-dimensional subspace of Rd can be represented by
a basis {b1, . . . , bd1} ⊂ Rd, i.e., by a matrix B ∈ Rd×d1
with B>B = I, which yields the projection matrix
P = BB>. Then, the approximation error incurred
by the projection of a point x onto the subspace is
measured by the loss

`(B, x) = ‖Px− x‖2 = ‖BB>x− x‖2. (10)

We are interested here in bounding the expected
approximation error (or risk), L(B) = E`(B, X),
in terms of its empirical estimation, L̂n(B) =
1
n

∑n
i=1 `(B, Xi), for any distribution of X over X =

{x ∈ Rd : ‖x‖ ≤ Λx} and uniformly over the class of
d1-dimensional subspaces of Rd with basis in

B =
{
B ∈ Rd×d1 : B>B = I

}
. (11)

This can be done as follows (see Appendix C for the
proof).

Theorem 3. Let X ∈ Rd be a random vector such
that P (‖X‖ ≤ Λx) = 1. Then, with probability at
least 1− δ on the random draw of a data matrix X =
[X1, . . . , Xn] ∈ Rd×n made of n independent copies of
X, for any subspace of dimension d1 and any basis B
of that subspace,

L(B) ≤ L̂n(B) + 2

√
d1‖X‖F
n

+ 3Λ2
x

√
log 2

δ

2n
.

Note that this bound is uniform and is of the same or-
der as the non-uniform one obtained by Shawe-Taylor
et al. (2005).

5.2 Multiple Subspace Learning/Subspace
Clustering

We now consider the problem of learning multiple sub-
spaces, represented by basis Bk ∈ Rd×dk and projec-
tion matrices P k, k = 1, . . . , C, to obtain an approxi-
mation of the distribution of X. This setting extends

the vector quantization framework to models with sub-
space components and can be formally encoded by the
loss

`((Bk)1≤k≤C , x) = min
k∈[C]

‖BkB
>
k x− x‖2. (12)

In this context, the subspace clustering risk, L(B) =
E`(B, X), of a collection B = (Bk)1≤k≤C of subspace
basis Bk can be bounded in terms of the sum of the
square roots of the subspace dimensions as follows.

Theorem 4. Let X ∈ Rd be a random vector such
that P (‖X‖ ≤ Λx) = 1. Then, with probability at
least 1− δ on the random draw of a data matrix X =
[X1, . . . , Xn] ∈ Rd×n made of n independent copies of
X, for any collection of basis B of subspaces with fixed
dimensions dk,

L(B) ≤ L̂n(B) + 2

∑C
k=1

√
dk‖X‖F
n

+ 3Λ2
x

√
log 2

δ

2n
.

Proof. Define the loss class LB as in Definition 2 from

B =

C∏
k=1

Bk, with Bk =
{
Bk ∈ Rd×dk : B>kBk = I

}
.

Then, its complexity can be decomposed as a sum of
those of classes induced by the Bk’s. To see this, note
that, with P k = BkB

>
k , the loss can be reformulated

as

`((Bk)1≤k≤C , x) = ‖x‖2 − max
k∈[C]

‖P kx‖2.

Thus, given (Xi)1≤i≤n = (xi)1≤i≤n,

R̂n(LB) = E sup
B∈B

1

n

n∑
i=1

σi min
k∈[C]

‖P kxi − xi‖2

≤ E
1

n

n∑
i=1

σi‖xi‖2 + E sup
B∈B

1

n

n∑
i=1

−σi max
k∈[C]

‖P kxi‖2

= E sup
B∈B

1

n

n∑
i=1

σi max
k∈[C]

‖P kxi‖2

≤
C∑
k=1

E sup
Bk∈Bk

1

n

n∑
i=1

σi‖P kxi‖2,

where the third line uses E 1
n

∑n
i=1 σi‖xi‖2 =

1
n

∑n
i=1 ‖xi‖2Eσi = 0 and the fact that σi and −σi

share the same distribution, while the last line is due
to Lemma 8.1 in Mohri et al. (2012). Then, similar
computations as in the proof of Theorem 3 (see Ap-
pendix C) give, for any k ∈ [C],

E sup
Bk∈Bk

1

n

n∑
i=1

σi‖P kxi‖2 ≤
√
dk‖X‖F
n
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and the result follows from the application of Theo-
rem 3.1 in Mohri et al. (2012) and the fact that the loss
defined as the pointwise minimum of losses bounded
by Λ2

x is also bounded by Λ2
x.

Theorem 4 applies to products of independent com-
ponent classes, which here means that the dimensions
of the subspaces do not depend one on the other, and
yields a linear dependence on C. The next result below
yields tighter bounds by precisely taking dependencies
between the dimensions into account.

5.3 Tighter Bounds with `p-norm
Regularization

We have now all the basic building blocks necessary
to apply the approach of Sect. 2 and produce tighter
bounds for subspace clustering. Specifically, we set
ω(fk) =

√
dk and focus on the set of basis collections

with `p-norm regularization:

Bp = {B = (Bk)1≤k≤C : Bk ∈ Rd×dk ,B>kBk = I,∥∥[√d1 . . .
√
dC
]∥∥
p
≤ Λ

}
.

Theorem 5. Let X ∈ Rd be a random vector such
that P (‖X‖ ≤ Λx) = 1 and α(C, p) be as in (5). Then,
with probability at least 1 − δ on the random draw of
a data matrix X = [X1, . . . , Xn] ⊂ Rd×n made of n
independent copies of X, for any collection of subspace
basis B ∈ Bp,

L(B) ≤ L̂n(B) + 2α(C, p)
Λ‖X‖F

n
+ 3Λ2

x

√
log 2

δ

2n
.

Proof. First, note that the subspace clustering
loss (12) is permutation-invariant according to Def. 1.
Thus, Lemmas 1 and 2 apply and it remains only to
bound R̂n(LΠp

) with

Πp =

C∏
k=1

{
Bk ∈ Rd×dk : B>kBk = I,

√
dk ≤ k−

1
p Λ
}
.

Here, the proof of Theorem 4 provides us with

R̂n(LΠp
) ≤

∑C
k=1

√
dk‖X‖F
n

≤ Λ‖X‖F
n

C∑
k=1

k−
1
p

and plugging
∑C
k=1 k

− 1
p ≤ α(C, p) (see Appendix A)

completes the proof.

Thus, we recover bounds for subspace clustering with
similar dependencies on the main parameters (C and
n) as those obtained for switching regression and
center-based clustering. Again, we emphasize that

once a bound was found for products of indepen-
dent component classes with a linear dependence on
C (Theorem 4), our approach easily yielded mild de-
pendencies for classes with dependent components.

6 CONCLUSIONS

The paper presented a simple approach to derive risk
bounds with mild dependence on the number C of
components for classes with interdependent compo-
nents. Only two ingredients are needed to obtain such
results with the proposed approached: a permutation-
invariant loss and a bound holding for products of in-
dependent component classes and providing a decom-
position of their Rademacher complexity into a sum of
the component complexities.

Future work will consider the application of the pro-
posed approach to other settings and permutation-
invariant losses. The new bounds for subspace cluster-
ing could also lead to novel model selection strategies
in order to tune the number of subspaces and their
dimensions from the data.

A USEFUL BOUNDS

We show here that, for any integer C ≥ 2 and p ∈
(0,∞], with α(C, p) as defined in (5),

C∑
k=1

k−
1
p ≤ α(C, p).

For p =∞, we easily see that
∑C
k=1 k

− 1
p =

∑C
k=1 1 =

C. For p <∞, we can write

C∑
k=1

k−
1
p = 1 +

C∑
k=2

k−
1
p ≤ 1 +

∫ C

1

x−
1
p dx.

Then, for p = 1, we have

C∑
k=1

k−
1
p ≤ 1+

∫ C

1

1

x
dx = 1+logC− log 1 = 1+logC,

while for p 6= 1, we have

C∑
k=1

k−
1
p ≤ 1 +

p

p− 1
(C(p−1)/p − 1) =

pC1−1/p − 1

p− 1
.

So for p > 1, we get

C∑
k=1

k−
1
p <

pC1−1/p

p− 1
,

while for p < 1, we obtain

C∑
k=1

k−
1
p ≤ 1− pC1−1/p

1− p
≤ 1

1− p
.
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B COMPLEMENTS FOR THE
PROOF OF THEOREM 2

We here restate the results embedded in the proof
of Theorem 2.1 in Biau et al. (2008) with empirical
Rademacher complexities and a summation over the
component classes, as used in the proof of Theorem 2.
First, we reformulate the clustering loss as

`(f, x) = min
k∈[C]

‖x− fk(x)‖2

= ‖x‖2 + min
k∈[C]

−2 〈x, fk〉+ ‖fk‖2,

which, for Πp =
∏C
k=1 Πp,k and given (Xi)1≤i≤n =

(xi)1≤i≤n, leads to

R̂n
(
LΠp

)
= E sup

f∈Πp

1

n

n∑
i=1

σi

(
‖xi‖2 + min

k∈[C]
−2 〈xi, fk〉+ ‖fk‖2

)

≤ E
1

n

n∑
i=1

σi‖xi‖2

+ E sup
f∈Πp

1

n

n∑
i=1

σi min
k∈[C]

−2 〈xi, fk〉+ ‖fk‖2

= E sup
f∈Πp

1

n

n∑
i=1

σi max
k∈[C]

2 〈xi, fk〉 − ‖fk‖2

≤
C∑
k=1

E sup
fk∈Πp,k

1

n

n∑
i=1

σi(2 〈xi, fk〉 − ‖fk‖2),

where the last line is due to Lemma 8.1 in Mohri et al.
(2012). Then, with Λk = k−1/pΛ, for any k ∈ [C],

E sup
fk∈Πp,k

1

n

n∑
i=1

σi(2 〈xi, fk〉 − ‖fk‖2)

≤ 2E sup
fk∈Πp,k

1

n

n∑
i=1

σi 〈xi, fk〉+ E sup
fk∈Πp,k

1

n

n∑
i=1

σi‖fk‖2

≤ 2E sup
fk∈Πp,k

1

n

〈
n∑
i=1

σixi, fk

〉
+

Λ2
k√
n

≤ 2
Λk
n

E

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥+
Λ2
k√
n
≤ 2

Λk
n

√√√√ n∑
i=1

‖xi‖2 +
Λ2
k√
n

The second inequality, i.e., (9), is merely due to the
fact that k−2/p ≤ k−1/p for all k ≥ 1.

C PROOF OF THEOREM 3

Since P = BB> is a projection matrix, it is symmetric
and idempotent: P>P = PP = P . Thus,

`(B, x) = ‖Px− x‖2 = x>P>Px− 2x>Px+ x>x

= −x>Px+ ‖x‖2 = ‖x‖2 − ‖Px‖2.

Hence, the loss is bounded with probability one as 0 ≤
`(B, X) ≤ ‖X‖2 ≤ Λ2

x and standard error bounds such
as Theorem 3.1 in Mohri et al. (2012) apply to the loss
class based on (10) and (11),

LB =
{
` ∈ [0,Λ2

x]X : `(x) = ‖BB>x− x‖2, B ∈ B
}
.

Then, the statement is a consequence of the estimation
of the empirical Rademacher complexity of LB given
(Xi)1≤i≤n = (xi)1≤i≤n:

R̂n(LB) = E sup
B∈B

1

n

n∑
i=1

σi(‖xi‖2 − ‖Pxi‖2)

≤ E
1

n

n∑
i=1

σi‖xi‖2 + E sup
B∈B

1

n

n∑
i=1

−σi‖Pxi‖2,

where E 1
n

∑n
i=1 σi‖xi‖2 = 1

n

∑n
i=1 ‖xi‖2Eσi = 0 and

−σi has the same distribution has σi. Thus, using
‖Pxi‖2 = x>i Pxi = Tr(x>i Pxi) = Tr(Pxix

>
i ), we

obtain

R̂n(LB) ≤ E sup
B∈B

1

n

n∑
i=1

σi Tr(Pxix
>
i )

= E sup
B∈B

1

n
Tr

(
P

(
n∑
i=1

σixix
>
i

))

≤ E sup
B∈B

1

n
‖P ‖F

∥∥∥∥∥
n∑
i=1

σixix
>
i

∥∥∥∥∥
F

,

where∥∥∥∥∥
n∑
i=1

σixix
>
i

∥∥∥∥∥
2

F

= Tr

((
n∑
i=1

σixix
>
i

)(
n∑
i=1

σixix
>
i

))

=

n∑
i=1

n∑
j=1

σiσj Tr
(
xix
>
i xjx

>
j

)
=

n∑
i=1

n∑
j=1

σiσj Tr
(
(x>i xj)

2
)

=

n∑
i=1

n∑
j=1

σiσj(x
>
i xj)

2.

In addition, since the trace of an idempotent matrix
equals its rank and rank(B) = rank(BB>), we have

‖P ‖F =

√
Tr(P>P ) =

√
Tr(P ) =

√
rank(P )

=
√

rank(B) =
√
d1.

Thus,

R̂n(LB) ≤ 1

n
E

√√√√d1

n∑
i=1

n∑
j=1

σiσj(x>i xj)
2

≤ 1

n

√√√√d1

n∑
i=1

‖xi‖2 =

√
d1‖X‖F
n

.
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