
Convergence Rates of Smooth Message Passing with Rounding

A Bregman Projection Derivation

The objective (Reg) can be equivalently interpreted as a Bregman projection. This interpretation has been
explored by Ravikumar et al. (2010) as a basis for proximal updates and also Benamou et al. (2015) for the optimal
transport problem. Here, we review the transformation because it is central to the algorithm of Ravikumar et al.
(2010), upon which our main theoretical results are based.

By definition of the Bregman projection with respect to the negative entropy, � = �H, we have

D�(µ,) =+ hµ, logµ� i � hlog ,µ� i
= �H(µ)

where is a vector of ones of the same size as the marginal vector and =+ denotes the two sides are equal up to
a constant. Substituting this into (Reg) and multiplying through by ⌘ yields the objective:

min ⌘hC,µi+D� (µ,) s.t. µ 2 Lm.

Note the similarity to a projected mirror descent update over Lm starting from (Bubeck, 2015; Nemirovsky
and Yudin, 1983). Using this insight and performing a single gradient update in the dual, we can transform the
problem into a single Bregman projection of the vector. The unprojected marginal vector µ0 satisfies

r�(µ0) = r�()� ⌘C,

where r�(µ) = �rH(µ) = logµ is the dual map and (r�)�1(µ) = r�⇤(µ) = exp(µ) is the inverse dual
map. We have µ0 = exp(�⌘C) and the solution to the mirror descent update is PLm

(exp(�⌘C)). Therefore it is
su�cient to solve the following Bregman projection problem:

min D� (µ, exp(�⌘C)) s.t. µ 2 Lm

The projection, however, cannot be computed in closed form due to the complex geometry of Lm. Sinkhorn-like
algorithms such as those used in Cuturi (2013) are unavailable because the transportation polytopes Ud(µi,µj)
are dependent on variables µi and µj which are also involved in the projection operation.

B Derivation of EMP Update Rules

We present the derivations of the update rules similar to Ravikumar et al. (2010) for a given edge ij 2 E based
on the Bregman projections onto the individual constraint sets Xij!i, Xij,i, Xij!j , Xij,j . We refer the reader to
Ravikumar et al. (2010) for the original algorithm and derivation. We derive only the first two projections; the
last two can be found by exchanging the indices.

(a) For the projection µ0 = PXij!i
(µ), where

Xij!i = {µ : µij = µi},

there are no constraints on any edges or vertices other than ij and i. Therefore, 8k 6= i, µ0
k
= µk. Similarly,

8k` 6= ij, µ0
k`

= µk`.

The Lagrangian of the projection is given in terms of primal variables µ and dual variables ↵:

L(µ0,↵) =
X

xi,xj

µ0
ij
(xi, xj)

✓
log

µ0
ij
(xi, xj)

µij(xi, xj)
� 1

◆
+
X

xi

µ0
i
(xi)

✓
log

µ0
i
(xi)

µi(xi)
� 1

◆
+ ↵> �µ0

ij
� µ0

i

�

=
X

xi,xj

µ0
ij
(xi, xj)

✓
log

µ0
ij
(xi, xj)

µij(xi, xj)
� 1 + ↵(xi)

◆
+
X

xi

µ0
i
(xi)

✓
log

µ0
i
(xi)

µi(xi)
� 1� ↵(xi)

◆
.

By the first-order optimality condition, the primal solution in terms of the dual variables is

µ0
ij
(xi, xj) = µij(xi, xj)e

�↵(xi)

µ0
i
(xi) = µi(xi)e

↵(xi).

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

Substituting this solution back in to the Lagrangian, we have

L(↵) = �
X

xi,xj

µij(xi, xj)e
�↵(xi) �

X

xi

µi(xi)e
↵(xi).

Again, by the first-order optimality condition, the dual solution is

↵⇤(xi) =
1

2
log

P
xj

µij(xi, xj)

µi(xi)
.

Substituting this value for ↵⇤ into the primal solution yields the desired result.

(b) Again, for the projection onto

Xij,i = {µ : µ>
i

= 1, >µij = 1},

only µi and µij are a↵ected. Xij,i enforces that the variables µij and µi each sum to one. It is well known
and easy to show that the Bregman projection with respect to the negative entropy is simply the µij and µi

normalized by their sums. This normalization can also be written as a multiplicative update of the same
form by observing that

µ0
ij
(xi, xj) = µ0

ij
(xi, xj)e

�⇠
⇤
ij

µ0
i
(xi) = µ0

i
(xi)e

�⇠
⇤
i ,

where ⇠⇤
ij
= log

P
xi,xj

µij(xi, xj) and ⇠⇤
i
= log

P
xi
µi(xi). Again, these can be derived via the Lagrangian.

C Extensions of EMP

C.1 Dual EMP

We may also equivalently interpret the multiplicative updates in Algorithm 1 and Algorithm 2 as additive updates
of the dual variables. The dual interpretation is consistent with past work in dual MAP algorithms (Sontag et al.,
2011) and may be more practical to avoid numerical issues in implementation. Instead of tracking the primal
variables µ, we track a sum of the dual variables with ⇣ for each vertex and edge. Enforcing consistency between
a given joint distribution and its marginals in (a) yields updated dual variable sums

⇣ 0
ij
(xi, xj) ⇣ij(xi, xj)� ↵⇤(xi) ⇣ 0

i
(xi) ⇣i(xi) + ↵⇤(xi),

where again ↵⇤(xi) =
1
2 log

P
xj

µij(xi,xj)

µi(xi)
. The same is done for the vertex j in (c) with indices exchanged. The

normalization step in (b) yields

⇣ 0
ij
(xi, xj) ⇣ij(xi, xj)� ⇠⇤

ij
⇣ 0
i
(xi, xj) ⇣i(xi)� ⇠⇤

i
,

where ⇠⇤
ij

= log
P

xi,xj
µij(xi, xj) and ⇠⇤

i
= log

P
xi
µi(xi). Again, the same is done for (d). The primal marginal

vector is recovered with

µ = exp(�⌘C + ⇣).

We will later make explicit the dual formulation as it will aid in the theoretical analysis.

C.2 Clique Constraints

The version of EMP presented in the paper is for the L2 local polytope, which enforces only pairwise consistency
among the variables with edges, but this can be fairly easily extended. In this section, we discuss higher order
pseudo-marginals and their constraints. Consider the polytope that enforces consistency on all subsets of V of
size k and below, denoted by C. We use the notation of Meshi et al. (2012). The constraint set is written as

LC
def.
=

⇢
µ � 0 :

µi 2 ⌃m 8i 2 V
µi(xi) =

P
xc\i

µc 8xi 2 �, i 2 c, c 2 C,

�
. (4)

Convergence Rates of Smooth Message Passing with Rounding

where xc\i denotes a marginalization over all variables except i. For convenience, we may also now account for
higher-order interactions in the model itself:

max
X

c2C

X

xc2�k

✓c(xc)µc(xc) +
X

i2V

X

xi2�

✓i(xi)µi(xi) s.t. µ 2 LC

The projection operation in (Proj) is the same for C = �✓. Analogous update rules to Proposition 1 can derived
with exactly the same procedure. For a given subset c 2 C and vertex i, we have that µ0 = Pij!i(µ) constitutes
the update

µ0
c
(xc) = µc(xc)

s
µi(xi)P

xc\i
µc(xc)

µ0
i
(xi) = µc(xc)

sP
xc\i

µc(xc)

µi(xi)
.

The normalization updates are identical as well. As in the presented EMP algorithm, we can design greedy and
cyclic algorithms around these update equations. The theoretical analysis in Section 6 will focus on the case with
edges only. We leave the general analysis of LC for future work.

D Omitted Proofs and Derivations from Section 6

D.1 Derivation of the Lyapunov function (3)

For convenience, L is restated here:

L(�, ⇠) = �
X

ij2E

X

xi,xj2�

exp (�⌘Cij(xi, xj)� �ij(xi)� �ji(xj)� ⇠ij)

�
X

i2V

X

x2�

exp

0

@�⌘Ci(x)� ⇠i +
X

j2Nr(i)

�ij(x) +
X

j2Nc(i)

�ji(x)

1

A

�
X

ij2E
⇠ij �

X

i2V
⇠i +

X

ij2E

X

xi,xj2�

exp(�⌘Cij(xi, xj)) +
X

i

X

x2�

exp(�⌘Ci(x)).

(5)

The Lagrangian of (Proj) with primal variables µ and dual variables (�, ⇠) can be written as

L(µ,�, ⇠) = D�(µ, exp(�⌘C)) +
X

ij

�
�>
ij
(µij � µi) + �>

ji
(µ>

ij
� µi)

�

+
X

ij

⇠ij(
>µij � 1) +

X

i

⇠i(µ
>
i
� 1),

where

D�(µ, exp(�⌘C)) =
X

ij

X

xi,xj

µij(xi, xj) (logµij(xi, xj) + ⌘Cij(xi, xj)� 1)

+
X

i

X

x

µi(x) (logµi(x) + ⌘Ci(x)� 1)

+
X

ij

X

xi,xi

exp(�⌘Cij(xi, xj)) +
X

i

X

x

exp(�⌘Ci(x)).

The partial derivatives with respect to µij(xi, xj) and µi(x) are given by

@L
@µij(xi, xj)

= logµij(xi, xj) + ⌘Cij(xi, xj) + �ij(xi) + �ji(xj) + ⇠ij

@L
@µi(x)

= logµi(x) + ⌘Ci(x) + ⇠i �
X

j2Nr(i)

�ij(xi) +
X

j2Nc(i)

�ji(xj).

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

Setting the derivatives to zero gives the solution µ in terms of the dual variables:

µij(xi, xj) = exp (�⌘Cij(xi, xj)� �ij(xi)� �ji(xj)� ⇠ij)

µi(x) = exp

0

@�⌘Ci(x)� ⇠i +
X

j2Nr(i)

�ij(x) +
X

j2Nc(i)

�ji(x)

1

A .

By substituting µ in L, we obtain the Lyapunov function L.

D.2 Proof of Lemma 1

In this section we prove Lemma 1. We restate the result for the reader’s convenience.

Lemma 3. For a given edge ij 2 E, let µ0
and (�0, ⇠0) denote the updated primal and dual variables after a

projection from one of (a)–(d) in Proposition 1. We have the following improvements on L. If µ0
is equal to:

(a) PXij!i
(µ), then L(�0, ⇠0)� L(�, ⇠) = 2h2(µij ,µi)

(b) PXij,i
(µ), then L(�0, ⇠0)� L(�, ⇠) � 0

(c) PXij!j
(µ), then L(�0, ⇠0)� L(�, ⇠) = 2h2(µ>

ij
,µj)

(d) PXij,j
(µ), then L(�0, ⇠0)� L(�, ⇠) � 0.

Proof. Let L and L0 denote the values of the Lyapunov function before and after the projection in each case.

(a) Due to the projection µ0 = PXij!i
(µ), only µij and µi change values.

L0 � L =
X

xi,xj

�
µij(xi, xj)� µ0

ij
(xi, xj)

�
+
X

x

(µi(x)� µ0
i
(x))

=
X

xi,xj

µij(xi, xj)

1�

s
µi(xi)P

x0 µij(xi, x0)

!
+
X

x

µi(x)

1�

sP
x0 µij(x, x0)

µi(xi)

!

=
��pµij �

p
µi

��2
2
= 2h2(µij ,µi).

(b) Due to the projection µ0 = PXij!i
(µ) change, again only µij and µi, but they are simply normalized.

From the derivation of the updates, we can see that only dual variables ⇠i and ⇠ij are updated in order for the
normalization to occur. We have, from the update rule in Proposition 1

⇠0
ij
= ⇠ij � log

X

xi,xj

µij(xi, xj)

⇠0
i
= ⇠i � log

X

x

µi(x).

The improvement on the Lyapunov function can then be written as

L0 � L =
X

xi,xj

µij(xi, xj)
�
1� exp(⇠0

ij
� ⇠ij)

�
+
X

x

µi(x) (1� exp(⇠0
i
� ⇠i))

+ ⇠0
ij
� ⇠ij + ⇠0

i
� ⇠i

=
X

xi,xj

µij(xi, xj)� log
X

xi,xj

µij(xi, xj)� 1

+
X

x

µi(x)� log
X

x

µi(x)� 1,

where the second equality uses the fact that µ0
ij

and µi both sum to one. This last expression can be shown to
be non-negative by recognizing the classical inequality x� log x� 1 � 0 for all x > 0.

Convergence Rates of Smooth Message Passing with Rounding

(c) The proof of improvement is identical to (a); however, we replace vertex i with j and all row sums µij

with column sum µ>
ij

.

(d) The proof of improvement is identical to (b), but we replace i with j for the vertex marginal normalization.

D.3 Fixed points of EMP

We start this section by noting that all fixed points of EMP correspond to valid (constraint satisfying) primal
solutions and therefore must equal global optima of the dual function.

First note that any fixed point of EMP corresponds to a candidate solution all whose constraints are satisfied.
Indeed, at optimality �⇤, ⇠⇤ satisfy:

�
µ⇤

⌘

�
ij
(xi, xj) = exp

�
�⌘Cij(xi, xj)� �⇤

ij
(xi)� �⇤

ji
(xj)� ⇠⇤

ij

�

�
µ⇤

⌘

�
i
(xi) = exp

0

@�⌘Ci(xi)� ⇠⇤
i
+

X

j2Nr(i)

�⇤
ij
(xi) +

X

j2Nc(i)

�⇤
ji
(xi)

1

A ,

with µ⇤
⌘
2 L2. Since all constraints are satisfied, for all projection types P in Lemma 1, P(µ⇤

⌘
) = µ⇤

⌘
.

For the converse, we proceed by contradiction. Let µ be a fixed point of EMP. As such, all the normalization
constraints (ensuring the edge and node distributions each sum to one) must be satisfied. Assume then that a
constraint of type (a) or (c) is not satisfied. Without loss of generality let ij ! i be the unsatisfied constraint. As
a consequence of 1, the Lyapunov objective can be strictly increased by performing the corresponding Bregman
projection, and therefore EMP couldn’t have possibly be at a fixed point. We summarize these observations in
the following proposition:

Proposition 2. All maxima of L(�, ⇠) are fixed points of EMP and all fixed points of EMP are maxima of

L(�, ⇠).

D.4 Proof of Lemma 2

In this section we prove Lemma 2, we restate it here for readability:

Lemma 4. Let �⇤
, ⇠⇤ denote the maximizers of L. The di↵erence in function value between the optimal value of

L and the value at the first iteration is upper bounded as

L(�⇤, ⇠⇤)� L(�(1), ⇠(1))  min(k⌘C/d+ exp(�⌘C)k1, S).

Proof. We start by showing the upper bound:

L(�⇤, ⇠⇤)� L(�(1), ⇠(1))  k⌘C/d+ exp(�⌘C)k1. (6)

We have that (�, ⇠) = (0, 0) when µ = e�⌘C before any updates to the primal variables. By Lemma 1,
L(0, 0, 0)  L(�(1), ⇠(1)). Then we have

L(�⇤, ⇠⇤)� L(�(1), ⇠(1))  L(�⇤, ⇠⇤)� L(0, 0)  L(�⇤, ⇠⇤).

We may establish an upper bound on L(�⇤, ⇠⇤) by finding a feasible point in the primal objective (Proj). It is
easy to verify that µ is in L2 if 8ij 2 E and 8i 2 V, µij(xi, xj) =

1
d2 and µi(xi) =

1
d
. With this choice of µ, the

value of (Proj) is

D�(µ, exp(
�⌘C)) =

X

ij2E
(⌘EU [Cij]� 1� log d2) +

X

i2V
(⌘EU [Ci]� 1� log d)

+
X

ij2E

X

xi,xj2�

exp(�⌘Cij(xi, xj)) +
X

i

X

x2�

exp(�⌘Ci(x))

 k⌘
d
C + exp(�⌘C)k1 � (|V|+ |E|)(log d+ 1),

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

where EU denotes the uniform distribution. where the last inequality follows from the fact that Cij(0, 0) =
Ci(0) = 0. Therefore,

L(�⇤, ⇠⇤)� L(�(1), ⇠(1))  L(�⇤, ⇠⇤)  k⌘
d
C + exp(�⌘C)k1 � (|V|+ |E|)(log d+ 1).

We now proceed to show the following (direct) bound on L(�⇤, ⇠⇤)� L(�(1), ⇠(1)):

L(�⇤, ⇠⇤)� L(�(1), ⇠(1)) 
X

ij2E

2

4log

0

@
X

xi,xj2�

exp (�⌘Cij(xi, xj))

1

A+
X

xi,xj2�

⌘

4
Cij(xi, xj)

3

5+

X

i2V

"
log

X

x2�

exp (�⌘Ci(x))

!
+
X

x2�

⌘

2
Ci(x)

#
.

We work under the assumption that at any time k, all the component distributions of µ(k) are normalized so its
entries sum to 1. Notice that in this case

L(�⇤, ⇠⇤)� L(�(1), ⇠(1)) =
X

ij2E
⇠(1)
ij
� ⇠⇤

ij
+
X

i2V
⇠(1)
i
� ⇠⇤

i
.

If we initialize our algorithm to �(1) = 0, and ⇠(1) be the normalization factors corresponding to this choice of �,
then

X

ij2E
⇠(1)
ij

+
X

i2V
⇠(1)
i

=
X

ij2E
log

0

@
X

xi,xj2�

exp (�⌘C(xi, xj))

1

A+
X

i2V
log

X

x2�

exp (�⌘C(x))

!
.

Notice that at optimality �⇤, ⇠⇤, for all ij 2 E and, for all xi, xj ,

exp
�
�⌘Cij(xi, xj)� �⇤

ij
(xi)� �⇤

ji
(xj)� ⇠⇤

ij

�
=
�
µ⇤

⌘

�
ij
(xi, xj) 2 [0, 1].

And for all i 2 V and for all x,

exp

0

@�⌘Ci(x)� ⇠⇤
i
+

X

j2Nr(i)

�⇤
ij
(x) +

X

j2Nc(i)

�⇤
ji
(x)

1

A =
�
µ⇤

⌘

�
i
(x) 2 [0, 1].

Therefore, for all ij 2 E and for all xi, xj :

�⌘Cij(xi, xj)� �⇤
ij
(xi)� �⇤

ij
(xj)� ⇠⇤

ij
 0 (7)

For all i 2 V and for all x:
�⌘Ci(x)� ⇠⇤

i
+

X

j2Nr(i)

�⇤
ij
(x) +

X

j2Nc(i)

�⇤
ji
(x)  0 (8)

Summing Equations (7) and (8) over all ij 2 E , i 2 V and xi, xj , x 2 � yields:

�
X

ij2E
⇠⇤
ij
�
X

i2V
⇠⇤
i

X

ij2E

X

xi,xj2�

⌘

d2
Cij(xi, xj) +

X

i2V

X

x2�

⌘

d
Ci(x) (9)

And, therefore,

L(�⇤, ⇠⇤)� L(�(1), ⇠(1)) 
X

ij2E

2

4log

0

@
X

xi,xj2�

exp (�⌘C(xi, xj))

1

A+
X

xi,xj2�

⌘

d2
Cij(xi, xj)

3

5+

X

i2V

"
log

X

x2�

exp (�⌘C(x))

!
+
X

x2�

⌘

d
Ci(x)

#
. (10)

Convergence Rates of Smooth Message Passing with Rounding

Notice that the RHS of the equation above is positive since:
P

`

i=1 exp(ai) �
1
`

P
`

i=1 exp(ai) � exp
⇣P

`

i=1 ai

`

⌘
for

all ` 2 N and all a1, · · · , a` 2 R. Combining Equations (6) and (10) and the observation that L(0, 0)  L(�(1), ⇠1)
(by virtue of Lemma 1) we obtain the final result.

In the case when all entries of C are positive it may be the case that S � k exp (�⌘C) k1.

D.5 Complete Proof of Theorem 2

In this section, we will complete the proof of Theorem 2 by handling the case of EMP-cyclic. We require two
additional technical lemmas on the l1 distance between updated variables. We will use r(·) and c(·) to denote row
and column sums respectively of joint distribution matrices.

Lemma 5. Let a, b 2 ⌃d be two points in the simplex and let p 2 Rd

+ s.t. min(ai, bi)  pi  max(ai, bi) for all

1  i  d. Let c 2 ⌃d defined as c = pP
i
pi

. Then:

max(ka� ck1, kb� ck1)  ka� bk1

Proof. We only need to prove that ka� ck  ka� bk1. From min(ai, bi)  pi  max(ai, bi) we obtain:

|ai � pi|+ |bi � pi| = |ai � bi|.

Let t = 1P
i
pi

. The following relationships hold:

ka� ck1 =
X

i

|a� tpi| =
X

i

|ai � pi + (1� t)pi|


X

i

|ai � pi|+
X

i

|(1� t)pi|.

Note that

X

i

|(1� t)pi| = |1� t|
X

i

pi =
|1� t|

t
= |1

t
� 1| = |

X

i

pi � 1|,

and X

i

|bi � pi| � |
X

i

bi � pi| = |1�
X

i

pi| = |
X

i

pi � 1|.

Therefore,

ka� ck1 
X

i

|ai � pi|+
X

i

|bi � pi| =
X

i

|ai � bi| = ka� bk1.

The result follows.

Let A 2 ⌃d⇥d with elements aij be a matrix representing joint distribution probabilities. For p =
⇥
p1 . . . pd

⇤> 2
⌃d, define

eA =
1

z

2

6664

a11
q

p1

r(A)1
· · · a1d

q
p1

r(A)1

...
. . .

...

ad1
q

pd

r(A)d
· · · add

q
pd

r(A)d

3

7775

where z is a normalization term, such that the new probabilities matrix sums to one. The notation r(A)i denotes
the ith element of row sum vector r(A).

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

Lemma 6. The following inequality holds on the di↵erence between A and eA:

kc(eA)� c(A)k1  kr(eA)� r(A)k1

Proof.

kc(eA)� c(A)k1 =
dX

j=1

�����

dX

i=1

aij
z

✓r
pi

r(A)i
� z

◆�����


X

i,j

aij
z

����
r

pi
r(A)i

� z

����

=
X

i

r(A)i
z

����
r

pi
r(A)i

� z

����

=
X

i

�����

r
r(A)ipi

z
� r(A)i

�����

= kr(eA)� r(A)k1.

This proof of Theorem 2 relies heavily on the primal and dual variables at given times throughout the algorithm.
As such, it is necessary to define precise notation for these temporal events. We note that there are two loops in
the algorithm: an outer loop that controls the iterations and an inner one that loops over all edges in E . The
outer loop’s current iteration is given by k � 0, as defined and updated in Algorithm 1. We denote the current
step of the inner loop by t where 1  t  4|E|. This is due to the fact that there are four projections for each
edge (Xij!i, Xij,i, Xij!j , and Xij,j) in one full iteration for L2. Thus the algorithm alternates between enforcing
consistency between an edge and vertex and normalizing the local distributions.

The value of µ at iteration k and step t within iteration k is denoted by µ(k,t). For example, at the very start of
the algorithm, we are at iteration k = 1 and step t = 1 with initial value µ(1,1), which is equal to exp(�⌘C) with
normalized vertex marginal and edge joint distributions. The constraint set onto which a projection is made at
t in any iteration is denoted by X (t). Note that we drop k in the constraint set notation because the order in
which the projections occur is always the same.

Proof of Theorem 2. Let k⇤ be the first iteration such that the termination condition in Algorithm 1 with

respect to ✏ is met. For k such that 1  k  k⇤, there exists ij 2 E such that kr(µ(k,1)
ij

) � µ(k,1)
i
k1 � ✏ or

kc(µ(k,1)
ij

)� µ(k,1)
j
k1 � ✏.

First consider the case where kc(µ(k,1)
ij

) � µ(k,1)
j
k1 � ✏. Let t be chosen such that X (t) = Xij!j . Note that

µ(k,t)
j

can move within the ✏-ball of c(µ(k,t)
ij

) between times 1 and t of the kth iteration due to earlier projections

involving vertex j. However, µ(k,t0)
ij

= µ(k,1)
ij

for all t0  t � 2 because it is only updated at step t � 2 where

X (t�2) = Xij!i. Then, by repeatedly applying the triangle inequality, we have

✏  kc(µ(k,1)
ij

)� µ(k,1)
j
k1

 kc(µ(k,t�2)
ij

)� µ(k,1)
j
k1

 kc(µ(k,t�2)
ij

)� µ(k,t)
j
k1 +

X

t02T (t)
j,r

[T (t)
j,c

kµ(k,t0)
j

� µ(k,t0+2)
j

k1

 kc(µ(k,t)
ij

)� µ(k,t)
j
k1 + kc(µ(k,t)

ij
)� c(µ(k,t�2)

ij
)k1

+
X

t02T (t)
j,r

[T (t)
j,c

kµ(k,t0)
j

� µ(k,t0+2)
j

k1,

Convergence Rates of Smooth Message Passing with Rounding

where T (t)
j,r

and T (t)
j,c

are sets of times before t where a projection (for row and column consistency, respectively)
caused µj to be updated:

T (t)
j,r

def.
= {t0 < t : 9` 2 Nr(i) s.t. X (t0) = Xj`!j}

T (t)
j,c

def.
= {t0 < t : 9` 2 Nc(i) s.t. X (t0) = X`j!j}.

Therefore, µ(k,t0+2)
j

is the result of enforcing consistency with another edge of i and then normalizing µj . Let et0

denote the edge (incident on j) onto which projections are occurring at step t0 2 T (t)
j,r
[T (t)

j,c
. From Lemma 5, if

t0 2 Tj,r(t), then

kµ(k,t0)
j

� µ(k,t0+2)
j

k1  kµ(k,t0)
j

� r(µ(k,t0)
e
t0

)k1.

If t0 2 T (t)
j,c

, then

kµ(k,t0)
j

� µ(k,t0+2)
j

k1  kµ(k,t0)
j

� c(µ(k,t0)
e
t0

)k1.

Similarly, by combining Lemma 5 and Lemma 6, we have

kc(µ(k,t)
ij

)� c(µ(k,t�2)
ij

)k1  kr(µ(k,t)
ij

)� r(µ(k,t�2)
ij

)k1  kµ(k,t�2)
i

� r(µ(k,t�2)
ij

)k1.

Note that since the variables are normalized at every even step, they are individually valid probability distributions,
and so the Hellinger inequality can be applied. For distributions, p and q, the inequality states

1

4
kp� qk21  2h2(p, q).

Therefore,

✏2

4(deg(Gk) + 1)
 2h2(c(µ(k,t)

ij
),µ(k,t)

j
) + 2h2(r(µ(k,t�2)

ij
),µ(k,t�2)

i
)

+
X

t02T (t)
j,r

2h2(r(µ(k,t0)
e
t0

),µ(k,t0)
j

) +
X

t02T (t)
j,c

2h2(c(µ(k,t0)
e
t0

),µ(k,t0)
j

)

 L(k+1,1) � L(k,1).

The last inequality follows from telescoping over all steps in iteration k due to Lemma 1. This proof was for the

case when kc(µ(k,1)
ij

)�µ(k,1)
j
k1 � ✏. For the case when kr(µ(k,1)

ij
)�µ(k,1)

i
k1 � ✏, the procedure is identical except

we may ignore the term kc(µ(k,t)
ij

) � c(µ(k,t�2)
ij

)k1 since µij is constant within iteration k until the projection
onto Xij!i. Thus, the improvement lower bound still holds.

Putting these results together with Lemma 2, we see that as long as a single constraint is violated above the ✏
threshold at the start of an iteration, it is possible to show that the value of L increases by at least ✏2/4(deg(Gk)+1)

during the iteration. This implies that EMP-cyclic terminates in at most d 4S0(deg(Gk)+1)
✏2

e iterations.

D.6 Proof of Theorem 3

We start by defining a version of L2 with slack vectors. Let ⌫ be a vector indexed in a similar way as µ, where
{⌫ij , ⌫ji}ij2E . We define the slack ⌫ as ⌫ij = µij � µi and ⌫ji = µ>

ij
� µj . Then we define the slack polytope

L⌫

2 as

L⌫

2
def.
=

8
>><

>>:
µ � 0 :

µi 2 ⌃d 8i 2 V
µij = µi + ⌫ij 8ij 2 E
µ>

ij
= µj + ⌫ji 8ij 2 E

>µij = 1 8ij 2 E

9
>>=

>>;
. (11)

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

Notice that by definition the slack vectors ⌫ satisfy that, for all ij 2 E , ⌫>
ij

= ⌫>
ji

= 0. The main di↵erence
between L2 and L⌫

2 lies in that the joints do not marginalize exactly to the vertex probabilities but do so up to a
slack. Consider the entropy-regularized linear program corresponding to L⌫

2 :

min hC,µi � 1

⌘
H(µ) s.t. µ 2 L⌫

2 , (Reg-slack)

Introducing the exact same ensemble of dual variables �, ⇠ as in the Lyapunov function derivation, its dual
function equals

L⌫
(�, ⇠) = �

X

ij2E

X

xi,xj2�

exp (�⌘Cij(xi, xj)� �ij(xi)� �ji(xj)� ⇠ij)

�
X

ij2E

X

xi,xj2�

⇣
�ij(xi)⌫ij(xi) + .�ji(xj)⌫ji(xj)

⌘

�
X

i2V

X

x2�

exp

0

@�⌘Ci(x)� ⇠i +
X

j2Nr(i)

�ij(x) +
X

j2Nc(i)

�ji(x)

1

A

�
X

ij2E

⇠ij �
X

i2V

⇠i +
X

ij2E

X

xi,xj2�

exp(�⌘Cij(xi, xj)) +

X

i

X

x2�

exp(�⌘Ci(x)).

(12)

Furthermore, if �⇤, ⇠⇤ were a set of optimal dual variables, the optimal primal µ⇤ can be computed via

µ⇤
ij
(xi, xj) = exp

�
�⌘Cij(xi, xj)� �⇤

ij
(xi)� �⇤

ji
(xj)� ⇠⇤

ij

�
(13)

µ⇤
i
(xi) = exp

0

@�⌘Ci(xi)� ⇠⇤
i
+

X

j2Nr(i)

�⇤
ij
(xi) +

X

j2Nc(i)

�⇤
ji
(xi)

1

A . (14)

They satisfy the same formulae as the problem without slack variables. Since dual optimality is equivalent to
primal feasibility, whenever an iterate of EMP satisfies slack of ⌫, its corresponding primal solution is optimal for
(Reg-slack).

We start with a useful manipulation lemma:

Lemma 7. Let ⌫, ⌫0 be two slack vectors and let µ 2 L⌫

2 . Assume kv0k1  1
2d .

1. If for all ij 2 E and i 2 V, µi + ⌫0
ij
2 ⌃d, then there exists a vector µ0 2 L⌫

0

2 such that

kµ� µ0k1  2k⌫ � ⌫0k1. (15)

2. If ⌫ = 04, then there exists a vector µ0 2 L⌫
0

2 such that

kµ� µ0k1  6d deg(G)k⌫0k1. (16)

Proof. First we consider the case when for all ij 2 E , µi + ⌫0
ij

is a valid distribution (in other words, all its entries
are in [0, 1] and its values sum to 1). In this case, we can argue for the existence of µ0 via the following:

Let µ0
i
= µi for all i 2 V . Let ij 2 E and observe that µij = µi + ⌫ij and µ>

ij
= µj + ⌫ji. We invoke Lemma 7

in Altschuler et al. (2017) to claim the existence of µ0
ij

such that µ0
ij

= µi + ⌫0
ij

and (µ0
ij
)> = µj + ⌫0

ji
and

kµij � µ0
ij
k1  2

�
kµi + ⌫ij � µi � ⌫0

ij
k1 + kµj + ⌫ji � µj � ⌫0

ji
k1
�

= 2
�
k⌫ij � ⌫0

ij
k1 + k⌫ji � ⌫0

ji
k1
�
.

Setting µ0 to be the ensemble with values {µ0
i
}i2V and {µ0

ij
}ij2E the result follows.

Now we consider the case when there exist ij 2 E such that µi + v0
ij

does not lie in the probability simplex. In
this case we will have to define µ0

i
di↵erent from µi. Consider some i 2 V. Let N(i) be the set of neighbouring

vertices to i and we abuse notation slightly and use ⌫ij for j 2 N(i) to denote the slack on i as of the edge
marginal shared by i and j. We define µ0

i
in the following way:

4
We do not require that µi + ⌫0

ij 2 ⌃d

Convergence Rates of Smooth Message Passing with Rounding

1. If µi + ⌫0
ij
2 ⌃d for all j 2 N(i) then let µ0

i
= µi.

2. Otherwise, let {x1, · · · , xr} ✓ [d] be the entries of µi such that for all x⌧ 2 {x1, · · · , xr} there exists at least
one j 2 N(i) for which

⇥
µi + ⌫0

ij

⇤
(x⌧) 62 [0, 1]. Therefore, we must define µ0

i
such that

max
j

k⌫0
ij
k1  µi(x)  1�max

j

k⌫0
ij
k1,

which can be done by taking the convex combination of µi with the uniform distribution:

µ0
i
= (1� ✓)µi +

✓

d
.

Setting ✓ = dmaxj k⌫0ijk1 guarantees this outcome because we are given that k⌫k1  1
2d . Furthermore, we

have

kµi � µ0
i
k1 =

X

x

|µi(x)� µ0
i
(x)|

 2dmax
j

k⌫0
ij
k1.

This, in turn, implies
P

i2V
kµi�µ0

i
k1  2dk⌫0k1. Then, we apply the result of Altschuler et al. (2017) again

to achieve existence of {µ0
ij
}ij2E such that

kµij � µ0
ij
k1  2

�
kµ0

i
� µi � ⌫0

ij
k1 + kµ0

j
� µj � ⌫0

ji
k1
�

= 2
�
k⌫0

ij
k1 + k⌫0jik1 + kµi � µ0

i
k1 + kµj � µ0

j
k1
�
.

Summing over these yields
P

ij2E kµij � µ0
ij
k1  2k⌫0k1 + 2d deg(G)k⌫0k1. Therefore kµ � µ0k1 

6d deg(G)k⌫0k1

We additionally require a similar lemma which allows us to project from one polytope to another while bounding
the probabilities away from zero.

Lemma 8. Fix ⌧ such that 0 < ⌧  1
8d2 and a slack vector ⌫ such that k⌫k1  1

4d . If µ 2 L⌫

2 , then there exists

a vector µ0 2 L2 such that

µ0
i
(xi) � ⌧ 8i 2 V, xi 2 �

µ0
ij
(xi, xj) � ⌧ 8ij 2 E , xi, xj 2 �

kµ� µ0k1  2k⌫k1 + 2(m+ n)d2⌧.

If µ 2 L2, then there exists a vector µ0 2 L⌫

2 such that

µ0
i
(xi) � ⌧ 8i 2 V, xi 2 �

µ0
ij
(xi, xj) � ⌧ 8ij 2 E , xi, xj 2 �

kµ� µ0k1  6d deg(G)k⌫k1 + 8(|E|+ n)d2⌧.

Proof. We address each case individually.

1. We use the first result from Lemma 7, which yields bµ 2 L2 such that kµ� bµk1  2k⌫k1. If the probabilities
are already bounded below ⌧ , then we are done; however, we must handle the worst case. As in the proof of
Lemma 7, we compute a convex combination of bµ with the uniform distribution to draw the distribution
away from zero values. Define

µ0
i
:= (1� ✓)bµi +

✓

d

µ0
ij
:= (1� ✓)bµij +

✓

d2
.

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

where we set ✓ = ⌧d2 which ensures that ✓ 2 [0, 1] and µ � ⌧ . Then, note that

kbµi � µ0
i
k1 =

X

x

|✓
d
� ✓bµi(x)|  2⌧d2

kbµij � µ0
ij
k1 =

X

xi,xj

|✓
d
� ✓bµij(xi, xj)|  2⌧d2.

By the triangle inequality, we have

kµ� µ0k1  kµ� bµk1 + kbµ� µ0k1  2k⌫k1 + 2(n+m)d2⌧.

2. In the second case, we start by constructing a distribution �, which is nearly uniform but lives in the slack
polytope is and bounded away from zero by at least ⌧ .

For each i 2 V, we take �i 2 ⌃d to be the uniform distribution where �i(x) =
1
d
� ⌧ . Since k⌫k1  1

4d , we

perturb the uniform distribution with ⌫ for each j 2 N(i), generating �j
i
:= �i + ⌫ij . Again, we are abusing

notation slightly by using ⌫ij to denote marginalization of edge ij to vertex i. Note that �j
i
2 ⌃d, so we can

define the product distribution �ij = �j
i
(�i

j
)> 2 Ud(�

j

i
, �i

j
), which, by construction, marginalizes such that the

full vector � given by the ensemble {�i}i2V and {�ij}ij2E is in L⌫

2 . Furthermore, each component can be
bounded below as

�ij(xi, xj) =
1

d2
+

⌫ij(xi)

d
+

⌫ji(xi)

d
+ ⌫ij(xi)⌫ji(xj)

� 1

d2
� 1

2d2
� 1

16d2

� 1

4d2
.

Now, as before, we know there exists bµ 2 L2
2 such that kµ� bµk1  6d deg(G)k⌫k1 from Lemma 7. Therefore,

we can take the convex combination of µ0 = (1� ✓)µ+ ✓� to get µ0 2 L⌫

2 such that µ0 � ✓

4d2 in all entries.

Taking ✓ = 4d2⌧ 2 [0, 1] ensures that µ0 � ⌧ . Furthermore, the di↵erence can be computed as

kbµi � µ0
i
k1 =

X

x

|✓
d
� ✓bµ(x)|  8d2⌧

kbµij � µ0
ij
k1 =

X

xi,xj

|✓�ij(xi, xj)� ✓bµij(xi, xj)|  8d2⌧.

Therefore, we have kbµ� µ0k1  8(|E|+ n)d2⌧ , which by triangle inequality implies

kµ� µ0k1  kbµ� µk1 + kbµ� µ0k1  6d deg(G)k⌫k1 + 8(|E|+ n)d2⌧.

We have now the necessary ingredients to prove the first theorem of this section, which provides a bound on
the l1 distance between the final iterate µk of Algorithms 1 and 2 and the solution µ⇤

⌘
of (Reg). Crucially we

analyze these iterates under the assumption all their component distributions µ(k)
i

for i 2 V and µ(k)
ij

for ij 2 E
are normalized.

Theorem 4. Let µ(k)
is the kth iterate of EMP and let ⌫(k) be the slack vector corresponding to µ(k)

such that

k⌫(k)k1  1
4d . In other words,

⌫(k)
ij

= µ(k)
ij
� µ(k)

i

⌫(k)
ji

=
⇣
µ(k)

ij

⌘>
� µ(k)

j
.

Fix ⌧ > 0 such that ⌧  1
8d2 . Let µ(k)(2) be the pseudo-marginal vector in L2 produced by the first case of Lemma

8 when fed with µ(k)
and ⌧ . Then,

Convergence Rates of Smooth Message Passing with Rounding

X

i2V

1

2

���
⇣
µ(k)(2)

⌘

i

�
�
µ⇤

⌘

�
i

���
2

1
+
X

ij2E

1

2

����
⇣
µ(k)(2)

⌘

ij

�
�
µ⇤

⌘

�
ij

����
2

1

 (⌘kCk1 + log 1/⌧)
�
8d deg(G)k⌫k1 + 10(|E|+ n)d2⌧

�
.

Proof. By definition µ(k) 2 L⌫
(k)

2 . In fact, µ(k) is the optimizer of the following regularized linear program:

min hC,µi � 1

⌘
H(µ) s.t. µ 2 L⌫

(k)

2 ,

This observation follows because µ(k) is in L⌫
(k)

2 and its elements can be written as in (13) and (14), thus satisfying
dual feasibility.

Recall that after every iteration all the component distributions are normalized. Recall that

h⌘C,µ(k)(2)i �H(µ(k)(2)) = D�

⇣
µ(k)(2), exp(�⌘C)

⌘
+ h , e�⌘Ci

h⌘C,µ⇤
⌘
i �H(µ⇤

⌘
) = D�

�
µ⇤

⌘
, exp(�⌘C)

�
+ h , e�⌘Ci,

where � = �H is the negative entropy. The point µ⇤
⌘
is the optimal point of the information projection exp (�⌘C)

for points in L2. By the properties of information projections,

D�

⇣
µ(k)(2), exp(�⌘C)

⌘
� D�

⇣
µ(k)(2),µ⇤

⌘

⌘
+D�

�
µ⇤

⌘
, exp(�⌘C)

�
.

Since for µ(k)(2) and µ⇤
⌘
, the sum of their entries is the same, by Pinsker’s inequality (applied to each of the

component vertex and edge distributions) this in turn implies that

D�

⇣
µ(k)(2), exp(�⌘C)

⌘
�D�

�
µ⇤

⌘
, exp(�⌘C)

�
� D�

⇣
µ(k)(2),µ⇤

⌘

⌘

�
X

i2V

1

2

���
⇣
µ(k)(2)

⌘

i

�
�
µ⇤

⌘

�
i

���
2

1
+ (17)

X

ij2E

1

2

����
⇣
µ(k)(2)

⌘

ij

�
�
µ⇤

⌘

�
ij

����
2

1

. (18)

Let µ⇤
⌘
(⌫(k)) in L⌫

(k)

2 be the vector produced by Lemma 8 applied to µ⇤
⌘
2 L2. Note that we utilize the existence

of µ⇤
⌘
(⌫(k)) and µ(k)(2) for analysis but we need not actually compute them. Expanding I yields

D�

⇣
µ(k)(2), exp(�⌘C)

⌘
�D�

�
µ⇤

⌘
, exp(�⌘C)

�
= h⌘C,µ(k)(2)� µ⇤

⌘
i+H(µ⇤

⌘
)�H(µ(k)(2))

= h⌘C,µ(k)(2)� µ(k)i+H(µ(k))�H(µ(k)(2))| {z }
A1

+ h⌘C,µ(k) � µ⇤
⌘
(⌫(k))i+H(µ⇤

⌘
(⌫(k)))�H(µ(k))

| {z }
A2

+ h⌘C,µ⇤
⌘
(⌫(k))� µ⇤

⌘
i+H(µ⇤

⌘
)�H(µ⇤

⌘
(⌫(k)))

| {z }
A3

.

Term A2 is negative since µ(k) is the optimal point in the slack polytope. Because µ⇤
⌘
(⌫(k)) and µ(k)(2) were

constructed such that all their probabilities are lower bounded by ⌧ , it holds that the entropies are log 1
⌧
-Lipschitz

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

in k · k1 Terms A1 and A3 can be then bounded:

A1  ⌘kCk1kµ(k)(2)� µ(k)k1 + log
1

⌧
kµ(k)(2)� µ(k)k1

 (⌘kCk1 + log 1/⌧)
⇣
2k⌫(k)k1 + 2(|E|+ n)d2⌧

⌘

A3  kCk1kµ⇤
⌘
(⌫(k))� µ⇤

⌘
k1 + log

1

⌧
kµ⇤

⌘
(⌫(k))� µ⇤

⌘
k1

 (⌘kCk1 + log 1/⌧)
⇣
6d deg(G)k⌫(k)k1 + 8(|E|+ n)d2⌧

⌘
.

The result then follow as

A1 +A3  (⌘kCk1 + log 1/⌧)
⇣
8d deg(G)k⌫(k)k1 + 10(|E|+ n)d2⌧

⌘
.

Theorem 4, combined with the EMP algorithm’s optimality condition can provide convergence guarantees for the
case when L2 is tight and the solution is unique. We restate the main result, Theorem 3, for readability.

Theorem 5. Let ⌘ � 2 log(16n2
d
2)+16|E|d2

min(�,
1

128)
, and ✏�1 > (25d deg(G)|E|)2 max (⌘kCk1, 68). If L2 is tight and

|V⇤
2 | = 1, the EMP algorithm returns a MAP assignment after d 4S0(deg(Gk)+1)

✏2
e iterations for EMP-cyclic and

after d 4S0
✏2
e iterations for EMP-greedy.

Proof. Let µ(k) be the last internal iterate of the EMP algorithm before rounding. Since the stopping condition
has been met, the slack vector ⌫(k) corresponding to µ(k) must satisfy k

�
⌫(k)

�
ij
k1  ✏ for all ij 2 E so that

k⌫(k)k1  2|E|✏.

Let µ(k)(2) be defined as in Theorem 4 and choose ⌧ = ✏

10(|E|+n)d2
5. Then, the bound from Theorem 4 becomes

(⌘kCk1 + log 1/⌧)
⇣
8d deg(G)k⌫(k)k1 + 10(|E|+ n)d2⌧

⌘

 (⌘kCk1 + log 1/⌧)
�
16d deg(G)|E|✏+ 10(|E|+ n)d2⌧

�

=

✓
⌘kCk1 + log

10(|E|+ n)d2

✏

◆
17d deg(G)|E|✏

=

✓
⌘kCk1 + log

�
10(|E|+ n)d2

�
+ log

1

✏

◆
17d deg(G)|E|✏


⇣
⌘kCk1 + log

�
10(|E|+ n)d2

�
+ 2✏�1/2

⌘
17d deg(G)|E|✏,

where the last inequality used the fact that log(x)  n(x1/n � 1) for n > 0. Choosing ✏�1 >
425d2 deg(G)2|E|2 max {⌘kCk1, 68} ensures that

X

i2V

1

2

���
⇣
µ(k)(2)

⌘

i

�
�
µ⇤

⌘

�
i

���
2

1
+
X

ij2E

1

2

����
⇣
µ(k)(2)

⌘

ij

�
�
µ⇤

⌘

�
ij

����
2

1

 3

25
.

Consequently for all i 2 V ���
⇣
µ(k)(2)

⌘

i

�
�
µ⇤

⌘

�
i

���
1
 2

5
.

and for all ij 2 E ����
⇣
µ(k)(2)

⌘

ij

�
�
µ⇤

⌘

�
ij

����
1

 2

5
.

5
As long as ✏  1

4d at least, this guarantees ⌧  1
8d2

, so we are free to use Theorem 4

Convergence Rates of Smooth Message Passing with Rounding

We also have

kµ(k)(2)� µ(k)k1  2k⌫(k)k1 + 2(|E|+ n)d2⌧

 4|E|✏+ ✏

5
 5|E|✏,

which implies kµ(k)(2) � µ(k)k1  1
24 and kµ⇤

⌘
� µ⇤k1  1

32 (by the condition on ⌘, see Theorem 1). Putting
these inequalities together by triangle inequality,

k
⇣
µ(k)

⌘

i

� (µ⇤)
i
k1  k

⇣
µ(k)

⌘

i

�
⇣
µ(k)(2)

⌘

i

k1 + k
⇣
µ(k)(2)

⌘

i

�
�
µ⇤

⌘

�
i
k1 + k

�
µ⇤

⌘

�
i
� (µ⇤)

i
k1

 1

24
+

2

5
+

1

32

<
1

2
.

For all i 2 V. A similar statement holds for all ij 2 E :

k
⇣
µ(k)

⌘

ij

� (µ⇤)
ij
k1  k

⇣
µ(k)

⌘

ij

�
⇣
µ(k)(2)

⌘

ij

k1 + k
⇣
µ(k)(2)

⌘

ij

�
�
µ⇤

⌘

�
ij
k1 + k

�
µ⇤

⌘

�
ij
� (µ⇤)

ij
k1

 1

24
+

2

5
+

1

32

<
1

2
.

Therefore, assuming µ⇤ (the solution of L2) is integral,

⇣
round(µ(k))

⌘

i

= (µ⇤)
i
for all i 2 V

and ⇣
round(µ(k))

⌘

ij

= (µ⇤)
ij

for all ij 2 E .

E Experiment Details

In this section, we provide some additional details for the experiments in Section 7. As mentioned, empirical
comparisons between state-of-the-art solvers and EMP-like algorithms have been studied extensively (Kappes
et al., 2013; Meshi et al., 2012; Ravikumar et al., 2010; Werner, 2007). For instance, Meshi et al. (2012) found
that the regularized star-based message passing algorithms greatly outperform standard optimization techniques
such as FISTA and gradient descent, which do not exploit the coordinate structure of the problem.

The primary purpose of these experiments is to understand how the theoretical results in Section 6 manifest in a
practical setting. In particular, we would like to understand how the convergence rates, in terms of the ability
to round to the solution, behave as a function of the parameters of the problem such as graph size, choice of
regularization ⌘, and connectivity of the graph. In all experiments, we ran an LP solver on the graph in order to
obtain the ground-truth MAP assignment. We only considered problems that were tight. The solver specifically
is the ECOS solver through a CVXPY wrapper.

E.1 Grid Experiments

As mentioned, our first set of experiments considered solving the MAP problem on
p
n⇥
p
n grids, totallying n

vertices. The vertices were connected by edges to their vertical and horizontal neighbors in the grid. This setting
is fairly standard in the literature (Erdogdu et al., 2017; Globerson and Jaakkola, 2008; Ravikumar et al., 2010).

We considered the MAP problem with d = 3 labels and choose a cost vector C in the family of multi-label Potts
models, another well-studied application (Wainwright and Jordan, 2008). Potts models typically have diagonal

Jonathan N. Lee⇤, Aldo Pacchiano⇤, Michael I. Jordan

potentials between edges. That is, we only penalize/reward when the labels on two connected vertices agree. We
randomly generated the actual values of the vector. For vertex costs, we chose Ci(xi) ⇠ Unif(�0.5, 0.5) and for
the edge costs we chose

Cij(xi, xj) =

(
�ij xi = xj

0 otherwise
8ij, xi, xj ,

where �ij ⇠ Unif{�0.1, 0.1}. In the approximation results, we ran the algorithms until they had e↵ectively
converged after 80 iterations, where each iteration consisted of a full pass over the edges. For EMP-cyclic, this
means simply going through all the edges once. For EMP-greedy, one iteration means the opportunity to update
each edge exactly once, (although the algorithm will greedily select them in reality). Thus both algorithms
update the same number of edges, though their choices will be di↵erent. Regardless, we found that 80 iterations
was reasonably su�cient to observe the approximation properties. We measured the results in terms of the
average Hamming distance between the LP’s solution, which is integral, and the rounded solution returned by
the algorithms.

E.2 Random Graph Experiments

While the grid topology o↵ers a consistent platform to evaluate the algorithms, we also considered randomly
generated graphs, specifically Erdős-Rényi random graphs. These graphs are constructed by iterating through
every pair of the n vertices. Then, an edge is drawn between vertex i and j with probability p. Specifically, we
chose p = 1.1 logn

n
, which is just large enough that the graph is almost surely connected. We found these to be

useful hyperparameter because any lower and the graph would largely be disconnected. Any higher and typically
we found the LP was not tight. We chose the same multi-label Potts model for generating the cost vector C.

With these experiments, we intended to understand how diverse graph topologies would a↵ect convergence due to
randomness. In particular, we restricted the degrees of the graph to deg(G) = 5, 10 to observe how the algorithms
behave on denser graphs.

