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Abstract

Maximum a posteriori (MAP) inference is
a fundamental computational paradigm for
statistical inference. In the setting of graphi-
cal models, MAP inference entails solving a
combinatorial optimization problem to find
the most likely configuration of the discrete-
valued model. Linear programming (LP) re-
laxations in the Sherali-Adams hierarchy are
widely used to attempt to solve this problem,
and smooth message passing algorithms have
been proposed to solve regularized versions
of these LPs with great success. This paper
leverages recent work in entropy-regularized
LPs to analyze convergence rates of a class
of edge-based smooth message passing algo-
rithms to ✏-optimality in the relaxation. With
an appropriately chosen regularization con-
stant, we present a theoretical guarantee on
the number of iterations su�cient to recover
the true integral MAP solution when the LP
is tight and the solution is unique.

1 INTRODUCTION

Undirected graphical models are a central modeling for-
malism in machine learning, providing a compact and
powerful way to model dependencies between variables.
Here we focus on the important class of discrete-valued
pairwise models. Inference in discrete-valued graphi-
cal models has applications in many areas including
computer vision, statistical physics, information theory,
and genome research (Antonucci et al., 2014; Mezard
and Montanari, 2009; Wainwright and Jordan, 2008).

We focus on the problem of identifying a configuration
of all variables that has highest probability, termed
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maximum a posteriori (MAP) inference. This problem
has an extensive literature across multiple communities,
where it is described by various names, including en-
ergy minimization (Kappes et al., 2013) and constraint
satisfaction (Schiex et al., 1995). In the binary case,
the MAP problem is sometimes described as quadratic-
pseudo Boolean optimization (Hammer et al., 1984) and
it is known to be NP-hard to compute exactly (Cooper,
1990; Kolmogorov and Zabin, 2004) or even to ap-
proximate (Dagum and Luby, 1993). Consequently,
much work has attempted to identify settings where
polynomial-time methods are feasible. We call such
settings “tractable” and the methods “e�cient.” A
general framework for obtaining tractable methodology
involves “relaxation”—the MAP problem is formulated
as an integer linear program (ILP) and is then relaxed
to a linear program (LP). If the vertex at which the
LP achieves optimality is integral, then it provides an
exact solution to the original problem. In this case we
say that the LP is tight. If the LP is performed over
the convex hull of all integral assignments, otherwise
known as the marginal polytope M, then it will always
be tight. Inference over the marginal polytope is gener-
ally intractable because it requires exponentially many
constraints to enforce global consistency.

A popular workaround is to relax the marginal poly-
tope to the local polytope L2 (Wainwright and Jordan,
2008). Instead of enforcing global consistency, the lo-
cal polytope enforces consistency only over pairs of
variables, thus yielding pseudo-marginals which are
pairwise consistent but may not correspond to any true
global distribution. The number of constraints needed
to specify the local polytope is linear in the number of
edges. More generally, Sherali and Adams (1990) intro-
duced a series of successively tighter relaxations of the
marginal polytope, or convex hull, while retaining con-
trol on the number of constraints. However, even with
these relaxations, it has been observed that standard
LP solvers do not scale well (Yanover et al., 2006), mo-
tivating the study of solvers that exploit the structure
of the problem, such as message passing algorithms.

Of particular interest to this paper are smooth mes-
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sage passing algorithms, i.e. algorithms derived from
regularized versions of the relaxed LP (Hazan and
Shashua, 2008; Meshi et al., 2012; Ravikumar et al.,
2010; Savchynskyy et al., 2011, 2012). These regular-
ized LPs conduce to e�cient optimization in practice
and have the special property that their fixed points
are unique and optimal; however, this comes at the cost
of solving an approximation of the true MAP problem
and, without rounding, they do not recover integral
solutions in general. Non-asymptotic convergence rates
to the optimal regularized function value have been
studied (Meshi et al., 2012), but guarantees on the
number of iterations su�cient to recover the optimal
integral assignment of the true MAP problem have not
been considered to our knowledge.

In this work we provide a sharp analysis of the entropy-
regularized MAP inference problem with Sherali-
Adams relaxations. We first characterize the approxi-
mation error of the regularized LP in l1 distance, based
on new results on entropy-regularized LPs (Weed, 2018).
We then analyze an edge-based smooth message passing
algorithm, modified from the algorithms described in
Werner (2007) and Ravikumar et al. (2010). We prove
a O(1/✏2) rate of convergence of iterates in l1 distance.
Combining the approximation error and convergence
results, we present a guarantee on the number of iter-
ations su�cient to recover of the true integral MAP
assignment using a standard vertex rounding scheme
when the LP relaxation is tight and the solution is
unique.

2 RELATED WORK

The idea of entropy regularization to aid optimization
in inference problems is well studied. It is well known
that solving a scaled and entropy-regularized linear
program over the marginal polytope yields the scaled
Gibbs free energy, intimately related to the log parti-
tion function, when the temperature parameter equals
one (Wainwright and Jordan, 2008). As the temper-
ature parameter is driven to zero, the calculation of
the free energy reduces to the value of the MAP prob-
lem. However, this problem is intractable due to the
di�culty of both computing the exact entropy and
characterizing the marginal polytope (Deza and Lau-
rent, 2009). Therefore, there has been much work in
trying to turn this observation into tractable inference
algorithms. The standard Bethe approximation instead
minimizes an approximation of the true entropy (Bethe,
1935). It was show by Yedidia et al. (2003) that fixed
points of the loopy belief propagation correspond to its
stationary points, but still the optimization problem
resulting from this approximation is non-convex and
convergence is not always guaranteed.

To alleviate convergence issues, much work has con-
sidered convexifying the free energy problem leading
to classes of convergent convex belief propagation of-
ten derived directly from convex regularizers (Hazan
and Shashua, 2008; Heskes, 2006; Johnson and Willsky,
2008; Meshi et al., 2009; Savchynskyy et al., 2012). For
instance, Weiss et al. (2007) proposed a general con-
vexified belief propagation and explored some su�cient
conditions that enable heuristically recovering the MAP
solution of the LP via a convex sum-product variant.
However, the approximation error was still unclear and
non-asymptotic convergence rates were not considered.
A number of algorithms have also been proposed to
directly optimize the unregularized LP relaxation often
with only asymptotic convergence guarantees such as
block-coordinate methods (Globerson and Jaakkola,
2008; Kappes et al., 2013; Kovalevsky and Koval, 1975;
Tourani et al., 2018; Werner, 2007) and tree-reweighted
message passing (Kolmogorov, 2006; Wainwright et al.,
2005). The relationship between the regularized and
unregularized problems can equivalently be viewed as
applying a soft-max to the dual objective typically
considered in the latter to recover that of the former
(Nesterov, 2005; Sontag et al., 2011). Many other con-
vergent methods exist such as augmented Lagrangian
(Martins et al., 2011; Meshi and Globerson, 2011), bun-
dle (Kappes et al., 2012), and steepest descent (Schwing
et al., 2012, 2014) approaches, but again they are di�-
cult to compare without rates.

Most closely related to our work is recent work in
convergence analysis of certain smoothed message pass-
ing algorithms that aim to solve the regularized LP
objective. Savchynskyy et al. (2011) proposed an accel-
erated gradient method that achieves O(1/✏) conver-
gence to the optimal regularized dual objective value.
Convergence of the primal iterates was only shown
asymptotically. Meshi et al. (2012) considered a gen-
eral dual coordinate minimization algorithm based on
the entropy-regularized MAP objective. They proved
upper bounds on the rate of convergence to the optimal
regularized dual objective value; however, closeness to
the true MAP assignment was not formally character-
ized. Furthermore, convergence in the dual objective
value again does not make it easy to determine when
the true MAP assignment can be recovered. Meshi
et al. (2015) later studied the benefits of adding a
quadratic term to the LP objective instead and proved
similar guarantees. Ravikumar et al. (2010) also con-
sidered entropic and quadratic regularization, using a
proximal minimization scheme with inner and outer
loops. They additionally provided rounding guarantees
to recover true primal solutions. However, as noted by
the authors, the inexact calculation of the inner loop
prevents a convergence rate analysis once combined
with the outer loop. Additionally, rates on the inner
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loop convergence were not addressed.

The approach of this paper can be understood as
the bridging the gap between Meshi et al. (2012)
and Ravikumar et al. (2010). Our first contribution
is a characterization of the approximation error of
the entropy-regularized MAP inference problem. We
then study an edge-based message passing algorithm
that solves the regularized LP, which is essentially a
smoothed max-sum di↵usion (Werner, 2007) or the
inner loop of the proximal steps of Ravikumar et al.
(2010). For our main contribution, we provide non-
asymptotic guarantees to the integral MAP assignment
for this message passing algorithm when the LP is tight
and the solution is unique. To our knowledge, this is
the first analysis with rates guaranteeing recovery of
the true MAP assignment for smooth methods.

3 BACKGROUND

We denote the d-dimensional probability simplex as

⌃d

def.
=

�
p 2 Rd

+ :
P

i
pi = 1

 
. The set of joint dis-

tributions which give rise to p, q 2 ⌃d is defined

as Ud(p, q)
def.
=

�
P 2 Rd⇥d

+ : P = p, P> = q
 
. For

any two vectors or matrices p and q having the same
number of elements, we use hp, qi to denote the dot
product, i.e. elementwise multiplication then sum
over all elements. We use kpk1 to denote the sum
of absolute values of the elements of p. The Breg-
man divergence between p, q 2 Rd

+ with respect to a

strictly convex function � : Rd

+ 7! R is D�(p, q)
def.
=

�(p)��(q)�hr�(q), p�qi. We will consider the Breg-
man divergence with respect to the negative entropy

�(p) = �H(p)
def.
=

P
i
pi(log pi � 1), where p need not

be a distribution. When p is a distribution, this corre-
sponds to the Kullback-Leibler (KL) divergence. The
Bregman projection with respect to � of q 2 Rd

+ onto

the set X is defined as PX (q)
def.
= argmin

p2X D�(p, q).
The Hellinger distance between p, q 2 ⌃n is defined

as h(p, q)
def.
= 1p

2
kpp � pqk2, where k · k2 is the l2-

norm. We denote the square of the Hellinger distance
by h2(p, q). We will often deal with marginal vectors

which are ordered collections of joint and marginal
distributions in the form of matrices and vectors, re-
spectively.

3.1 Pairwise Models

For a set of vertices, V = {1, . . . , n}, and edges

E , a pairwise graphical model, G def.
= {V, E}, is a

Markov random field that represents the joint dis-

tribution of variables XV
def.
= (Xi)i2V , taking on

values from the set of states � = {0, . . . , d � 1}.
We assume that each vertex has at least one edge.

For pairwise models, the joint distribution can be
written as a function of doubletons and singletons:

p✓(xV) / exp
⇣P

i2V ✓i(xi) +
P

ij2E ✓ij(xi, xj)
⌘
. We

wish to find maximum a posteriori (MAP) estimates of
this model. That is, we consider the integer program:

maxxV2�n

P
i2V ✓i(xi) +

P
ij2E ✓ij(xi, xj). (Int)

The maximization in (Int) can be written as a linear
program by defining a marginal vector µ over variable
vertices {µi}i2V and variable edges {µij}ij2E . The
vector µi 2 Rd

+ represents the marginal distribution

probabilities on vertex i while the matrix µij 2 Rd⇥d

+

represents the joint distribution probabilities shared
between vertices i and j. We follow the notation of
Globerson and Jaakkola (2008) and denote indexing
into the vector and matrix variables with parentheses,
e.g. µij(xi, xj) for xi, xj 2 �. The set of marginal
vectors that are valid probability distributions is known
as the marginal polytope and is defined as

M def.
=

(
µ : 9 P,

PXi
(xi) = µi(xi), 8i, xi

PXi,Xj
(xi, xj) = µij(xi, xj),

8ij, xi, xj

)
(1)

We can think of M as the set of mean parameters of
the model for which there exists a globally consistent
distribution P. We abuse notation slightly and dually
view ✓ as a potential “vector.” The edge matrix ✓ij 2
Rd⇥d is indexed as ✓ij(xi, xj), indicating the element
at the xith row and xjth column. The vertex vector ✓i
is indexed as ✓i(xi), indicating the xith element. The
MAP problem in (Int) can be shown to be equivalent
to the following LP (Wainwright and Jordan, 2008):

max h✓,µi s.t. µ 2M

where h✓,µi =
P

i2V
P

xi
✓i(xi)µi(xi) +P

ij2E
P

xi,xj
✓ij(xi, xj)µij(xi, xj).

3.2 Sherali-Adams Relaxations

The number of constraints in M is unfortunately super-
polynomial (Sontag, 2010). This motivates considering
relaxations of the marginal polytope to outer polytopes
that involve fewer constraints. For example, the local

outer polytope is obtained by enforcing consistency only
on edges and vertices:

L2
def.
=

⇢
µ � 0 :

µi 2 ⌃d 8i 2 V
µij 2 Ud(µi,µj) 8ij 2 E

�
(2)

Relaxations of higher orders have also been studied, in
particular by Sherali and Adams (1990) who introduced
a hierarchy of polytopes by enforcing consistency on
joint distributions of increasing order up to n: L2 ◆
L3 ◆ . . . ◆ Ln ⌘ M. The corresponding Sherali-
Adams LP relaxation of order m is then

max h✓,µi s.t. µ 2 Lm, (LP)
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where 1  m  n. Because Lm is an outer polytope
of M, we no longer have that the solution to (LP)
recovers the true MAP solution of (Int) in general.
However if the solution to (LP) is integral, then xi =
argmax

x
µi(x) recovers the optimal solution of the true

MAP problem. In this case, we say Lm is tight.

4 ENTROPY-REGULARIZED MAP

In this section, we present our first main technical
contribution, characterizing the approximation error
in the entropy-regularized MAP problem for Sherali-
Adams relaxations. In contrast to solving the exact
(LP), we aim to solve the entropy-regularized LP:

min hC,µi � 1

⌘
H(µ) s.t. µ 2 Lm, (Reg)

where C
def.
= �✓ and H(µ) = hµ,� logµ + i. The

hyperparameter ⌘ adjusts the level of regularization.
Denote by µ⇤

⌘
the solution of (Reg) where we omit the

reference to m to alleviate notation. In addition to
their extensive history in inference problems, entropy-
regularized LPs have arisen in a number of other fields
to aid optimization when standard LP solvers are insuf-
ficient. For example, recent work in optimal transport
has relied on entropy regularization to derive alternat-
ing projection algorithms (Benamou et al., 2015; Cuturi,
2013) which admit almost linear time convergence guar-
antees in the size of the cost matrix (Altschuler et al.,
2017). Some of our theoretical results draw inspiration
from these works.

4.1 Approximation Error

When Lm is tight and the solution is unique, we show
that approximate solutions from solving (Reg) are not
necessarily detrimental because we can apply standard
vertex rounding schemes to yield consistent integral
solutions. It was shown by Cominetti and San Mart́ın
(1994), and later refined by Weed (2018), that the ap-
proximation error of general entropy-regularized linear
programs converges to zero at an exponential rate in
⌘. Furthermore, it is possible to determine how large
⌘ should be chosen in order for rounding to exactly
recover the optimal solution to (Int). The result is
summarized in the following extension of Theorem 1 of
Weed (2018)1.

Theorem 1. Let R1 = maxµ2Lm
kµk1, RH =

maxµ,µ02Lm
H(µ) � H(µ0), Vm be the set of vertices

of Lm, and V⇤
m
✓ Vm the set of optimal vertices with

respect to C. Let � = minV12Vm\V⇤
m
,V22V⇤

m
hC, V1i �

1
The entropy is defined without the linear o↵set in Weed

(2018).

hC, V2i be the smallest gap in objective value be-

tween an optimal vertex and any suboptimal vertex

of Lm. Suppose Lm is tight and |V⇤
m
| = 1. If

⌘ � 2R1 log 64R1+2R1+2RH

� , the following rounded solu-

tion is a MAP assignment:

�
round(µ⇤

⌘
)
�
i
:= argmax

x2�

(µ⇤
⌘
)i(x)

Proof. Define eC = C+1 1
⌘
, where 1 denotes an all-ones

vector with the same dimensions as C. If ⌘ � 4R1
� then

eV⇤
m
, the set of optimal vertices of Lm with respect to eC,

satisfies eV⇤
m

= V⇤
m

and min
V12Vm\eV⇤

m
,V22eV⇤

m

hC, V1i �
hC, V2i � �

2 . If V 2 eV⇤
m
; and V 0 2 Vm\eV⇤

m
, then

h eC, V 0i � h eC, V i � � � 1
⌘
kV 0 � V k1 � �

2 . Let e� =
�
2 . If ⌘ � R1 log 64R1+R1+RH

e�
, and |eV⇤

m
| = 1 then

2R1 exp
⇣
�⌘ e�

R1
+ R1+RH

R1

⌘
 1

32 . And therefore, by

Corollary 9 of Weed (2018) minµ2V⇤
m
kµ� µ⇤

⌘
k1  1

32 .

Since Lm is assumed to be tight and eV⇤
m

= V⇤
m

contains
a single integral vertex µ⇤, the last equation implies
round(µ⇤

⌘
) = µ⇤.

Consequently, since R1 
P

m

j=1

�
n

j

�
dj and RH P

m

j=1

�
n

j

�
log(dj)2, we have:

Corollary 1. If Lm is tight, |V⇤
m
| = 1, and ⌘ �

log(8mn
m
d
m)+2mn

m
d
m

� , the rounded solution round(µ⇤
⌘
)

is a MAP assignment.

In general the dependence of � on ⌘ suggested by The-
orem 1 is not improvable (Weed, 2018). Nevertheless,
when m = 2 and d = 2, since all vertices in V2 have
entries equal to either 0, 1

2 or 1—see Padberg (1989)
or Theorem 3 of Weller et al. (2016)—if the entries
of C are all integral, we have � � 1

2 , thus yielding a
more concrete guarantee. The disadvantage of choos-
ing exorbitantly large ⌘ is that e�cient computation
of solutions often becomes more di�cult in practice
(Altschuler et al., 2017; Benamou et al., 2015; Weed,
2018). Thus, in practice, there exists a trade-o↵ be-
tween computation time and approximation error that
is controlled by ⌘. We will provide a precise theoretical
characterization of the trade-o↵ in Section 6. In our
guarantees, multiplying C by a constant a (and there-
fore multiplying � by a) is equivalent to multiplying ⌘
by the same value.

4.2 Equivalent Bregman Projection

The objective (Reg) can be interpreted as a Bregman
projection. This interpretation has been explored by

2
For m = 2 we can get tighter bounds corresponding to

the number of edges in the graph G.
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Ravikumar et al. (2010) as a basis for proximal up-
dates and also Benamou et al. (2015) for the optimal
transport problem. The objective is equivalent to

min D� (µ, exp(�⌘C)) s.t. µ 2 Lm, (Proj)

where � := �H. The derivation, based on a mirror
descent step can be found in the appendix. The pro-
jection, however, cannot be computed in closed form
in general due to the complex geometry of Lm.

Ravikumar et al. (2010) proposed using the Bregman

method (Bregman, 1966), which has been applied in
many fields to solve di�cult constrained problems (Be-
namou et al., 2015; Goldstein and Osher, 2009; Osher
et al., 2005, 2010), to compute PLm

(exp(�⌘C)) for
the inner loop calculation of their proximal algorithm.
While the outer loop proximal algorithm can be shown
to converge at least linearly, the inner loop rate was
not analyzed and the constants (possibly dependent
on dimension) were not made clear. Furthermore, the
Bregman method is in general inexact, which makes
the approximation and the e↵ect on the outer loop
unclear (Liu and Ihler, 2013).

5 SMOOTH MESSAGE PASSING

We are interested in analyzing a class of algorithms
closely inspired by max-sum di↵usion (MSD) as pre-
sented by Werner (2007) and the proximal updates of
Ravikumar et al. (2010) to solve (Proj) over the L2

polytope. We describe it in detail here, with a few
minor modifications and variations to facilitate theo-
retical analysis. In L2, the constraints occur only over
edges between vertices3. Given an edge ij 2 E , we
must enforce the constraints prescribed by (2), which
is the intersection of the following sets:

(a) Xij!i = {µ : µij = µi}
(b) Xij,i = {µ : µ>

i
= 1, >µij = 1}

(c) Xij!j = {µ : µ>
ij

= µj}
(d) Xij,j = {µ : µ>

j
= 1, >µij = 1}.

The normalization of the joint distribution µij in (b)
and (d) is actually a redundant constraint, but it fa-
cilitates analysis as we demonstrate in Section 6. For
each of these a�ne constraints, we can compute the
Bregman projections in closed form with simple multi-
plicative updates.

Proposition 1. For a given edge ij 2 E, the closed-

form solutions of the Bregman projections for each of

the above individual constraints are given below.

3
Written explicitly, the constraints actually occur be-

tween any pair of vertices, but these variables play no role

in the objective or constraints.

Algorithm 1 EMP-cyclic (C, ⌘, ✏)

1: µ Normalize(exp(�⌘C))
2: k  1

3: while maxij

(
max{kµ(k)

ij
� µ(k)

i
k1,

k(µ(k)
ij

)> � µ(k)
j
k1}

)
� ✏ do

4: µ µ(k)

5: for ij 2 E do
6: µ (PXij,j

� PXij!j
� PXij,i

� PXij!i
)(µ)

7: end for
8: µ(k+1)  µ
9: k  k + 1

10: end while
11: return round(µ(k))

Figure 1: The EMP-cyclic algorithm (Ravikumar et al.,

2010) projects on all edges in order until the constraints

are satisfied up to ✏ in l1 distance. The operator � denotes

the composition of the projection operations.

(a) Left consistency: If µ0 = PXij!i
(µ), then for all

xi, xj 2 �, µ0
ij
(xi, xj) µij(xi, xj)

q
µi(xi)P

x
µij(xi,x)

and µ0
i
(xi) µi(xi)

qP
x
µij(xi,x)
µi(xi)

.

(b) Left normalization: If µ0 = PXij,i
(µ), then

for all xi 2 �, µ0
i
 µiP

x
µi(x)

and µ0
ij
 

µijP
xi,xj

µij(xi,xj)
.

(c) Right consistency: If µ0 = PXij!j
(µ), then for all

xi, xj 2 �, µ0
ij
(xi, xj) µij(xi, xj)

q
µj(xj)P

x
µij(x,xj)

and µ0
j
(xj) µj(xj)

qP
x
µij(x,xj)
µj(xj)

.

(d) Right normalization: If µ0 = PXij,j
(µ), then

for all xj 2 �, µ0
j
 µjP

x
µj(x)

and µ0
ij
 

µijP
xi,xj

µij(xi,xj)
.

These update rules are similar to a number of algo-
rithms throughout the literature on LP relaxations.
Notably, they can be viewed as a smoothed version of
MSD (Kovalevsky and Koval, 1975; Werner, 2007) in
that the updates enforce agreement between variables
on the edges and vertices. Nearly identical smoothed
updates were also initially proposed by Ravikumar et al.
(2010). As in MSD, it is common for message passing
schemes derived from LP relaxations to operate on dual
objective instead. We presented the primal view here
as the Bregman projections lend semantic meaning to
the updates and ultimately the stopping conditions in
the algorithms. An equivalent dual view is presented
in Appendix C.1.

Based on these update rules, we formally outline the
algorithms we wish to analyze, which we call edge-
based message passing (EMP) for convenience. We
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Algorithm 2 EMP-greedy (C, ⌘, ✏)

1: µ Normalize(exp(�⌘C))
2: k  1

3: while maxij

(
max{kµ(k)

ij
� µ(k)

i
k1,

k(µ(k)
ij

)> � µ(k)
j
k1}

)
� ✏ do

4: ij  GreedyEdge(µ(k))

5: if kµ(k)
ij
� µ(k)

i
k1 > k(µ(k)

ij
)> � µ(k)

j
k1 then

6: µ(k+1)  (PXij,i
� PXij!i

)(µ(k))
7: else
8: µ(k+1)  (PXij,j

� PXij!j
)(µ(k))

9: end if
10: k  k + 1
11: end while
12: return round(µ(k))

Figure 2: The EMP-greedy algorithm selects the edge and

direction with the greatest constraint violation and projects

until all constraints are satisfied up to ✏ in l1 distance.

consider two variants: EMP-cyclic (Algorithmic 1),
which cyclically applies the updates to each edge in
each iteration and EMP-greedy (Algorithmic 2), which
applies a single projection update to only the edge with
the greatest constraint violation in each iteration. We
emphasize that these algorithms are not fundamentally
new, but our analysis in the next section is our main
contribution. EMP-cyclic is the Bregman method,
almost exactly the inner loop proposed by Ravikumar
et al. (2010). In both variants, µ(1) is defined as the
normalized value of exp(�⌘C). The GreedyEdge
operation in EMP-greedy is defined as

GreedyEdge(µ) = argmax
ij2E

⇢
max{kµ(k)

ij � µ(k)
i k1,

k(µ(k)
ij )

> � µ(k)
j k1}

�

These procedures are then repeated again until the
stopping criterion is met, which is that µ(k) is ✏-close
to satisfying the constraint that the joint distributions
sum to the marginals for all edges. Both algorithms also
conclude with a rounding operation. Any fixed point of
EMP must correspond to an optimal µ⇤

⌘
(see details in

appendix). Computationally, EMP-greedy requires a
search over the edges to identify the greatest constraint
violation, which can be e�ciently implemented using a
max-heap (Nutini et al., 2015).

6 THEORETICAL ANALYSIS

We now present our main contribution, a theoretical
analysis of EMP-cyclic and EMP-greedy. This result
combines two aspects. First, we present a convergence
guarantee on the number of iterations su�cient to
solve (Proj), satisfying the L2 constraints with ✏ > 0
error in l1 distance. We note that, in finite iterations,
the pseudo-marginals of EMP are not primal feasible

in general due to this ✏-error. We then combine this
result with our guarantee on the approximation error in
Theorem 1 to show a bound on the number of iterations
su�cient to recover the true integral MAP assignment
by rounding, assuming the LP is tight and the solution
is unique. This holds with su�cient iterations and a
su�ciently large regularization constant even though

the pseudo-marginals may not be primal feasible. We
emphasize that these theorems are a departure from
usual convergence rates in the literature (Meshi et al.,
2012, 2015). Prior work has guaranteed convergence
in objective value to the optimum of the regularized
objective (Proj), making it unclear whether the optimal
MAP assignment can be recovered, e.g. by rounding.
We address this ambiguity in our results.

We begin with the upper bound iterations to obtain
✏-close solutions, which is the result of two facts which
we show. The first is that the updates in Proposition 1
monotonically improve a Lyapunov (potential) function
by an amount proportional to the constraint violation
as measured via the Hellinger distance. The second
is that the di↵erence between the initial and optimal
values of the Lyapunov function is bounded.

Let deg(G) denote the maximum degree of graph G and
define:

S
def.
=

X

ij2E

2

4log
X

xi,xj2�

e�⌘Cij(xi,xj) +

X

xi,xj2�

⌘
d2

Cij(xi, xj)

3

5

+

X

i2V

"
log

X

x2�

e�⌘Ci(x) +

X

x2�

⌘
d
Ci(x)

#
.

Theorem 2. For any ✏ > 0, EMP is guaranteed to

satisfy kµij � µik1 < ✏ and kµ>
ij
� µjk1 < ✏ for all

ij 2 E in d 4S0(deg(Gk)+1)
✏2

e iterations for EMP-cyclic

and d 4S0
✏2
e iterations for EMP-greedy.

Here, S0 = min(k⌘C/d+ exp(�⌘C)k1, S). In this the-
orem, we give our guarantee in terms of l1 distance
rather than function value convergence. As we will
see, this is significant, allowing us to relate this result
to Theorem 1 in order to derive the main result. The
proof is similar in style to Altschuler et al. (2017). We
leave the full proof for EMP-cyclic for the appendix
due to a need to handle tedious edge cases, but we state
several intermediate results and sketch the proof for
EMP-greedy for intuition as it reveals possibly how sim-
ilar message passing algorithms can be analyzed. We
first introduce a Lyapunov function written in terms of
dual variables (�, ⇠), indexed by the edges and vertices
to which they belong in L2. We denote the iteration-
indexed dual variables as (�(k), ⇠(k)). For a given edge
ij 2 E , constraints enforcing row and column consis-
tency correspond to �ij ,�ji 2 Rm, respectively. Nor-
malizing constraints correspond to ⇠i, ⇠j , ⇠ij 2 R. The
Lyapunov function, L(�, ⇠), is shown in Figure 3.
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L(�, ⇠) = �
P

ij2E
P

xi,xj2�
exp (�⌘Cij(xi, xj)� �ij(xi)� �ji(xj)� ⇠ij)

�
P

i2V
P

x2�
exp

⇣
�⌘Ci(x)� ⇠i +

P
j2Nr(i)

�ij(x) +
P

j2Nc(i)
�ji(x)

⌘

�
P

ij2E ⇠ij �
P

i2V ⇠i +
P

ij2E
P

xi,xj2�
exp(�⌘Cij(xi, xj)) +

P
i

P
x2�

exp(�⌘Ci(x))

(3)

Figure 3: The proposed Lyapunov function. Nr(i) denotes the set of neighboring vertices of i where row consistency is

enforced. Nc(i) is the same for column consistency. The Lyapunov function L can be derived from the dual objective

of (Proj). A full derivation is provided in the appendix.

We note that maximizing L over (�, ⇠) satisfies all
constraints and yields the solution to (Proj) by first-
order optimality conditions. We now present a result
that establishes the monotone improvement in L due
to the updates in Proposition 1.
Lemma 1. For a given edge ij 2 E, let µ0

and (�0, ⇠0)
denote the updated primal and dual variables after a

projection from one of (a)–(d) in Proposition 1. We

have the following improvements on L. If µ0
is equal

to:

(a) PXij!i
(µ), then L(�0, ⇠0)� L(�, ⇠) = 2h2

(µij ,µi)

(b) PXij,i
(µ), then L(�0, ⇠0)� L(�, ⇠) � 0

(c) PXij!j
(µ), then L(�0, ⇠0)� L(�, ⇠) = 2h2

(µ>
ij ,µj)

(d) PXij,j
(µ), then L(�0, ⇠0)� L(�, ⇠) � 0.

This result shows that L improves monotonically after
each of the four updates in Proposition 1. Furthermore,
at every update, L improves by twice the squared
Hellinger distance of the constraint violation between
the joint and the marginals.

Lemma 2. Let �⇤
, ⇠⇤ denote the maximizers of L.

The di↵erence in function value between the optimal

value of L and the first iteration value is upper bounded

L(�⇤, ⇠⇤)� L(�(1), ⇠(1))  S0.

Turning to Theorem 2, the result is obtained by observ-
ing that as long as the constraints are violated by an
amount ✏ > 0 (i.e., the algorithm has not terminated),
then the Lyapunov function must improve by a known
positive amount at each iteration. We provide a proof
sketch for EMP-greedy.

Proof Sketch of Theorem 2 for EMP-greedy. We now
show how to combine the results of Lemma 1 and
Lemma 2 to obtain Theorem 2. Let k⇤ be the first iter-
ation such that the termination condition in Algorithm
2 holds with respect to some ✏ > 0. Then, for any k
satisfying 1  k < k⇤, we have that GreedyEdge(µ)
selects ij such that either kµij � µik1 � ✏ or
kµ>

ij
� µjk1 � ✏.

Without loss of generality, suppose kµij � µik1 �
kµ>

ij
� µjk1. Therefore, we have

✏2

4
 1

4
kµij � µik21  2h2(µij ,µi),

where again h2(µij ,µi) denotes the squared Hellinger
distance and the last inequality is the Hellinger in-
equality. Since µij and µi are normalized for each
iteration, this inequality is valid. Thus, L improves
by 2h2(µij ,µi) when PXij!i

occurs and by a non-
negative amount when PXij,i

occurs by Lemma 1.

Therefore, we can guarantee improvement of at least ✏
2

4
each iteration. Since the optimality gap is at most S0

by Lemma 2, this means the algorithm must terminate
in d 4S0

✏2
e iterations.

We now turn to our main theoretical result. We com-
bine our approximation and iteration convergence guar-
antees to fully characterize the convergence of EMP for
L2 to the optimal MAP assignment when the relaxation
is tight and the solution is unique.

Theorem 3. Let ⌘ � 2 log(16n2
d
2)+16|E|d2

min(�,
1

128 )
, and ✏�1 >

(25d deg(G)|E|)2 max (⌘kCk1, 68). If L2 is tight and

|V⇤
2 | = 1, the EMP algorithm returns a MAP assign-

ment after d 4S0(deg(Gk)+1)
✏2

e iterations for EMP-cyclic

and after d 4S0
✏2
e iterations for EMP-greedy.

When C is integral, � � 1
2 , yielding a bound of all

known parameters. The main technical challenge in
producing this result is to relate the termination con-
dition of EMP to the l1 distance between µ(k) and
µ⇤ (the MAP assignment), as this may lie outside
the polytope L2. It does not su�ce to provide con-
vergence guarantees in function value as the goal of
MAP inference is to produce integral assignments. The
proof proceeds in two steps. First we show that µ(k)

is the entropy-regularized solution to objective C over

a “slack” polytope L⌫
(k)

2 . Where the slack vector ⌫(k)

corresponds to the constraint violations of µ(k). We use
this characterization to “project” µ(k) onto a nearby
L2 feasible point µ(k)(2). Second, we can use the prop-
erties of the primal objective to bound µ(k)(2) and µ⇤

⌘
.

The proof is in the appendix.

7 NUMERICAL EXPERIMENTS

We illustrate our theoretical results in a practical appli-
cation of the EMP algorithms. Ravikumar et al. (2010)
already gave empirical evidence that the basic EMP-
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Figure 4: A box-plot showing the e↵ect of graph size (x-axis)
and regularization on the quality of rounded solutions for

both algorithm variants after 80 iterations. Thick horizontal

bars indicate the median over 20 trials each. For large ⌘
(cyan and purple), the true MAP is almost always recovered.

cyclic is competitive with standard solvers. Therefore,
the objective of these experiments is to understand
how graph and algorithm properties a↵ect approxima-
tion (Theorem 1) and convergence (Theorem 2). We
consider the family of multi-label Potts models (Wain-
wright et al., 2005) with d = 3 labels on L2. For each
trial, the cost vector is Ci(xi) = ↵i(xi), 8i, xi and

Cij(xi, xj) =

(
�ij xi = xj

0 otherwise
8ij, xi, xj

where the parameters are random ↵i(xi) ⇠
Unif(�0.5, 0.5) and �ij ⇠ Unif{�0.1, 0.1}. The graphs
considered are structured as

p
n⇥
p
n grids (Erdogdu

et al., 2017; Globerson and Jaakkola, 2008; Ravikumar
et al., 2010) and as Erdős-Rényi random graphs with
edge probability p = 1.1 logn

n
. To evaluate recovery

of the optimal MAP assignment, we first solved each
graph with the ECOS LP solver (Domahidi et al., 2013)
and selected graphs that were tight. Solving the LP to
find the ground-truth was the main computational bot-
tleneck. Further details can be found in Appendix E.

Approximation In Figure 4, we evaluate the e↵ect
of regularization and graph size on the quality of the
nearly converged solution from EMP for over 80 it-
erations on grids. The box-plots indicate that large
choices of ⌘ often yield the exact MAP solution (cyan
and purple). Moderate choices still yield competitive
solutions but not optimal for larger graphs (orange and
green). Low choices generally give poor solutions with
high spread for all graph sizes (red and blue).

Convergence We then investigate the e↵ects of reg-
ularization on convergence for both variants. Figure 5

Figure 5: On grids of size n = 2500, convergence rates to

the optimal MAP assignment of greedy and cyclic variants

are shown. The lines on each plot indicate choices of ⌘.

Figure 6: The algorithm variants on Erdős-Rényi random

graphs with n = 400, ⌘ = 700.0, and maximum degrees

deg(G) = 5, 10. The higher degree graphs (red and blue)

take longer to converge to the optimal MAP assignment.

illustrates the distance of the rounded solution to the
optimal MAP solution over projection steps on grids
of size n = 2500. EMP-greedy converges sharply and
varying regularization has less of an e↵ect on its conver-
gence rate. Finally, in Figure 6, we look at Erdős-Rényi
random graphs to observe the e↵ect of the graph struc-
ture for both variants. We considered degree-limited
random graphs with deg(G) = 5 and deg(G) = 10.
The figure shows convergence over projection steps
for graphs of size n = 400. For both variants, the
convergence rate deteriorates for higher degrees.

8 CONCLUSION

In this paper, we investigated the approximation e↵ects
of entropy regularization on MAP inference objectives.
We combined these approximation guarantees with a
convergence analysis of an edge-based message passing
algorithm that solves the regularized objective to de-
rive guarantees on the number of iterations su�cient
to recover the true MAP assignment. We also showed
empirically the e↵ect of regularization and graph prop-
ertise on both the approximation and convergence. In
future work, we wish to extend the analyses and proof
techniques to higher order polytopes and general block-
coordinate minimization algorithms.
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