Thresholding Graph Bandits with GrAPL

A USEFUL LEMMAS

We introduce the additional notation of

£t = Z €n, (xs - l’Lﬂ's)7 (24)
s=1

af =\ (Vi Diis (25)
N, = diag(n,), (26)

to be used in the proofs of our results. The following lemmas are proved in Section

Lemma A.1. With probability at least 1 — 0, for any i € [N] and t > 1,
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|1t; — pil < o (’Y log <52|L>\|> + ”NHM) . (27)

Lemma A.2. For alli € [N] and t > 0,

0)2
t< (o) . 28
=Tl 2%)
Lemma A.3. Let dr be the effective dimension. Then
[Vr| ( T )
log —— < 2drlog 1+ — |. 29
g Ly | T 108 A (29)

B PROOF OF PROPOSITION [2.2]

For Algorithm [1| to succeed, it must be that f; > 7 for each ¢ such that u; > 7+ ¢ and 1; < 7 for each ¢ such
that u; < 7 —e (we can make this inequality strict or non-strict without changing probabilistic statements since
[ is a continuous random variable). For a given i, this is satisfied if |f; — p;| < |p; — 7|. We show this for the
case that p; > 7 +e. If ji; > p; in this case, then the necessary condition is satisfied. If 1; < p;, then

pi =7 = |pi = 7| = i — il = ps — (30)

The case where y; < 7 — ¢ is analogous. Thus, a sufficient condition for the success of Algorithm [I] is that
|ft; — pi| < |pi — 7] for all ¢ such that |p; — 7| > e. If we use Lemmas and we know that with
probability at least 1 — ¢,

_ R V|
C o < el | =41 9
it — il < o (7 ox () + ||u||LA> (32)
(07)? R T
< )\ = i
< \/1 0y \ 2drlog [ 1+ Y 2logd + ||pt|lL, (33)
R T
Y (7\/2d;plog <1+’y>\) —210g5+||u||LA>. (34)

Thus Algorithm [1| succeeds with probability at least 1 — 4 if, for all ¢ such that |u; — 7| > ¢,

v [ R T
T2 Jodriog (14 =) —21 < s — 7.
,/n5<7\/dT og (1475 0g5+|u|m>_lu " (35)
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Because Algorithm (1| has an equal sampling allocation for each arm, for ' = kN we have that n! = k = T/N.
Then since for each ¢ the left-hand side of is the same, we can write the complete sufficient condition as

N (R T .
\/ 77 (7\/2dT10g (1 + 7/\> —2logd + IIMIILA> <min{|p; — 7] ¢ g — 7] > €} (36)

The smallest ¢ for which this inequality holds is

2
2
¥ [T T
0= exp{ byl ( Tﬁ[ - ||H|LA> + drlog (1 + 7}\> }, (37)

provided ||plL, < ,/7%, where H £ N/min {|p; — 7|? : |p; — 7| > €}.

C PROOF OF THEOREM [3.1]

The proof follows the same general strategy as that of Theorem 2 of [Locatelli et al.| (2016)).

C.1 A Favorable Event

Let

2
2
~ 1 T T
- . e log (1+ —
) eXp{ SR <3M+1 ||u||LA> +dp og( + 7)\> }, (38)

and consider for the rest of the proof an event of probability at least 1 — § that gives us the result of Lemma
On this event then, for all i € [N],

log 52|L| |) + NlLA)

VB ToR(T T 7773 ~ 21085 + .

M 11 \ viH (39)

where the second inequality comes from Lemma[A.3and the third inequality comes from plugging in ¢ using the

fact that ||p|lL, < ﬁ,/,y%.

C.2 A Helpful Arm
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At time T, there must exist an arm k such that n} > If this were not true, then

_HA2-
N N T

which is a contradiction. Let t < T be the last time this arm was pulled, and consider this time for the rest of

T
the proof. Note that nf =nl > AT
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C.3 Bounding the Other Arms using the Helpful Arm

When n! > 1, using Lemma

( 0) (nt+a)
QTLt/’Y

o

< VA1 + «). (41)

oi\/nt+a<

n;, + o

1+

So, including the case of n} = 0,
oly/nt +a<max{ \/7} (42)

where the last inequality comes from the fact that o9 <1/ VA

We know that

i = pal > |15 = 7] = |pa = 7] = [AF = A, (43)

so we can find a lower bound:
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> (A — =2 [ =)\ /nt
_<k 3,‘[4_17) Ny
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>/ = 44
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where the last inequality comes from our bound on nf and from with o = 0. For the upper bound,

t_ At t
z; = Ajy/nk 4+ o

=\ T3\ ) VETY

M [T
< Ajy/nt =
SAnmtat o g (45)

Since we pulled arm k on round ¢, zf < zf, so

T 3M T
VH3M+1_AVH+Q+3M+1\/7 (46)
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C.4 Wrapping Up
Finally, we have that
AT — | < ol l A;oty/nt —|—a<&’ (48)
T 3M+1\yvH — 2,YM -2

where the second inequality comes from the fact that ¢! is decreasing in ¢ and from (47)). Now for i such that
Wi > 7+ &, we have
A pi—T+e THpi—¢

AL >y — — = pu; — = > T 49
fi > pi i 5 5 >T (49)
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For ¢ such that u; < 7 — ¢, we have

A; — W i
NZSIM'F? i + = Z+E=T+g+8§7. (50)

D PROOF OF PROPOSITION (3.6

The proof of this proposition is the same as the proof of proposition until the choice of the sampling allocation
n! = B;t. Continuing from (35), we must choose 3 such that, for all ¢ such that |u; — 7| > €,

(R T
LA i ) = < e — 7.
T (7\/2dT10g <1+7/\> 210g5+||H|LA> <V Bilpi — 7l (51)

To optimize this inequality such that it holds for the smallest possible §, we must make the right-hand side as
large as possible. That is, we must choose 3 that maximizes

\/Elm -7l (52)

‘.u'tf ‘

To maximize this minimum, we must choose 8 that makes all of the terms the same. With the constraint that
>; B =1, this means that we must choose

H* i — T 2)~! if i — T >e
g, = ) (Helpi =7%) i = 7l = (53)
0 otherwise,
where
Ho= Y |- (54)
Jilpi—T|>e

With this choice of 3, the smallest § for which the inequality holds is

2
2
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56XP{ Yyl (\/% - ||H||LA> + dr log <1+ 7)\> }, (55)
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provided ||p|lL, <

E PROOF OF LEMMAS

E.1 Proof of Lemma [A]]

To prove Lemma we first need the following lemma, which is a direct consequence of Theorem 1 of [Abbasi-
Yadkori et al.| (2011)):

Lemma E.1. For any § > 0, with probability at least 1 — §, for all t > 0,

\%
el < R tos (5o ) (56)

Using Lemma the proof of Lemma follows that of Lemma 3 of [Valko et al.| (2014). Let N; = diag(n;),
and note that x; = (Nypu + £t)/'y. Then

= | e,V Ntﬂ+€t>/7 /’">|
= | eth Yy = Vi (Ve =Ny /y)w)|
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<ol (||st/v|\v;1 + sl ) (57)
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where the last inequality comes from Cauchy-Schwarz and the fact that of = Hei”v;l' The first term is bounded
by Lemma [E.I] and the second term is bounded as follows:

aplly 2 = 1 LAV Lap
—1
—uT (L,\ —NJ/? (71 + Ntl/zL,\Ntl/z) Nt1/2> m
<p Lyp = |pli,, (58)

where the second equality comes from the Woodbury matrix identity, and the first inequality is from the subtra-
hend being positive semidefinite.

E.2 Proof of Lemma [A.2]

From the Sherman—Morrison formula, for ¢ > 1,

1
(Uf)Q eiT(Vt—1+eme71/7) €;

-1 Tv—1
T -1 V. iere; Vi,
=e | Vi1 — -1 €i
7+eﬂtvt—1eﬂt
Tyv-1 2
1y (& Vicier)

v+ (0% )2

; (59)

so o} is decreasing in t. When 7; = i, the update depends only on the previous value O‘;—til. Consider the setting
where m; = i V¢ > 1. Then ()2 = v(0?)?/(y + t(c?)?), which can be shown by induction. It clearly holds for
t=0.Fort>1,

= (1= 7))

7*()?
09)2
(v (t= 1)) (v + 557 %erye)
_(e)?
7+ o)

(60)

In the setting where we do not have m; = i for all ¢ > 1, since o! is decreasing even when m; # i, we can upper
bound ¢! with what its value would be if at each time ¢ such that 7, # i we do not update of. This would mean
that by time ¢, 0! has been updated n} times, yielding the stated bound.

E.3 Proof of Lemma [A.3]

This lemma is derived from Lemma 6 of |Valko et al.| (2014)). If QAQ is the eigendecomposition of Ly, then let
V7 and A in the notation of |Valko et al.|(2014) be equal to 'yQTVTQ and YA, respectively, in our notation.
The result follows by the invariance of determinants under unitary transformations.



