
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks

A Proofs

Lemma 1. For any normalized probability distribu-
tions x,x′ ∈ [0,1]n×m, there exists at least one δ such
that x′ = ∆(x,δ). Furthermore:

min
δ∶ x′=∆(x,δ)

∥δ∥1 =W1(x,x′) (22)

Where W1 denotes the 1-Wasserstein metric, using L1

distance as the underlying distance metric.

Proof. We first show the equivalence of the above min-
imization problem with the linear program proposed
by Ling and Okada (2007), restated here:

W1(x,x′) = min
g
∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′) (23)

where g ≥ 0 and ∀(i, j),

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′) − g(i′,j′),(i,j) = x′i,j − xi,j

It suffices to show that (1) there is a transformation
from the variables g in Equation 23 to the variables δ
in Equation 22, such that all points which are feasible
in Equation 23 are feasible in 22 and the minimization
objective in Equation 22 is less than or equal to the
minimization objective in Equation 23, and (2) there
is a transformation from the variables δ in Equation 22
to the variables g in Equation 23, such that all points
which are feasible in Equation 22 are feasible in Equa-
tion 23 and the minimization objective in Equation 23
is less than or equal to the minimization objective in
Equation 22.
We start with (1). We give the transformation as:

δvert.
i,j ∶= g(i,j),(i+1,j) − g(i+1,j),(i,j)

δhoriz.
i,j ∶= g(i,j),(i,j+1) − g(i,j+1),(i,j)

(24)

Where we let g(n,j),(n+1,j) = g(n+1,j),(n,j) =
g(i,m+1),(i,m) = g(i,m),(i,m+1) = 0. To show fea-
sibility, we write out fully the flow constraint of
Equation 23:

g(i,j),(i+1,j) − g(i+1,j),(i,j)+
g(i,j),(i−1,j) − g(i−1,j),(i,j)+
g(i,j),(i,j+1) − g(i,j+1),(i,j)+
g(i,j),(i,j−1) − g(i,j−1),(i,j) =x′i,j − xi,j

(25)

Substituting in Equation 24:

δvert.
i,j + −δvert.

i−1,j + δhoriz.
i,j + −δhoriz.

i,j−1 = x′i,j − xi,j (26)

But by Definition 3.1, this is exactly:

∆(x,δ)i,j = x′i,j (27)

Which is the sole constraint in Equation 22: then any
solution which is feasible in Equation 23 is feasible in
Equation 22. Also note that:

∥δ∥1 =∑
i,j

∣δvert.
i,j ∣ + ∣δhoriz.

i,j ∣

≤∑
i,j

∣g(i,j),(i+1,j)∣ + ∣g(i+1,j),(i,j)∣

+ ∣g(i,j),(i,j+1)∣ + ∣g(i,j+1),(i,j)∣
=∑
i,j

g(i,j),(i+1,j) + g(i+1,j),(i,j)

+ g(i,j),(i,j+1) + g(i,j+1),(i,j)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i+1,j),(i,j) + g(i,j+1),(i,j)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i,j),(i−1,j) + g(i,j),(i,j−1)

= ∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′)

(28)

Where the inequality follows from triangle inequality
applied to Equation 24, and in the second sum in the
fourth line, we exploit the fact that g(n,j),(n+1,j) =
g(n+1,j),(n,j) = g(i,m+1),(i,m) = g(i,m),(i,m+1) = 0 to shift
indices. This shows that the minimization objective in
Equation 22 is less than or equal to the minimization
objective in Equation 23.
Moving on to (2), we give the transformation as:

g(i,j),(i+1,j) ∶= max(δvert.
i,j ,0)

g(i,j),(i−1,j) ∶= max(−δvert.
i−1,j ,0)

g(i,j),(i,j+1) ∶= max(δhoriz.
i,j ,0)

g(i,j),(i,j−1) ∶= max(−δhoriz.
i,j−1 ,0)

(29)

Note that the non-negativity constraint of Equation
23 is automatically satisfied by the form of these defi-
nitions. Shifting indices, we also have:

g(i−1,j),(i,j) = max(δvert.
i−1,j ,0)

g(i+1,j),(i,j) = max(−δvert.
i,j ,0)

g(i,j−1),(i,j) = max(δhoriz.
i,j−1 ,0)

g(i,j+1),(i,j) = max(−δhoriz.
i,j ,0)

(30)
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From the constraint on Equation 22, we have:

x′i,j − xi,j =δvert.
i,j +
− δvert.

i−1,j+
δhoriz.
i,j +
− δhoriz.

i,j−1

=max(δvert.
i,j ,0) −max(−δvert.

i,j ,0)+
max(−δvert.

i−1,j −max(δvert.
i−1,j ,0),0)+

max(δhoriz.
i,j ,0) −max(−δhoriz.

i,j ,0)+
max(−δhoriz.

i,j−1 ,0) −max(δhoriz.
i,j−1 ,0)

=g(i,j),(i+1,j) − g(i+1,j),(i,j)+
g(i,j),(i−1,j) − g(i−1,j),(i,j)+
g(i,j),(i,j+1) − g(i,j+1),(i,j)+
g(i,j),(i,j−1) − g(i,j−1),(i,j)

(31)

Which is exactly the second constraint of Equation 23:
then any solution which is feasible in Equation 23 is
feasible in Equation 22. Also note that:

∑
(i,j)

∑
(i′,j′)∈N((i,j))

g(i,j),(i′,j′)

=∑
i,j

g(i,j),(i+1,j) + g(i,j),(i,j+1)

+∑
i,j

g(i,j),(i−1,j) + g(i,j),(i,j−1)

=∑
i,j

max(δvert.
i,j ,0) +max(δhoriz.

i,j ,0)

+∑
i,j

max(−δvert.
i−1,j ,0) +max(−δhoriz.

i,j−1 ,0)

=∑
i,j

max(δvert.
i,j ,0) +max(−δvert.

i,j ,0)

+∑
i,j

max(δhoriz.
i,j ,0) +max(−δhoriz.

i,j ,0)

=∑
i,j

∣δvert.
i,j ∣ + ∣δhoriz.

i,j ∣

=∥δ∥1

(32)

Where we again exploit the fact that g(n,j),(n+1,j) =
g(n+1,j),(n,j) = g(i,m+1),(i,m) = g(i,m),(i,m+1) = 0 to shift
indices, in the fourth line. This shows that the mini-
mization objective in Equation 23 is less than or equal
to the minimization objective in Equation 22, complet-
ing (2).
Finally, now that we have shown that Equations 22
and 23 are in fact equivalent minimizations (i.e., we
have proven Equation 22 correct), we would like to
show that there is always a feasible solution to 22, as
claimed. By the above transformations, it suffices to
show that there is always a feasible solution to Equa-
tion 23. Ling and Okada (2007) show that any feasible
solution the the general Wasserstein minimization LP
(Definition 1) can be transformed into a solution to

Equation 23, so it suffices to show that the LP in Defi-
nition 1 always has a feasible solution. This is trivially
satisfied by taking Π = x(x′)T , where we note that x,
a probability distribution, is non-negative.

Theorem 1. Consider a normalized probability distri-
bution x ∈ [0,1]n×m, and a classification score function
f ∶ Rn×m → [0,1]k. Let f̄ refer to the Wasserstein-
smoothed classification function:

f̄(x) = E
δ∼L(σ)

[f(∆(x,δ))] (33)

Let i be the class assignment of x using the smoothed
classifier f̄ (i.e. i = arg maxi′ f̄i′(x)). If

f̄i(x) ≥ e2
√

2ρ/σ max
i′≠i

f̄i′(x) (34)

Then for any perturbed probability distribution x̃ such
that W1(x, x̃) ≤ ρ:

f̄i(x̃) ≥ max
i′≠i

f̄i′(x̃) (35)

Proof. Let u be the uniform probability vector. As a
consequence of Lemma 1, for any distribution x, there
exists a nonempty set of local flow plans Sx:

Sx = {δ∣x = ∆(u,δ)} (36)

Also, we may define a version of the classifier f on the
local flow plan domain:

fflow(δ) = f(∆(u,δ)) (37)

Let δx be an arbitrary element in Sx, and consider any
perturbed x̃ such that W1(x, x̃) ≤ ρ. By Theorem 1:

min
δ∶ x̃=∆(x,δ)

∥δ∥1 =W1(x, x̃) (38)

Then, using Equation 6:

min
δ∶ x̃=∆(u,δx+δ)

∥δ∥1 =W1(x, x̃) (39)

Let the minimum be achieved at δ∗. Making a change
of variables (δx̃ = δ∗ + δx), we have:

∥δx̃ − δx∥1 =W1(x, x̃) where x̃ = ∆(u,δx̃) (40)

Note that for any x′ (for δ′ ∼ L(σ)) :

f̄(x′) =E [f(∆(x′,δ′)]
=E [f(∆(u,δx′ + δ′))]
=E [fflow(δx′ + δ′))]

(41)

We can now apply Proposition 1 from Lecuyer et al.
(2019), restated here:
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Proposition. Consider a vector v ∈ Rd, and a clas-
sification score function h ∶ Rd → [0,1]k. Let ε ∼
Laplace(0, σ)d, and let i be the class assignment of v
using a Laplace-smoothed version of the classifier h:

i = arg max
i′

E
ε
[hi′(v + ε)] (42)

If:

E
ε
[hi(v + ε)] ≥ e2

√
2ρ/σ max

i′≠i
E
ε
[hi′(v + ε)] (43)

Then for any perturbed probability distribution ṽ such
that ∥v − ṽ∥1 ≤ ρ:

E
ε
[hi(ṽ + ε)] ≥ max

i′≠i
E
ε
[hi′(ṽ + ε)] (44)

We apply this proposition to fflow, noting that ∥δx̃ −
δx∥1 =W1(x, x̃) ≤ ρ:

E
δ′
[fflow
i (δx + δ′))] ≥ e2

√
2ρ/σ max

i′≠i
E
δ′
[fflow
i′ (δx + δ′))]

Ô⇒ E
δ′
[fflow
i (δx̃ + δ′))] ≥ max

i′≠i
E
δ′
[fflow
i′ (δx̃ + δ′))]

(45)

Then, using Equation 41:

f̄i(x) ≥ e2
√

2ρ/σ max
i′≠i

f̄i′(x) Ô⇒

f̄i(x̃) ≥ max
i′≠i

f̄i′(x̃)
(46)

Which was to be proven.

Corollary 1. For any normalized probability distri-
butions x,x′ ∈ [0,1]n×m, if W1(x,x′) ≤ ρ/2, then
∥x − x′∥1 ≤ ρ, where W1 is the 1-Wasserstein metric
using any Lp norm as the underlying distance metric.
Furthermore, there exist distributions where these in-
equalities are tight.

Proof. Let Π indicate the optimal transport plan be-
tween x and x′. From Definition 1, we have Π1 = x
and ΠT1 = x′. Then:

(ΠT −Π)1 = x′ −x (47)

Let Π′ represent a modified version of Π, with the
diagonal elements set to zero. Note that < Π′,C >=<
Π,C > and ΠT −Π = (Π′)T −Π′. Then, using triangle
inequality:

∥(Π′)T1∥1 + ∥(Π′)1∥1

≥∥((Π′)T −Π′)1∥1

=∥x′ −x∥1

(48)

Because the elements of Π′ are non-negative, this is
simply:

2∑
i,j

Π′
i,j ≥ ∥((Π′)T −Π′)1∥1 = ∥x′ −x∥1 (49)

Then, because the (non-diagonal) elements of C are at
least 1 for any Lp norm, we have,

2 < Π′,C >≥ 2∑
i,j

Π′
i,j ≥ ∥x′ −x∥1 (50)

Because < Π′,C >=< Π,C >= W1(x,x′), this means
that ∥x′ − x∥1 ≤ 2W1(x,x′) ≤ ρ, which was to be
proven. Note that this inequality can be tight. For
example, let x be the distribution where the entire
probability mass is at position (i, j), and x′ be the
distribution where the probability mass is equally split
between at positions (i, j) and (i + 1, j). (In other
words, x(i,j) = 1,x′(i,j) = .5,x

′
(i+1,j) = .5). In this case,

∥x′ −x∥1 = 1, W1(x,x′) = .5.

Corollary 2. Consider a color image with three chan-
nels, denoted x = [xR,xG,xB], normalized such that

∑(i,j) xR(i,j) + xG(i,j) + xB(i,j) = 1. Consider a perturbed

image x̃ such that ∀K ∈ {R,G,B}, ∑(i,j) xK(i,j) =
∑(i,j) x̃K(i,j). Let W1(x, x̃) denote the 1-Wasserstein

distance (with L1 distance metric) between x and x̃,
where, when determining the minimum transport plan,
transport between channels is not permitted. Using this
definition, let W1(x, x̃) ≤ ρ. Define:

δ = {δR,δG,δB}
∆(x,δ) = {∆(xR,δR),∆(xG,δG),∆(xB ,δB)}

(51)

and let Lcolor(σ) represent independent draws of
Laplace noise each with standard deviation σ in the
shape of δ. Then if

f̄i(x) ≥ e2
√

2ρ/σ max
i′≠i

f̄i′(x) (52)

then
f̄i(x̃) ≥ max

i′≠i
f̄i′(x̃). (53)

Proof. Let the mass in each channel be denoted sK :

sK ∶= ∑
(i,j)

xK(i,j) = ∑
(i,j)

x̃K(i,j) (54)

Consider the formulation of Wasserstein distance given
in Definition 1. If we represent the elements of x as
a vector by concatenating the elements of δR,δG, and
δB , then the restriction that there is no flow between
channels amounts to the requirement that Π is block-
diagonal:

Π =
⎡⎢⎢⎢⎢⎢⎣

ΠR 0 0
0 ΠG 0
0 0 ΠB

⎤⎥⎥⎥⎥⎥⎦
(55)

Let C1,1 represent the standard cost matrix for 1-
Wasserstein transport (with L1 distance metric). Be-
cause the cost of transport within each channel is the
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same for standard 1-Wasserstein transport (with L1

distance metric), we have:

C =
⎡⎢⎢⎢⎢⎢⎣

C1,1 0 0
0 C1,1 0
0 0 C1,1

⎤⎥⎥⎥⎥⎥⎦
(56)

Then we have:

< Π,C >=< ΠR,C1,1 > + < ΠG,C1,1 > + < ΠB ,C1,1 >
(57)

And by Equation 55, the constraints also factorize out:

ΠR1 = xR, (ΠR)T1 = x̃R,
ΠB1 = xB , (ΠB)T1 = x̃B ,
ΠG1 = xG, (ΠG)T1 = x̃G

(58)

Then the variables of each ΠK are separable (in that
they appear together in the objective only in the sum
and share no constraints). We can then factorize the
minimization:

W1(x, x̃) = ∑
K

min
ΠK∈R(n⋅m)×(n⋅m)

+

< ΠK ,C(1,1) >, (59)

∀K, ΠK1 = xK , (ΠK)T1 = x̃K (60)

(61)

We can transform each xK into a normalized probabil-
ity distribution by scaling it by a factor of 1/sK . We
similarly scale each ΠK :

xKsc. ∶=
xK

sK
ΠK

sc. ∶=
ΠK

sK
(62)

Then we have:

W1(x, x̃) = ∑
K

sK ⋅ min
ΠK

sc.∈R
(n⋅m)×(n⋅m)
+

< ΠK
sc.,C

(1,1) >,

(63)

∀K, ΠK
sc.1 = xKsc., (ΠK

sc.)T1 = x̃Ksc. (64)

(65)

But note that this is simply:

W1(x, x̃) = ∑
K

sK ⋅W1(xKsc., x̃
K
sc.) (66)

By Lemma 1, this is:

W1(x, x̃) = ∑
K

sK ⋅ min
δKsc.∶ x̃K

sc.=∆(xK
sc.,δ

K
sc.)

∥δKsc.∥1 (67)

By the linearity to scaling of ∆ and the L1 norm, this
is simply:

W1(x, x̃) = ∑
K

min
δK ∶ x̃K=∆(xK ,δK)

∥δK∥1 (68)

Which, by Equation 51, is simply,

W1(x, x̃) = min
δ∶ x̃=∆(x,δ)

∥δ∥1 (69)

Then all of the mechanics of the proof of Theorem 1
apply, and (avoiding unnecessary repetition), we con-
clude the result.

Corollary 3. Let W 1 denote the L1 1-Wasserstein
distance, and W 2 denote the L2 1-Wasserstein dis-
tance. For a radius ρ2, define ρ1 ∶=

√
2ρ2. Then,

for any classifier f and input x, if there does not
exist any adversarial example x̃ with W1(x, x̃) ≤ ρ1,
then there are also no adversarial examples x̃′ with
W2(x, x̃′) ≤ ρ2.

Proof. We show the contrapositive: If there is an ad-
versarial example x̃′ with W 2(x, x̃′) ≤ ρ2, then there
is an adversarial example x̃ with W 1(x, x̃) ≤ ρ1.
It is sufficient to show that for any arbitrary x′, if
W 2(x,x′) ≤ ρ2, then W 1(x,x′) ≤ ρ1. (The predicate
is then satisfied with x̃′ = x̃ = x′). In other words, we
need to show that

√
2W 2(x,x′) ≥W 1(x,x′), ∀x,x′. (70)

By the definition of 1-Wasserstein distance, can rewrite
this goal as

√
2 min

Π
< Π,C2 > ≥ min

Π
< Π,C1 > (71)

where in both minimizations Π is non-negative and
subject to Π1 = x, ΠT1 = x′. Here, C2 and C1 are the
weight matrices for L2 and L1 Wasserstein distances.
Note that Π is subject to the same constraints in both
minimizations: therefore any Π that is feasible in one
is feasible in the other. Let Π∗

2 be the minimum of the
first (L2) minimization. Recall that

C2
(i,j),(i′,j′) =

√
(i − i′)2 + (j − j′)2 (72)

while

C1
(i,j),(i′,j′) = ∣i − i′∣ + ∣j − j′∣. (73)

By equivalence of norms, we have:

√
2C2
(i,j),(i′,j′) ≥ C

1
(i,j),(i′,j′). (74)

Then by linearity (and using Π non-negative),

√
2 < Π,C2 > ≥ < Π,C1 > ∀Π ≥ 0 (75)

So

√
2 min

Π
< Π,C2 > =

√
2 < Π∗

2,C
2 >

≥ < Π∗
2,C

1 >
≥ min

Π
< Π,C1 >,

(76)

as desired.



Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks

B Training Parameters

In this paper, network architectures models used were
identical to those used in Wong et al. (2019). Un-
less stated otherwise, all parameters of attacks are the
same as used in that paper for each data set. For
training smoothed models, we train the base classifier
using standard cross-entropy loss on individual noised
sample images, using the same noise distribution as
used when performing smoothed classification. How-
ever, during training, rather than using the same im-
age repeatedly while adding different noise (as at test
time), we instead train with each image only once per
epoch, with one noise draw. In fact, for computational
efficiency and as suggested by Lecuyer et al. (2019), we
re-use the same noise for each image in a batch. Train-
ing parameters are as follows (Tables 3, 4):

Table 3 Training Parameters for MNIST Experiments

Training Epochs 200
Batch Size 128
Optimizer Stochastic Gradient

Descent with Momentum
Learning Rate .001

Momentum 0.9
L2 Weight Penalty 0.0005

Table 4 Training Parameters for CIFAR-10 Experi-
ments

Training Epochs 200
Batch Size 128

Training Set Normalization,
Preprocessing Random Cropping (Padding:4)

and Random Horizontal Flip
Optimizer Stochastic Gradient

Descent with Momentum
Learning Rate .01 (Epochs 1-200)

.001 (Epochs 201-400)
Momentum 0.9

L2 Weight Penalty 0.0005

C Comparison to other Defenses in
Wong et al. (2019)

In addition to proposing adversarial training as a de-
fense against Wasserstein Adversarial attacks, Wong
et al. (2019) also tests other defenses. On MNIST, bi-
narization of the input and using a provably L∞-robust
classifier were also tested as defenses: our random-
ized smoothing method is more effective than these
methods at all attack magnitudes (see Figure 7). On
CIFAR-10, Wong et al. (2019) only tested a provably

Figure 7: Comparison of empirical robustness on
MNIST to additional defenses from (Wong et al.,
2019), other than adversarial training. Randomized
Smoothing shown here is Wasserstein smoothing with
σ = 0.01. (This is the amount of noise which maximizes
certified robustness, as seen in Table 1.)

L∞-robust classifier as an additional defense: unfor-
tunately, code was not provided for this model, so we
did not attempt to replicate the results.


