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7 Appendix

Throughout the proofs, h(-) € H is assumed to be an unspecified function in the RKHS. Also, we use Ex|[]
to denote expectation over the randomness of X while fixing others and E|x[-] as the conditional expectation
E[-|X]. Moreover we remark that all results involving g, data can be interpreted either as a high probability
bound or a bound on expectation over Eg,¢, (i-€., if we train ‘g’YVX}\}‘FNY]f]T}:{ using X}(,’R, Y]f,TR, then Eg4:, means
Exe vy ). The same interpretation applies for the results with Big-O notations. Finally, constants Ca, C4,
Cs3, C4 and CY as well as similar constants introduced later which depend on R, g(-) or § (for 1 — ¢ high
probability bound) will sometimes be denoted by a common C' during the proofs for ease of presentation.

7.1 Preliminaries

Lemma 1. Under Assumption 3, for any f € H, we have

[flloe = sup [(FC) @G, 2)ae] < RISl (1)

and consequently || fllzz < R[|f|n as well.
tr

Lemma 2 (Azuma-Hoeffding). Let Xy, ..., X, be independent and identically distributed random variables
with 0 < X < B, then
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P(= Y @ —E[X]| > ) < 2¢7 57 (2)
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Corollary 2. Under the same assumption of Lemma[2, with probability at least 1 — 4,

2

1 — 1
it ; —E[X]| < By/—log =. 3
7 @ BN < By s g 3)

Moreover, an important (1 — ¢)-probability bound we shall use later for i’<ﬂlm? ,,,,, oty )) follows from [Yu
and Szepesvari, 2012] (see also [Gretton et al., 2009] and [Pinelis et al., 1994]):
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7.2 Learning Theory Estimates

To adopt the more realistic assumption as in [Yu and Szepesvari, 2012, |Cucker and Zhou, 2007] that the
2]

true regression function g(-) ¢ H but rather g(-) € Range(T2 "), we need results from learning theory.

First, define ¢ £ ﬁ for some 6 > 0 so that 0 < ¢ < 1/2. Given g(-) € Range(ng) and m training sample
{(z5,y;)}72, (sampled from Pj,.)), we define g,(-) € H: X — R to be

o) = argmin {17 ~ % +1115 %)
fen o

where ||f—g||glg” = \/Eg~p, (f(z) — g(z))? denotes the 2 norm under P;,. On the other hand, § data(-) €
H is defined in (3)
A 1
G,data(+) = argmin { Z(f(ffj) - Z/j)2 + 7||f||3—[}~
Fen =
Moreover, following the notations in Section 4.5 of |[Cucker and Zhou, 2007|, given Banach space (&, 1%”7 Il -
|.zz ) and our kernel-induced Hilbert subspace (#, || - [|#), we define a K-functional: L5 x(0,00) = R to
be
. ..
R(y) 2 juf (10— oz, +1 0}

for I(-) € £ and t > 0. For 0 < r < 1, the interpolation space (Z7, ,H), consists of all the elements
I(-) € £, such that

K(l
1l 2 sup 2D (6)
v>0
Lemma 3. Define K : Z3 x (0,00) = R to be
K(,7) = inf {1 = fl%: +71fI3} (7)
feEH Py
Then for any I(-) € (Z3, ,H)r, we have
K(l K(l, ?
sup 020 < (up ZEXT) g2 < o ®
>0 v>0 (\ﬁ

Proof. Tt follows from va + b < +y/a + \/B, Ya,b > 0 that
VK(,7) <K@, v7)- 9)

Thus, for any I(-) € (Z3, ,H)r, we have

K(7) KOGV _ e
= () << w

260+4

On the other hand, assuming g(-) € Range(T;2°"), it follows from the proof of Theorem 4.1 in |[Cucker and
Zhou, 2007] that
(11)

where H™ is a closed subspace of H spanned by eigenfunctions of the kernel K (e.g., Ht = H when P,
is non-degenerate, see Remark 4.18 of [Cucker and Zhou, 2007|). Indeed, the next lemma shows we can

measure smoothness through interpolation space just oS Tange space.

9() € (L5, H")
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Lemma 4. Assuming P, is non-degenerate on X. Then if g € Range(T "), we have g € (L5, ,H) o_.

6+2

o _.
On the other hand, if g € (.,?I%tr,H)e%z, then g € Range(T2"™" ) for all e > 0.

Proof. The proof follows from Theorem 4.1, Corollary 4.17 and Remark 4.18 of [Cucker and Zhou, 2007]. O

Now we are ready to adopt some common assumptions and theoretical results from learning theory in RKHS.
They can be found in [Cucker and Zhou, 2007} [Sun and Wu, 2009} [Smale and Zhou, 2007, [Yu and Szepesvari,|
. First, given g(-) € Range(ng) and m training sample {(z;,y;)}jL; (sampled from P;)), it follows
rom Lemma 3 of [Smale and Zhou, 2007 (see as well Remark 3.3 and Corollary 3.2 in [Sun and Wu, 2009)])
that

gy = gll 2z, < C2n®. (12)

Second, it follows from Theorem 3.1 in [Sun and Wu, 2009] as well as [Smale and Zhou, 2007, |Sun and Wu,|

2010] that

gy = Gv.aatall 2z, < Co(y™2m=12 447 tm =), (13)
and, by the triangle inequality,

lg — f]»y,dataH;fg” < C3(S + 771/2m—1/2 + 771m73/4)' (14)

Notice here that by choosing v = m™ 4010, we recover Corollary 3.2 of [ISun and Wu, 2009||. Finally it
follows from Theorem 1 of [Smale and Zhou, 2007], we have

||9'y - gw,dataH”H < C:/37_1m_1/2a (15)

with C} = 6Rlog 2. In fact, if we define 62 £ Eq.p, Ey|4(g9(x) — Y)?, then Theorem 3 of ﬂSmale and Zhou,|

2007| stated that

195~ radatallre < CH(Va2 + llgy = gl v~ Hm /2 457 m ). (16)

7.3 Main Proofs

o
Proof of Theorem 1 and Corollary 1. If g € Range(T2°™) (ie. ¢ = 72014) and we set h(-) = g,(-) and
g= gw,X}f\}“R’Ylf]% for some v > 0, then
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To bound terms in , we first use Corollary |2 to conclude that with probability at least 1 — 4,
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LpntrJ
A 2 _
| > By~ glal)| <B log = = O(n;,'"?). (18)
j=1
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We hold on our discussion for the second term. For the third term, since h, § € H,

1 Loner] - . . o
I_pntrJ j; (ﬂ(mj )7 B(-’B] ))(h(mJ )79(:1:3 ))
1 Lpner] o . ) N
[T 2 (B@ir) — B(ai)(h — §, B(a M
o el § }
— <h—g, [prer] ; (Bxf) — Bx))®(x )>H’
<||h — QHH([A/( )+L(ﬂ|m1 el J)) <2||h — g||HL(I@|m1 . ,mi;n“J% (19)

by definition of (1). Thus, when taking h = g, and § = g, Xt v, for some 7, we can combine and
. ) to guarantee, with probability 1 — 24,

\ﬁntr]
‘LpnltrJ > (B@) = Ba))(h(=]) - @(wﬁr))‘
<\/@RC(1 — p)—1/2(,y—1nt—1/2) <f2 N nl )
=00y !+ i )3). (20)

ZLP””J Bx) (g(xl) — (i) + 7= 3219 §(xk) — v, the analysis relies the

J Nte

For the last term 7 = Umw ]
splitting of data, as we notice that

mn n
p tr i1 te i—1

\_P”trJ
Eixt, v, [ B ) (g(2f") - a( Zg (X[%) - }

<

=Eonp,. [B(@)g(@)] — v — Eonp, [B(x)§(2)] + Earnp,. [9(2))]
=Esz~p,. [9(2)] =V = Egnp, [9(2)] + Egnp,. [9(2)]
=0. (21)

Notice the second line follows since g(-) is determined by {X,Y#,} and thus is independent of
X Y b or {X*}. Thus, we have

Var(r) =Var(E|x ¢ v (7)) + E[Var x ¢y (7)]
:E[Varlxzt\;R*ther (T)]

1 q ~
=] E[Vary.p,, 1 xt, v, (B(@)(9(z) — 9(x)))] + o E[Varg.p, | xt, vir (3(2))]
B2 » )
< D Exitnvilo = 8l + B v 0l
B2 ) B
< o Exeville =85+ Exg v ol - (22)

and we can use the Chebyshev inequality and Lemma [If to conclude, with probability at least 1 — 4,

1 B2 . BR?
7] < \/;\/ Loni J]EX;;'R,Y&TRHQ - 9||fg)}2, + e (23)
r 4 tr €




which becomes, by , with probability 1 — 26,

3/4) BR

7| < _\[ o] G =) 8/4(7C 4 4=1/2n 712 4 -1y,
(’Y +,Y 1/2n / +Fy 1nt 3/4)nt7/ +ntel/2) (24)

with ¢ = Now, to bound the second term

29+4 me J lennJ(B(mér) _ ﬂ(mzr))(g(xér) _ h(mzr))’ we have
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where Z}  denotes the 1-norm E,..p, |g(z) — g, (x)|. Notice the second- to last line follows from the Cheby-
shev mequahty, the Cauchy-Schwarz 1nequahty, and the last line from

Thus, when taking h = g, and g = g, X, Y for some vy > 0, we can combine (| ., . and (| .) to
have

+ 0yt = 0(1°) = O(y75). (25)
tr

_ _ 1
Vi(p) — v| =0(ns.?) + O(y75) + O(v " 0 2 (nyh + i) ?)
+ O((fy29€+4 + 7—1/2 1/2 AT ”t 5/4)7%;1/ + ”tel/Z)

_1 1 1 _1
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after simplification. Now, if we take v =n ~5 where n 2 min(ng-, nge ), then becomes

_6+2

:O(n* +n- 2(e+1> 4+ n3EFD T 1) = O(n*ﬁ) = O(ntr(26+2) +n (2(”2))’ (27)

1

which is the statement of the theorem However note that if we choose v = n™", we would achieve the

66+8

@ +n (2“4)). Moreover if lim,, oo 77 ° /ng. — 0 and we choose

convergence rate of Viaras as O(ny,

v =n;!, then the rate becomes O(n,, " + n,?). O
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Proof of Proposition 1. Fixing v > 0, if g € H (i.e.,g € Range(T;Z*") with § — 00), then by definition of
gy we would have

lgy = alZs +llollz llg =gl +llal
Py P

lgv113, < - = " = llgll3 (28)
gl : gl




or equivalently |g,||% = O(1) since the fixed true regression function |g|lx = O(1). Thus, a simplified
analysis shows

|_P’ﬂt7J
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Note that the first term on the right is nothing but the Vi yrar estimator with 100 x p percent of the training

data and we shall denote it as Vi asas(p) without ambiguity. For the second term, assuming § = g, xtr_ yir

NR> NR
is bounded by
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Then, by and , we have
Vi(p) = vI <[Vienrn (p) = v| + L(B) (g — 8y, xtz,, ven, 12 + |9+ 1)
:O(nt_ﬁ + nt_f), (31)
following , and Theorem 1 of [Yu and Szepesvari, 2012]. O

Proof of Proposition 2. If the function g only satisfies the condition A, (g, F) = inf) ¢y,<rllg = fIl <
C(log F)~* for some C,s > 0, then we again follow the analysis in the proof of Proposition 1 and arrive at
the decomposition in

Va(p) = v| <[Viarnr(p) — v+ LB) gy — Gy xt7, ver I + gy ll20)

NtrNite —
=0(log ———=)"*, 32
(g 1) 32
which is the rate of Vi prar by Theorem 3 of [Yu and Szepesvéari, 2012]. O

Proof of Theorem 2. Define € £ supycp

Vr(0) — E[I' (X', Y 0)]‘ We have

E[l'(Xie, Yie; Or)] — € < VR(OR) < VR(6%) < E[lI'(Xie, Yie; 0%)] + €. (33)

On the other hand, we know by the triangle inequality that € is bounded by
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where the first term is bounded by O(nt_ré +nié) following Corollary 8.9 in |Gretton et al., 2009]. Moreover,
: 30

1 _1
the second term is also O(n,,% +n,.?) as in (30)) or Lemma 8.7 in |Gretton et al., 2009]. For the last term,
due to the Lipschitz and compact assumption, it follows from Theorem 19.5 of [Van der Vaart, 2000] (see
also Example 19.7 of [Van der Vaart, 2000]) that function class G is Pi.-Donsker, which means that

Gu(6) £ V(- SO Ulfs6) = Baer, 1ai0)] )

te =1

converges in distribution to a Gaussian Process G, with zero mean and covariance function
Cov(Goo(01), Goo(02)) = Egnp,. (I(x;01)l(x;02)) — Egnp, l(x;01)Epnp, l(2;02). Notice G can be viewed
as random function in C(D), the space of continuous and bounded function on 6. Since for any z € C(D),
the mapping 2z — [z]lcc = supgep 2(f) is continuous with respect to the supremum norm, it follows from

1
the continuous-mapping theorem that n2 supgep ‘% Somte W(wte; 0) — E[l(Xe; 0)]| converges in distribution
t0 ||Goo|loo Which has finite expectations based on the assumptions on G (see, e.g., Section 14, Theorem 1 of
[Lifshits, 2013]). Thus, by definition of convergence in distribution, for any § > 0, we can find some constant
D’ that

P(|Gulloc > D) = P(|Geolloc > D) +0(1) <6 +0(1), (34)
which means, we can find some N such that when n;, > N,

Nte

P ( sup
0eD

_1
- I(zk:;0) — E[Z(Xte;a)]’ >ny2D') = Pe(||Gylloo > D') < 26,
te =1

and consequently, with probability 1 — 2§, we have

Nte

0 g 21080 B )] < it
In other words, we also have
e
5y 210~ UK )] = Ot
which concludes our proof. O
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