
Understanding Generalization in Deep Learning via Tensor Methods

Jingling Li1,3 Yanchao Sun1 Jiahao Su4 Taiji Suzuki2,3 Furong Huang1

1Department of Computer Science, University of Maryland, College Park
2Graduate School of Information Science and Technology, The University of Tokyo

3Center for Advanced Intelligence Project, RIKEN
4Department of Electrical and Computer Engineering, University of Maryland, College Park

Abstract

Deep neural networks generalize well on un-
seen data though the number of parameters
often far exceeds the number of training ex-
amples. Recently proposed complexity mea-
sures have provided insights to understand-
ing the generalizability in neural networks
from perspectives of PAC-Bayes, robustness,
overparametrization, compression and so on.
In this work, we advance the understanding
of the relations between the network’s ar-
chitecture and its generalizability from the
compression perspective. Using tensor anal-
ysis, we propose a series of intuitive, data-
dependent and easily-measurable properties
that tightly characterize the compressibility
and generalizability of neural networks; thus,
in practice, our generalization bound outper-
forms the previous compression-based ones,
especially for neural networks using tensors
as their weight kernels (e.g. CNNs). More-
over, these intuitive measurements provide
further insights into designing neural network
architectures with properties favorable for bet-
ter/guaranteed generalizability. Our experi-
mental results demonstrate that through the
proposed measurable properties, our general-
ization error bound matches the trend of the
test error well. Our theoretical analysis fur-
ther provides justifications for the empirical
success and limitations of some widely-used
tensor-based compression approaches. We
also discover the improvements to the com-
pressibility and robustness of current neural
networks when incorporating tensor opera-
tions via our proposed layer-wise structure.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

1 Introduction

Deep neural networks recently have made major break-
throughs in solving many difficult learning problems,
especially in image classification (Simonyan and Zis-
serman, 2014; Szegedy et al., 2015; He et al., 2016;
Zagoruyko and Komodakis, 2016) and object recogni-
tion (Krizhevsky et al., 2012; Sermanet et al., 2013; Si-
monyan and Zisserman, 2014; Zeiler and Fergus, 2014).
The success of deep neural networks depends on the
high expressive power and the ability to generalize.
The high expressive power has been demonstrated em-
pirically (He et al., 2016; Zagoruyko and Komodakis,
2016) and theoretically (Hornik et al., 1989; Mhaskar
and Poggio, 2016). Yet, fundamental questions on why
deep neural networks generalize and what enables their
generalizability remain unsettled.

A recent work by Arora et al. (2018) characterizes the
generalizability of a neural network from a compression
perspective — the capacity of the network is character-
ized through its compressed version. The compression
algorithm in Arora et al. (2018) is based on random pro-
jection: each weight matrix of the compressed network
are represented by a linear combination of basis matri-
ces with entries i.i.d. sampled from ±1. The effective
number of parameters in the weight matrix is the num-
ber of coefficients in this linear combination obtained
via projection — the inner product between the original
weight matrix and these basis matrices. Though the
idea of using compression in deriving the generaliza-
tion bounds is novel, the compression scheme in Arora
et al. (2018) could be made more practical since (1) the
cost of forwarding pass in the compressed network still
remains the same as the cost in the original one, even
though the effective number of parameters to represent
the original weight matrices decreases; (2) storing these
random projection matrices could require more spaces
than storing the original set of parameters. We propose
a new theoretical analysis based on a more practical,
well-developed, and principled compression scheme us-
ing tensor methods. Besides, we use tensor analysis to
derive a much tighter bound for the layer-wise error

Understanding Generalization in Deep Learning via Tensor Methods

propagation by exploiting additional structures in the
weight tensors of neural networks, which as a result
significantly tightens the generalization error bound
in Arora et al. (2018).

Our approach aims to characterize the network’s com-
pressibility by measuring the low-rankness of the weight
kernels. Existing compression methods in (Jaderberg
et al., 2014; Denton et al., 2014; Lebedev et al., 2014;
Kim et al., 2015; Garipov et al., 2016; Wang et al.,
2018; Su et al., 2018) implement low-rank approxima-
tions by performing matrix/tensor decomposition on
weight matrices/kernels of well-trained models. How-
ever, the layers of SOTA networks, such as VGG (Si-
monyan and Zisserman, 2014) and WRN (Zagoruyko
and Komodakis, 2016), are not necessarily low-rank:
we apply CP-tensor decompositions (Kolda and Bader,
2009; Anandkumar et al., 2014b; Huang et al., 2015;
Li and Huang, 2018) to the weight tensors of well-
trained VGG-16 and WRN-28-10, and the amplitudes
of the components from the CP decomposition (a.k.a
CP spectrum) are demonstrated by the brown curves
in Figure 1, which indicate that the layers of these
pre-trained networks are not low-rank. Therefore a
straightforward compression of the network cannot be
easily achieved and computationally expensive fine tun-
ing is often needed.

0 500 1,000 1,500 2,000

0.0

0.2

0.4

0.6

0.8

1.0

Index of the components

N
or

m
a
li

ze
d

a
m

p
li

tu
d

e

VGG
CP-VGG

(a) VGG16 (layer 13)

0 1,000 2,000 3,000

0.0

0.2

0.4

0.6

0.8

1.0

Index of the components

N
o
rm

al
iz

ed
am

p
li

tu
d

e

WRN
CP-WRN

(b) WRN-28-10 (layer 28)

Figure 1: CP spectrum comparison (CP-VGG and
CP-WRN are neural networks with CP layers).

To overcome this limitation, we propose a layer-wise
structure design, CP Layer (CPL), by incorporating
the variants of CP decompositions in (Jaderberg et al.,
2014; Kossaifi et al., 2017; Howard et al., 2017). CPL
re-parametrizes the weight tensors such that a Polyadic
form (CP form) (Kolda and Bader, 2009) can be easily
learned in an end-to-end fashion.

We demonstrate that empirically, CPL allows the net-
work to learn a low-rank structure more easily, and
thus helps with compression. For example, from the
pink curves in Figure 1, we see that neural networks
with CPL have a spiky CP spectrum, which is an indi-
cation of low-rankness. We rigorously prove that this
low-rankness in return leads to a tighter generalization
bound. Moreover, we are the first to provide theoret-
ical guarantees for the usage of CP decomposition in

deep neural networks in terms of compressibility and
generalizability.

Definition 1.1 (Proposed Architecture Layer).
A CP Layer (CPL) with width R consists of R set of

parameters
{
λ(r),

{
v
(r)
j

}N
j=1

}R
r=1

where v
(r)
j is a vector

in Rdj with unit norm. The weight kernel of this CPL

is a N -order tensor defined as K :=
∑R
r=1 λ

(r)v
(r)
1 ⊗

· · · ⊗ v
(r)
N , where ⊗ denotes the vector outer-product

(tensor product) defined in Appendix B.9) 1. Note that
K ∈ Rd1×···×dN .

Remark. CPL allows for flexible choices of the struc-
tures since the number of components R is a tunable
hyper-parameter that controls the number of parame-
ters in CPL. The CP spectrum of this layer is denoted
by {λ(r)}Rr=1 in a descending order. The size of the
weight kernel is d0×d1×· · ·×dN , while the number of
parameters in CPL is (d0+d1+ · · ·+dN +1)×R.

In contrast with existing works which apply CP decom-
position to each layer of a reference network, no CP
decomposition is needed since the components are ex-
plicitly stored as model parameters so that they can be
learned from scratch via back-propagation. Moreover,
compression in CP layers is natural – simply picking the
top R̂ components to retain and pruning out the rest
of them. Thus, the compression procedure using CPL
does not require any costly fine-tuning while existing
works on tensor-based compression may use hundreds
of epochs for fine-tuning.

We further propose a series of simple, intuitive, data-
dependent and easily-measurable properties to measure
the low-rankness in current neural networks. These
properties not only guide the selection of the number of
components to generate a good compression, but also
tighten the bound of the layer-wise error propagation
via tensor analysis. The proposed properties

• characterize the compressibility of the neural net-
work, i.e., how much the original network can be
compressed without compromising the performance
on a training dataset more than certain range.

• characterize the generalizability of the compressed
network, i.e. tell if a neural network is trained using
normal data or corrupted data.

In our theoretical analysis, we derive generalization
error bounds for neural networks with CP layers, which
take both the input distribution and the compressibility
of the network into account. We present a rigorous
proof showing the connection of our proposed properties
to the generalization error of a network. We will see
in experiment section that our proposed bound is very
effective at predicting the generalization error.

1The (i1, i2, . . . , iN)th element of the weight kernel is∑R
r=1 λ

(r)v
(r)
1 (i1)× · · · × v

(r)
N (iN).

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Notice that, in this paper, the Polyadic form is chosen
simply as a demonstration on how tensor methods
could be used to improve the analysis of generalization
bounds of deep neural networks. Therefore, follow-ups
works could potentially analyze the effects of other
tensor decomposition methods using our theoretical
framework.

Summary of Contributions

1. Better generalization bound of practical use.
We verify that our generalization bounds can be
used to guide the training of neural networks, since
the calculated bound matches the trend of the test
error on unseen data during the training process
as shown in Figure 2b. Moreover, we demonstrate
that our generalization bound is in practice tighter
than the bound proposed by (Arora et al., 2018)
as shown in Figure 2a and Table 4. Notice that
the generalization bound in (Arora et al., 2018) is
already orders of magnitude better than previous
norm-based or compression based bounds.

2. Intuitive measurements of compressibility
and generalizability. We propose a set of proper-
ties to characterize the low-rankness in the weight
tensors of neural networks in Section 4.2. Our theo-
retical analysis connects the measured low-rankness
with the generalizability of the model, and such
connections are verified in Figure 3.

3. First theoretical guarantee on the generalizabil-
ity and robustness for neural network architectures
that allow fast and real time predictions on devices
with limited memory (e.g. the architecture designs
proposed in (Jaderberg et al., 2014; Kossaifi et al.,
2017; Howard et al., 2017), which uses variants of
the Polyadic form).

4. Practical improvements. We demonstrate that
pruning out the smaller components of CP decom-
position in CP layers roughly preserves the test per-
formance without computationally expensive fine
tuning (see Section 5.3 and Table 5) as our pro-
posed layer-wise structure is easily compressible.
Moreover, we discover that incorporating tensor op-
erations via CPL reduces the generalization error of
some well-known neural network architectures, and
further improves the robustness of SOTA methods
for learning under noisy labels (see Table 2, Table 3,
Figure 5, and Figure 6).

2 Related Works

Existing Metrics to Characterizing Generaliza-
tion. Classical and recent works have analyzed the
generalizability of neural networks from different per-
spective such as VC-dimension (Bartlett et al., 1999;
Harvey et al., 2017), sharpness of the solution (Keskar

et al., 2016), robustness of the algorithm (Xu and Man-
nor, 2012), stability and robustness of the model (Hardt
et al., 2016; Kuzborskij and Lampert, 2018; Gonen
and Shalev-Shwartz, 2017; Sokolic et al., 2016) and
over-parameterization (Neyshabur et al., 2018; Du and
Lee, 2018), or using various approaches such as PAC-
Bayes theory (McAllester, 1999b,a; Langford and Caru-
ana, 2002; Neyshabur et al., 2015b, 2017b; Dziugaite
and Roy, 2017; Golowich et al., 2018), norm-based
analysis (Bartlett and Mendelson, 2002; Neyshabur
et al., 2015a; Kawaguchi et al., 2017; Golowich et al.,
2017), compression based approach (Arora et al., 2018),
and combinations of the above approaches (Neyshabur
et al., 2017b,a; Bartlett et al., 2017; Zhou et al., 2018)
(see (Jakubovitz et al., 2018) for a complete survey).
While these works provide deep theoretical insights
to the understanding of the generalizability in neural
networks, they did not provide practical techniques to
improve generalization.

For the progress on non-vacuous generalization bounds,
Dziugaite and Roy (2017) use non-convex optimization
and PAC-Bayesian analysis to obtain a non-vacuous
sample bound on MNIST, and Zhou et al. (2018) use
a PAC-Bayesian compression approach to obtain non-
vacuous generalization bounds on both MNIST and
ImageNet via smart choices of the prior. While being
creative, both bounds are less intuitive and provide
little insight into what properties are favorable for net-
works to have better generalizability. In addition, the
tensor-based compression methods are complementary
to the compression approach used in (Zhou et al., 2018),
which combines pruning, quantization and huffman cod-
ing (Han et al., 2015); the tensor-based compression
methods can be combined with the approaches used
in (Han et al., 2015) to potentially tighten the general-
ization bound obtained in (Zhou et al., 2018).

Improving generalization in practice. Authors
of (Neyshabur et al., 2015a) proposed an optimiza-
tion method PATH-SGD which improves the gener-
alization performance empirically. While (Neyshabur
et al., 2015a) focuses on the optimization approach, we
provide a different practical approach that helps the
understanding of the relations between the network
architecture and its generalization ability.

Comparison with Arora et al. (Arora et al.,
2018). Besides practical improvements of generaliza-
tion error, our work improves the results obtained
by (Arora et al., 2018): 1) we provide a tightened layer-
wise analysis using tensor method to directly bound the
operator norm of the weight kernel (e.g. Lemma C.5
and Lemma C.8). The interlayer properties introduced
by (Arora et al., 2018) are orthogonal to our proposed
layer-wise properties and they can be well-combined; 2)
in practice, our bound outperforms that of (Arora et al.,

Understanding Generalization in Deep Learning via Tensor Methods

2018) in terms of the achieved degree of compression
(detailed discussions in Section 5.2 and Section A.2); 3)
for fully connected (FC) neural networks, our proposed
reshaping factor (definition E.2) further tightens the
generalization bound as long as the inputs to the FC
layers have some low-rank structures; 4) we extend
our theoretical analysis to neural networks with skip
connections, while the theoretical analysis in Arora
et al. (2018) only applies to FC and CNN.

Comparison with existing CP decomposition
for network compression. While CP decomposition
has been commonly used in neural network compres-
sion (Denton et al., 2014; Lebedev et al., 2014; Kossaifi
et al., 2017), our proposed compression method is very
different from theirs. First, the the tensor contrac-
tion layer Kossaifi et al. (2017) is a special case of our
CPL for FC layers when we set the number of com-
ponents to be 1. Second, the number of components
in our proposed CPL can be arbitrarily large (as it
is a tunable hyper-parameter), while the number of
components of layers in (Denton et al., 2014; Lebedev
et al., 2014; Kossaifi et al., 2017) are determined by
the compression ratio. Third, no tensor decomposi-
tion is needed for evaluating the generalizability and
compressing neural networks with CP layers as the
components from the CP decomposition are already
stored as model parameters. Moreover, as the smaller
components in CPL are pruned during the compres-
sion, the performance of the compressed neural net is
often preserved and thus no expensive fine tuning is
required (see Table 5). The depthwise-separable con-
volution used in MobileNet (Howard et al., 2017) is a
specific implementation of CPL; thus, our theoretical
analysis can provide generalization guarantees for the
MobileNet architecture.

3 Notations and Preliminaries

In this paper, we use S to denote the set of training
samples drawn from a distribution D with |S| = m.
Let n denote the number of layers in a given neural
network, and superscripts of form (k) denote properties
related to the kth layer. We put “CP” in front of a
network’s name to denote such a network with CP
layers (e.g. CP-VGG denotes a VGG with CP lay-
ers). For any positive integer n, let [n] := {1, 2, ..., n}.
Let |a| denote the absolute value of a scalar a. Given
a vector a ∈ Rd, a matrix A ∈ Rd×k, and a tensor
A ∈ Rd1×d2×d3 , their norms are defined as follows: (1)
Vector norm: ‖a‖ denotes the `2 norm. (2) Matrix
norms: Let ‖A‖∗ denote its nuclear norm, ‖A‖F de-
note its Frobenius norm, and ‖A‖ denote its operator
norm (spectral norm), where σi(A) denotes the ith

largest singular value of A. (3) Tensor norms: Let

‖A‖ = maxx∈Rd1 ,y∈Rd2 ,z∈Rd3

|A(x,y,z)|
‖x‖‖y‖‖z‖ denote its oper-

ator norm, and ‖A‖F its Frobenius norm. Moreover, we

use ⊗ to denote the outer product operator, and

∗ to denote the convolution operator. We use Fm
to denote m-dimensional discrete Fourier trans-
form, and use tilde symbols to denote tensors after
DFT (e.g. T̃ = Fm(T)). A Polyadic decomposi-
tion (CP decomposition) (Kruskal, 1989; Kolda and
Bader, 2009) of a N -order tensor K ∈ Rd1×d2×···×dN
is a linear combination of rank-one tensors that is
equal to K: K =

∑R
r=1 λ

(r)v
(r)
1 ⊗ · · · ⊗ v

(r)
N where

∀r ∈ [R],∀j ∈ [N],
∥∥∥v(r)

j

∥∥∥ = 1. Margin loss Arora

et al. (2018): we use Lγ(M) and L̂γ(M) to denote the
expected and empirical margin loss of a neural network
M with respect to a margin γ ≥ 0. The expected mar-
gin loss of a neural network M is defined as Lγ(M) :=
P(x,y)∈D

[
M(x)[y] ≤ γ + maxi 6=yM(x)[i]

]
.

4 CNNs with CPL: Compressibility
and Generalization

In this section, we derive the generalization bound for
a convolutional neural network (denoted as M) using
tensor methods and standard Fourier analysis. The
complete proof is in Appendix Section D. For simplicity,
we assume that there is no pooling layer (e.g. max pool-
ing) in M since adding pooling layer will only lead to
a smaller generalization bound (the perturbation error
in our analysis decreases with the presence of pooling
layers). The derived generalization bound can be di-
rectly extended to various neural network architectures
(e.g. neural networks with pooling layers, and neural
networks with batch normalization). The generaliza-
tion bounds for fully connected neural networks and
neural networks with skip connections are presented in
Appendix Section E.4 and F.3 respectively.

4.1 Compression of a CNN with CPL

We first illustrate how to compress any given CNN M
by presenting a compression algorithm (Algorithm 1).
We will see that this compression algorithm guarantees
a good estimation of the generalization bound for the
compressed network M̂.

Original CNN M is of n layers with ReLU activation,
its kth layer weight tensorM(k) is a 4th order tensor of
size = # of input channel s(k) × # of output channel

o(k) × kernel height k
(k)
x × kernel width k

(k)
y . Let the

3rd order tensor X (k) ∈ RH(k)×W (k)×s(k)

denote the in-
put to the kth layer, and Y(k) ∈ RH(k)×W (k)×o(k)

denote
the output of the kth layer before activation. Therefore
X (k) = ReLU

(
Y(k−1)). We use i to denote the index

of input channels, and j to denote the index of output
channels. We further use f and g to denote the indices
of width and height in the frequency domain.

Proposition 4.1 (Polyadic Form of original CNN
M). For each layer k, the weight tensor M(k) has a

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Polyadic form with number of components R(k) ≤
min{s(k)o(k), s(k)k(k)x k

(k)
y , o(k)k

(k)
x k

(k)
y } (Kolda and

Bader, 2009): M(k) =
∑R(k)

r=1 λ
(k)
r a

(k)
r ⊗ b

(k)
r ⊗ C

(k)
r ,

where the CP-spectrum is in a descending order, i.e.,

λ
(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)

R(k) . All a
(k)
r , b

(k)
r are unit vec-

tors in Rs(k)

and Ro(k)

respectively, and C
(k)
r is a matrix

in Rk
(k)
x ×k

(k)
y with ‖C(k)

r ‖F = 1. The R(k) required for
the Polyadic Form is called tensor rank.

Transform original CNN to a CNN with CP
layers. By Proposition 4.1, each weight tensor M(k)

in M can be represented in a Polyadic form (CP form)
and thus is transformed to a CPL. The total number of
parameters in CPL is R(k)× (s(k) + o(k) + k

(k)
x k

(k)
y + 1).

Thus, a smaller R(k) leads to fewer number of effective
parameters and indicates more compression.

Compress Original CNN M to M̂. We illustrate
the compression procedure in Algorithm 1. Feeding
a CNN M to the compression algorithm, we obtain
a compressed CNN M̂, where for each layer k, the

weight tensor in M̂ is M̂(k) =
∑R̂(k)

r=1 λ
(k)
r a

(k)
r ⊗ b

(k)
r ⊗

c
(k)
r for some R̂(k) ≤ R(k) . Similarly, we use X̂ (k) to

denote the input tensor of the kth layer in M̂ and Ŷ(k)

to denote the output tensor of the kth layer in M̂ before

activation. Therefore X̂ (k) = ReLU
(
Ŷ(k−1)

)
. Notice

that X̂ (k), Ŷ(k) are of the same shapes as X (k),Y(k)

respectively and X (1) = X̂ (1) since the input data to
both networks M and M̂ is the same.

The compression Algorithm 1 is designed to compress
any CNN, and therefore requires applying explicit CP
decompositions to the weight tensors of traditional
CNNs (the step 3 in Algorithm 1). However, for a CNN
with CP layers, these CP components are already stored
as weight parameters in our CPL structure, and thus
are known to the compression algorithm in advance.
Therefore, no tensor decomposition is needed when
compressing CNNs with CPL as we can prune out the
components with smaller amplitudes directly.

4.2 Characterizing Compressibility of CNN
with CPL: Network Properties

In this section, we propose the following layer-wise
properties that can be evaluated based on the training
data S: tensorization factor (TF), tensor noise bound
(TNB), and layer cushion (LC) (Arora et al., 2018).
These proposed properties are very effective at charac-
terizing the compressibility of a neural network. As Al-
gorithm 1’s sub-procedure FBRC selects a set of number
of components {R̂(k)}nk=1 to obtain a compressed net-

work M̂ whose output is similar to that of the original

network (i.e.,
∥∥∥M(X)− M̂(X)

∥∥∥
F
≤ ε ‖M(X)‖F for any

input X ∈ S), our proposed properties will assist the
selections of {R̂(k)}nk=1 to guarantee that Algorithm 1

Algorithm 1 Compression of Convolutional
Neural Networks
�FBRC (in Appendix G) calculates a set of number of com-

ponents {R̂(k)}nk=1 for the compressed network such that∥∥∥M(X)− M̂(X)
∥∥∥
F
≤ ε ‖M(X)‖F holds for any given ε and

for any input X in the training dataset S.
4CNN-Project (in Appendix G) takes a given set of number

of components {R̂(k)}nk=1 and returns a compressed net-

work M̂ by pruning out the smaller components in the CP
spectrum of the weight tensors of M.

More intuitions of the sub-procedures FBRC and CNN-
Project are described in Section 4.2 and Appendix G.

Input: A CNN M of n layers and a margin γ
Output: A compressed M̂ whose ex-

pected error L0(M̂) ≤ L̂γ(M) +

Õ
(√∑n

k=1 R̂
(k)(s(k)+o(k)+k

(k)
x ×k(k)

y +1)

m

)
1: Calculate all layer cushions {ζ(k)}nk=1 based on

definition 4.4
2: PickR(k) = min{s(k)o(k), s(k)k(k)x k

(k)
y , o(k)k

(k)
x k

(k)
y }

for each layer k
3: If M does not have CPL, apply a CP-decomposition

to the weight tensor of each layer k
4: Set the perturbation parameter ε := γ

2maxX ‖M(X)‖F

5: Compute number of components needed for each
layer of the compressed network {R̂(k)}nk=1 ←
FBRC�

(
{M(k)}nk=1, {R(k)}nk=1, {ζ(k)}nk=1, ε

)
6: M̂← CNN-Project4

(
M, {R̂(k)}ni=1

)
7: Return the compressed convolutional neural net-

work M̂
returns a “good” compressed network.

Definition 4.2. [tensorization factor t
(k)
j] The ten-

sorization factors
{
t
(k)
j

}R(k)

j=1
of the kth layer is defined

as

t
(k)
j := max

f,g

j∑
r=1

∣∣∣λ(k)r

∣∣∣ ∣∣∣C̃(f,g)
r

∣∣∣ (1)

where λ
(k)
r is the rth largest value in the CP spectrum

of the weight tensor M(k) and C̃
(f,g)
r denotes the am-

plitude at the frequency (f, g).

Remark. The tensorization factor characterizes both
the generalizability and the expressive power of a given
network. For a fixed j, a smaller tensorization factor
indicates the original network is more compressible
and thus has a smaller generalization bound. How-
ever, a smaller tensorization factor may also indicate
that the given network do not possess enough expres-
sive power. Thus, during the compression of a neural
network with good generalizability, we need to find a
“good” j that generates a tensorization factor demon-
strating the balance between a small generalization gap

Understanding Generalization in Deep Learning via Tensor Methods

and high expressive power.

Definition 4.3. [tensor noise bound ξ
(k)
j] The tensor

noise bound
{
ξ
(k)
j

}R(k)

j=1
of the kth layer measures the

amplitudes of the remaining components after pruning

the ones with amplitudes smaller than the λ
(k)
j :

ξ
(k)
j := max

f,g

R(k)∑
r=j+1

∣∣∣λ(k)r

∣∣∣ ∣∣∣C̃(f,g)
r

∣∣∣ (2)

Remark. For a fixed j, a smaller tensor noise bound
indicates the original neural network’s weight tensor is
more low-rank and thus more compressible.

Definition 4.4. [layer cushion ζ(k)] As introduced
in Arora et al. (2018), the layer cushion of the kth layer
is defined to be the largest value ζ(k) such that for any
X (k) ∈ S,

ζ(k)
(∥∥∥M(k)

∥∥∥
F

/√
H(k)W (k)

)∥∥∥X (k)
∥∥∥
F
≤
∥∥∥M(k+1)

∥∥∥
F

(3)
Following Arora et al. (2018), layer cushion considers
how much the output tensor

∥∥M(k+1)
∥∥
F

grows w.r.t.

the weight tensor
∥∥M(k)

∥∥
F

and the input
∥∥X (k)

∥∥
F
.

Remark. As introduced in Arora et al. (2018), the
layer cushion considers how much smaller the output∥∥X (k+1)

∥∥
F

of the kth layer (after activation) compares

with the product between the weight tensor
∥∥M(k)

∥∥
F

and the input
∥∥X (k)

∥∥
F
. Note that our layer cushion

can be larger than 1 if models use batchnorm, and
larger layer cushions will render smaller generalization
bounds as also shown in (Arora et al., 2018).

Our proposed properties, orthogonal to the interlayer
properties introduced in (Arora et al., 2018), provide
better measurements of the compressibility in each
individual convolutional layer via the use of tensor
analysis and Fourier analysis, and thus lead to a tighter
bound of the layer-wise error propagation.

4.3 Generalization Guarantee of CNNs

Based on Algorithm 1 and our proposed properties in
section 4.2, we obtain a generalization bound for the
compressed convolutional neural network M̂ and, in
section 5, we will evaluate this bound explicitly.

Theorem 4.5 (Main Theorem). For any convolu-
tional neural network M with n layers, Algorithm 1
generates a compressed CNN M̂ such that with high
probability, the expected error L0(M̂) is bounded by
the empirical margin loss L̂γ(M) (for any margin γ ≥ 0)

and a complexity term defined as follows

L0(M̂) ≤ L̂γ(M)+

Õ


√∑n

k=1 R̂
(k)(s(k) + o(k) + k

(k)
x k

(k)
y + 1)

m

 (4)

given that for all layer k, the number of components
R̂(k) in the compressed network satisfies that

R̂(k) = min
{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1t
(i)
j ≤ C

}
(5)

with C =
γ

2nmaxX∈S ‖M(X)‖F
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

where t
(k)
j , ξ

(k)
j and ζ(k) are data dependent measurable

properties — tensorization factor, tensor noise bound,
and layer cushion of the kth layer in definitions 4.2, 4.3
and 4.4 respectively.

Remark. How well the compressed neural network ap-
proximates the original network is related to the choice
of R̂(k). Inside equation (5), C is some value indepen-
dent of the choice of j in the inequality. Therefore, the
number of components for the kth layer in the com-
pressed network, R̂(k), is the smallest j ∈ [R(k)] such

that the inequality ξ
(k)
j Πn

i=k+1t
(i)
j ≤ C holds. Hence,

smaller tensorization factors and tensor noise bounds
will make the LHS smaller, and larger layer cushions
will make the RHS, C, larger. As a result, if the above
inequality for each layer can be satisfied by a smaller
j, the obtained generalization bound will be tighter as
we can obtain a smaller R̂(k).

Analysis of generalization bounds in Theo-
rem 4.5: This proposed generalization error bound is
proportional to the number of components in the CP
layers of the compressed neural network. Therefore,
when the original neural network is highly compressible
or very low-rank, the number of components needed will
be lower, which thus renders a smaller generalization
error bound.

The proof of Theorem 4.5 is in Appendix Section D),
and the proof sketch is as follows.

Proof sketch of Theorem 4.5: We first establish
that the difference of the outputs between the com-
pressed CNN M̂ and the original CNN M is bounded
by γ

2maxX ‖M(X)‖F
using Lemma D.5. Then we show

the covering number of the compressed network M̂ is
Õ(d) via Lemma D.7, where d denotes the total number
of parameters in the compressed network. Bounding
the covering number of CNNs with CPL to be of or-
der Õ(d) is non-trivial as we need careful handlings of
the error propagations to avoid a dependence on the
product of number of components. After bounding the

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Table 1: Comparison of the training and test ac-
curacies between neural networks (NNs) with CPL
(CP-VGG-16, CP-WRN-28-10) and traditional NNs
(VGG-16. WRN-28-10) on CIFAR10 dataset.

Dataset

Acc. Architect. VGG-16 WRN-28-10
with CPL without CPL with CPL without CPL

CIFAR10
Training 100% 100% 100% 100%

Test 93.68% 92.64%† 95.09% 95.83%∗

CIFAR100
Training 100% 100% 100% 100%

Test 71.8% 70.84%‡ 76.36% 79.5%∗ 2

Table 2: Test accuracy on CIFAR10 with various label
corruptions rates (CR).

Network / CR 0.2 0.4 0.6 0.8

CIFAR10
VGG-16 68.76 44.26 24.89 13.21
CP-VGG-16 71.09 51.76 35.60 20.06

CIFAR100
VGG-16 50.94 30.46 13.6 1.11
CP-VGG-16 54.51 34.13 15.23 3.10

covering number, the rest of the proof follows from con-
ventional learning theory and Theorem 2.1 in (Arora
et al., 2018).

5 Experiments

Architecture and optimization setting. The ar-
chitectures we use in the experiments consist of VGG-
16 (Simonyan and Zisserman, 2014), CP-VGG-16,
WRN-28-10 (Zagoruyko and Komodakis, 2016) and
CP-WRN-28-10 (all with batch normalization). De-
tails of the optimization settings are in A.1.

5.1 Evaluation of Proposed Properties and
Generalization Bounds

Tighter Generalization Bound. As shown in
Fig 2a, our bound is much tighter than the the state-
of-the-art bound achieved in Arora et al. (2018). The
effective number of parameters in Arora et al. (2018) is
orders of magnitude tighter than other capacity mea-
sures, such as `1,∞ (Bartlett and Mendelson, 2002),
Frobenius (Neyshabur et al., 2015b), spec `1,2 (Bartlett
et al., 2017) and spec-fro (Neyshabur et al., 2017a) as
shown in their Figure 4 Left. The use of a more effec-
tive and practical compression approach allows us to
achieve better compression (detailed discussions are in
Appendix Section A.2).

Generalization Bounds Correlated with Test
Error. We demonstrate how our generalization bound
in Theorem 4.5 is practically useful in characterizing
the generalizability during training. In Figure 2b, (1)
our calculated generalization bound matches well with
the trend of the generalization error: after 140 epochs,
the training error is almost zero but the test error con-
tinues to decrease in later epochs and our computed
generalization bound captures these improvements es-
pecially well since epoch 150; (2) our calculated bound

2†https://github.com/kuangliu/pytorch-cifar
‡https://github.com/geifmany/cifar-vgg
∗ Zagoruyko and Komodakis (2016)

SOTA Arora et al. Ours
0

1

2

·107

(a) Bound comparison

100 200 300

12

14

16

Epoch

G
en

er
al

iz
at

io
n

b
ou

n
d

our bound

50 100 150 200 250 300

8

10

T
es

t
er

ro
r

(%
)

our bound
test error

(b) Generalization bound

Figure 2: (a) Effective number of parameters (pro-
portional to the generalization bound) compared with
the one derived by the current state-of-the-art (Arora
et al., 2018) for VGG-16. (b) Generalization bound
vs test error for CP-VGG-16. Two y-axes are applied
for better visualization of the comparisons between the
bound and the actual generalization/test error.

in Figure 2b for the well-trained CP-VGG-16 at epoch
300 is around 10 while the total number of parameters
in this CP-VGG-16 is around 14.7M.

Compressibility of CPL: Property Evaluation.
We evaluate and compare our proposed properties mea-
suring compressibility, tensorization factor (TF), ten-
sor noise bound (TNB) and layer cushion (LC), on
two different sets of models — well-trained models
with small generalization errors (thus expected to ob-
tain small {R̂(k)}nk=1) vs. corrupted models with large
generalization errors (thus expected to obtain large
{R̂(k)}nk=1). In Figure 3(a), the number of components

{R̂(k)}nk=1 returned by the compression algorithm is
much smaller for well-trained models than that for
corrupted models, which indicates that well-trained
models have higher compressibility compared to cor-
rupted ones as expected in our theory. Moreover, in
Figure 3(b-d), we can indeed tell if the model is trained
using “good” data or corrupted data by evaluating our
proposed properties.

2 4 6 8 10 12

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

layers

well trained
corrupted

(a) Rank r(k)

2 4 6 8 10 12

2

4

6

layers

well trained
corrupted

(b) TF t
(k)
j

2 4 6 8 10 12

0.00

0.25

0.50

0.75

1.00

1.25

1.50

·10−2

layers

well trained
corrupted

(c) TNB ξ
(k)
j

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

1.2

layers

well trained
corrupted

(d) LC ζ(k)

Figure 3: Comparison of our proposed properties
across layers between well-trained and corrupted CP-
VGG-16. The statistics are obtained from 200 models
trained under the same optimization settings.

We further apply Algorithm 1 to these well-trained
and corrupted models to investigate the consistency
between the compression performance of Algorithm 1
and our theoretical results: on average, Algorithm 1
achieves a 31.83% compression rate on the well-trained
models, but only an 89.7% compression rate on the
corrupted models (lower compression rate is better as it
implies a smaller generalization error bound). Clearly,

Understanding Generalization in Deep Learning via Tensor Methods

Table 3: Average test accuracy on MNIST over the last ten epochs. Baseline simply denotes training a neural
network on the corrupted training set without further processing. PairFlip denotes that the label mistakes can
only happen within very similar classes and Symmetric denotes that the label mistakes may happen across
different classes uniformly (Han et al., 2018).

Task: Rate
Baseline
(Han et al., 2018)

F-correction
(Han et al., 2018)

MentorNet
(Jiang et al., 2017)

CT
(Han et al., 2018)

CT + CPL

PairFlip: 45% 56.52± 0.55 0.24± 0.03 80.88± 4.45 87.63± 0.21 92.43± 0.01
Symmetric: 50% 66.05± 0.61 79.61± 1.96 90.05± 0.30 91.32± 0.06 94.70± 0.05
Symmetric: 20% 94.05± 0.16 98.80± 0.12 96.70± 0.22 97.25± 0.03 97.91± 0.01

the low-rank structures in well-trained models allow
them to be compressed much further, consistent with
our theoretical analysis of Algorithm 1.

5.2 Generalization Improvement on Real
Data Experiments

Expressive Power of Neural Networks with CP
layers. As shown in Table 1, neural networks equipped
with CP layers maintain competitive training and test
accuracies.

Generalization Improvements under Label
Noise. The memorization effect is directly linked to
the deteriorated generalization performance of the net-
work (Zhang et al., 2017). Therefore we study how our
proposed CPL structure affects the generalizability of
a neural network with presence of strong memorization
effect — under label noise setting. We assign random
labels to a proportion of the training data and train the
neural network until convergence. Then we test the net-
work’s performance on the uncorrupted test data. As
shown in Table 2, CP-VGG consistently achieves better
generalization performance compared to the traditional
VGG under various label corruption ratios.

Our CPL, combined with co-teaching (CT) (Han et al.,
2018) (the SOTA method for defeating label noise)
further improves its performance as shown in Table 3
where we also compare our method CT+CPL against
other different label-noise methods (Han et al., 2018).
Besides, in Figure 5, our method CT+CPL consis-
tently outperforms the SOTA method (CT) with vari-
ous choices of number of components.

5.3 CPL Is Natural for Compression

Applying CPL for neural network compression is ex-
tensively studied in Su et al. (2018), therefore we focus
on explaining why CPL is natural for compression and
analyzing the compressibility of CPLs.

Low Rankness in Neural Networks with CPL vs
Traditional Neural Networks. The low rankness of
a CP-VGG and a traditional VGG is demonstrated by
Figure 4 where we display the ratios of the number of
components with amplitudes above a given threshold
0.2. We clearly see that VGG with CPL exhibits low
rankness consistently for all layers while the traditional
VGG is not low-rank. Notice that the CP spectrum in

each CPL is normalized by dividing the largest ampli-
tude and the CP components of traditional VGG are
obtained via explicit CP decompositions with recon-
struction error set to 1e-3.

2 4 6 8 10 12
0

0.5

1

layers k

%
of

co
m

p
on

en
ts
≥

0.
2

VGG
CP-VGG

(a) VGG-16

0 5 10 15 20 25
0

0.5

1

layers k

%
of

co
m

p
o
n
en

ts
≥

0.
2

WRN
CP-WRN

(b) WRN-28-10

Figure 4: Comparison of low rankness (compressibil-
ity) across layers between neural networks with CPL
and standard neural networks

No Fine-tuning Needed for CPL. Many works us-
ing tensor methods for neural network compression
require computationally expensive fine-tuning (e.g. 200
epochs end-to-end training on the compressed net-
works) to recover the compressed network’s test per-
formance Jaderberg et al. (2014); Denton et al. (2014);
Lebedev et al. (2014); Kim et al. (2015); Garipov et al.
(2016); Wang et al. (2018); Su et al. (2018). However,
the compression we perform does not require any fine
tuning since it directly prunes out the components with
amplitudes below some given threshold. In experiments,
we compress a CP-WRN-28-10, which has the same
number of parameters as WRN-28-10, by 8× with only
0.56% performance drop on CIFAR10 image classifica-
tion. The full compression results for CP-WRN-28-10
under different cutting-off thresholds are shown in Ta-
ble 5, where components whose amplitudes are under
the cutting-off threshold are pruned.

6 Conclusion and Discussion

In this work, we derive a practical compression-based
generalization bound via the proposed layerwise struc-
ture CP layers, and demonstrate the effectiveness of
using tensor methods in theoretical analyses of deep
neural networks. With a series of benchmark experi-
ments, we show the practical usage of our generalization
bound and the effectiveness of our proposed structure
CPL in terms of compression and generalization. A
possible future direction is studying the effectiveness
of other tensor decomposition methods such as Tucker
or Tensor Train.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Acknowledgement

This research was supported by startup fund from
Department of Computer Science of University of
Maryland, National Science Foundation IIS-1850220
CRII Award 030742- 00001, DOD-DARPA-Defense
Advanced Research Projects Agency Guaranteeing AI
Robustness against Deception (GARD), Laboratory
for Physical Sciences at University of Maryland. This
research was also supported in part by JSPS Kakenhi
(26280009, 15H05707 and 18H03201), Japan Digital
Design and JST-CREST. Huang was also supported by
Adobe, Capital One and JP Morgan faculty fellowships.
We thank Ziyin Liu for supporting this research with
great advice and efforts. We thank Jin-peng Liu, Kai
Wang, and Dongruo Zhou for helpful discussions and
comments. We thank Jingxiao Zheng for supporting
additional computing resources.

References

Anima Anandkumar, Rong Ge, and Majid Janza-
min. Guaranteed non-orthogonal tensor decomposi-
tion via alternating rank-1 updates. arXiv preprint
arXiv:1402.5180, 2014a.

Animashree Anandkumar, Rong Ge, Daniel Hsu,
Sham M Kakade, and Matus Telgarsky. Tensor de-
compositions for learning latent variable models. The
Journal of Machine Learning Research, 15(1):2773–
2832, 2014b.

Animashree Anandkumar, Rong Ge, and Majid Janza-
min. Learning overcomplete latent variable models
through tensor methods. In Conference on Learning
Theory (COLT), June 2015.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and
Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. 2018.

Peter L Bartlett and Shahar Mendelson. Rademacher
and gaussian complexities: Risk bounds and struc-
tural results. Journal of Machine Learning Research,
3(Nov):463–482, 2002.

Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Al-
most linear vc dimension bounds for piecewise poly-
nomial networks. In Advances in Neural Information
Processing Systems, pages 190–196, 1999.

Peter L Bartlett, Dylan J Foster, and Matus J Tel-
garsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information
Processing Systems, pages 6240–6249, 2017.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann
LeCun, and Rob Fergus. Exploiting linear structure
within convolutional networks for efficient evalua-

tion. In Advances in neural information processing
systems, pages 1269–1277, 2014.

Simon S Du and Jason D Lee. On the power of over-
parametrization in neural networks with quadratic
activation. arXiv preprint arXiv:1803.01206, 2018.

Gintare Karolina Dziugaite and Daniel M Roy. Com-
puting nonvacuous generalization bounds for deep
(stochastic) neural networks with many more pa-
rameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Timur Garipov, Dmitry Podoprikhin, Alexander
Novikov, and Dmitry Vetrov. Ultimate tensoriza-
tion: compressing convolutional and fc layers alike.
arXiv preprint arXiv:1611.03214, 2016.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir.
Size-independent sample complexity of neural net-
works. arXiv preprint arXiv:1712.06541, 2017.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir.
Size-independent sample complexity of neural net-
works. In Sébastien Bubeck, Vianney Perchet,
and Philippe Rigollet, editors, Proceedings of the
31st Conference On Learning Theory, volume 75 of
Proceedings of Machine Learning Research, pages
297–299. PMLR, 06–09 Jul 2018. URL http://

proceedings.mlr.press/v75/golowich18a.html.

Alon Gonen and Shai Shalev-Shwartz. Fast rates for
empirical risk minimization of strict saddle problems.
In COLT, 2017.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural net-
works with extremely noisy labels. In Advances in
Neural Information Processing Systems, pages 8536–
8546, 2018.

Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with
pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

Moritz Hardt, Benjamin Recht, and Yoram Singer.
Train faster, generalize better: Stability of stochastic
gradient descent. In Proceedings of the 33rd Inter-
national Conference on International Conference on
Machine Learning - Volume 48, ICML’16, pages 1225–
1234. JMLR.org, 2016. URL http://dl.acm.org/

citation.cfm?id=3045390.3045520.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian.
Nearly-tight vc-dimension bounds for piecewise linear
neural networks. In Conference on Learning Theory,
pages 1064–1068, 2017.

http://proceedings.mlr.press/v75/golowich18a.html
http://proceedings.mlr.press/v75/golowich18a.html
http://dl.acm.org/citation.cfm?id=3045390.3045520
http://dl.acm.org/citation.cfm?id=3045390.3045520

Understanding Generalization in Deep Learning via Tensor Methods

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal ap-
proximators. Neural networks, 2(5):359–366, 1989.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Furong Huang, UN Niranjan, Mohammad Umar Ha-
keem, and Animashree Anandkumar. Online tensor
methods for learning latent variable models. Journal
of Machine Learning Research, 16:2797–2835, 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man. Speeding up convolutional neural networks with
low rank expansions. arXiv preprint arXiv:1405.3866,
2014.

Daniel Jakubovitz, Raja Giryes, and Miguel RD Ro-
drigues. Generalization error in deep learning. arXiv
preprint arXiv:1808.01174, 2018.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. Mentornet: Learning data-driven cur-
riculum for very deep neural networks on corrupted
labels. arXiv preprint arXiv:1712.05055, 2017.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua
Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Gener-
alization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Tae-
lim Choi, Lu Yang, and Dongjun Shin. Compres-
sion of deep convolutional neural networks for fast
and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

Tamara G Kolda and Brett W Bader. Tensor decompo-
sitions and applications. SIAM review, 51(3):455–500,
2009.

Jean Kossaifi, Aran Khanna, Zachary Lipton, Tom-
maso Furlanello, and Anima Anandkumar. Tensor
contraction layers for parsimonious deep nets. In
Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2017 IEEE Conference on, pages
1940–1946. IEEE, 2017.

Jean Kossaifi, Yannis Panagakis, Anima Anandku-
mar, and Maja Pantic. Tensorly: Tensor learning in
python. The Journal of Machine Learning Research,
20(1):925–930, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

Joseph B Kruskal. Rank, decomposition, and unique-
ness for 3-way and n-way arrays. Multiway data
analysis, pages 7–18, 1989.

Ilja Kuzborskij and Christoph H. Lampert. Data-
dependent stability of stochastic gradient descent. In
ICML, 2018.

John Langford and Rich Caruana. (not) bounding
the true error. In Advances in Neural Information
Processing Systems, pages 809–816, 2002.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba,
Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned
cp-decomposition. arXiv preprint arXiv:1412.6553,
2014.

Jialin Li and Furong Huang. Guaranteed simultane-
ous asymmetric tensor decomposition via orthog-
onalized alternating least squares. arXiv preprint
arXiv:1805.10348, 2018.

David A McAllester. Pac-bayesian model averaging.
In Proceedings of the twelfth annual conference on
Computational learning theory, pages 164–170. ACM,
1999a.

David A McAllester. Some pac-bayesian theorems.
Machine Learning, 37(3):355–363, 1999b.

Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs.
shallow networks: An approximation theory per-
spective. Analysis and Applications, 14(06):829–848,
2016.

Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati
Srebro. Path-sgd: Path-normalized optimization
in deep neural networks. In Advances in Neural
Information Processing Systems, pages 2422–2430,
2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Sre-
bro. Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401,
2015b.

Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nathan Srebro. A pac-bayesian ap-
proach to spectrally-normalized margin bounds for

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

neural networks. arXiv preprint arXiv:1707.09564,
2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural
Information Processing Systems, pages 5947–5956,
2017b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojana-
palli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in
generalization of neural networks. arXiv preprint
arXiv:1805.12076, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W,
2017.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The
singular values of convolutional layers. arXiv preprint
arXiv:1805.10408, 2018.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël
Mathieu, Rob Fergus, and Yann LeCun. Over-
feat: Integrated recognition, localization and detec-
tion using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and
Miguel RD Rodrigues. Generalization error of in-
variant classifiers. arXiv preprint arXiv:1610.04574,
2016.

Jiahao Su, Jingling Li, Bobby Bhattacharjee, and
Furong Huang. Tensorial neural networks: General-
ization of neural networks and application to model
compression. https://arxiv.org/pdf/1805.10352.pdf,
2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang,
and Vaneet Aggarwal. Wide compression: Tensor
ring nets. learning, 14(15):13–31, 2018.

Huan Xu and Shie Mannor. Robustness and general-
ization. Machine learning, 86(3):391–423, 2012.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and
understanding convolutional networks. In Euro-
pean conference on computer vision, pages 818–833.
Springer, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learn-
ing requires rethinking generalization. International
Conference on Learning Representations, 2017.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P
Adams, and Peter Orbanz. Non-vacuous gener-
alization bounds at the imagenet scale: a pac-
bayesian compression approach. arXiv preprint
arXiv:1804.05862, 2018.

	Introduction
	Related Works
	Notations and Preliminaries
	CNNs with CPL: Compressibility and Generalization
	Compression of a CNN with CPL
	Characterizing Compressibility of CNN with CPL: Network Properties
	Generalization Guarantee of CNNs

	Experiments
	Evaluation of Proposed Properties and Generalization Bounds
	Generalization Improvement on Real Data Experiments
	CPL Is Natural for Compression

	Conclusion and Discussion
	Additional Experimental Results
	Architecture and optimization setting
	Generalization bounds comparison with arora2018stronger
	Neural networks with CPL are natural for compression
	Improved Generalization Achieved by CPL
	Compressibility of CPL: Property Evaluation CPL

	Common Definitions and Propositions
	Multidimensional Discrete Fourier Transform (MDFT)
	CP decomposition
	2D-Convolutional Layer in Neural Networks

	CP Layers in Tensorial Neural Networks
	CP 2D-convolutional Layer
	Higher-order CP Fully-connected Layer
	Higher-order 2D-convolutional layer

	Convolutional Neural Networks: Compressibility and Generalization
	Complete Proofs of Convolutional Neural Networks
	Covering Number Analysis for Convolutional Neural Network

	Fully Connected Networks: Compressibility and Generalization
	Compression of a FC Network with CPL
	Characterizing Compressibility of FC Networks with CPL
	Generalization Guarantee of Fully Connected Neural Networks
	Complete Proofs of Fully Connected Neural Networks

	Neural Networks with Skip Connections
	Problem Setup
	Generalization Guarantee of Compressed Network Proposed
	Complete Proofs of Neural Networks with Skip Connection

	Additional Algorithms and Algorithmic Details

