
Communication-Efficient Distributed Optimization in Networks with
Gradient Tracking and Variance Reduction

Boyue Li Shicong Cen Yuxin Chen Yuejie Chi
Carnegie Mellon University Carnegie Mellon University Princeton University Carnegie Mellon University

Abstract

Due to the imminent need to alleviate
the communication burden in multi-agent
and federated learning, the investigation of
communication-efficient distributed optimiza-
tion algorithms for empirical risk minimiza-
tion has flourished recently. A large fraction
of existing algorithms are developed for the
master/slave setting, relying on the presence
of a central parameter server.

This paper focuses on distributed optimiza-
tion in the network setting (also known as
the decentralized setting), where each agent is
only allowed to aggregate information from its
neighbors over a graph. By properly adjust-
ing the global gradient estimate via a track-
ing term, we first develop a communication-
efficient approximate Newton-type method,
called Network-DANE, which generalizes the
attractive DANE algorithm to decentralized
networks. Our key algorithmic ideas can
be applied, in a systematic manner, to ob-
tain decentralized versions of other mas-
ter/slave distributed algorithms. Notably, we
develop Network-SVRG/SARAH, which employ
stochastic variance reduction at each agent
to accelerate local computations. We estab-
lish linear convergence of Network-DANE and
Network-SVRG for strongly convex losses, and
Network-SARAH for quadratic losses, which
shed light on the impact of data homogene-
ity, network connectivity, and local averag-
ing upon the rate of convergence. Numerical
evidence is provided to demonstrate the ap-
pealing performance of our algorithms over
competitive baselines, in terms of both com-
munication and computation efficiency.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

1 Introduction

Distributed optimization has been a classic topic (Bert-
sekas and Tsitsiklis, 1989), yet is attracting significant
attention recently in machine learning due to its numer-
ous emerging applications such as distributed training
(Boyd et al., 2011), multi-agent learning (Nedic et al.,
2010), and federated learning (Konečnỳ et al., 2015,
2016; McMahan et al., 2017). Broadly speaking, there
are two distributed settings that have received wide
interest: 1) the master/slave setting, which assumes
the existence of a central parameter server that can
perform information aggregation and sharing with all
agents; and 2) the network setting — also known as
the decentralized setting — where each agent is only
permitted to communicate with its neighbors over a
locally connected network.

Many algorithms have been developed for the mas-
ter/slave setting to improve communication efficiency,
including deterministic algorithms such as one-shot pa-
rameter averaging (Zhang et al., 2012), CoCoA (Smith
et al., 2018), DANE (Shamir et al., 2014), CEASE
(Fan et al., 2019), and stochastic algorithms such as
distributed SGD (Recht et al., 2011) and distributed
SVRG (Lee et al., 2017; Konečnỳ et al., 2015; Cen
et al., 2019). In comparison, the network setting is
substantially less explored. It is therefore natural to
ask whether one can adapt more appealing algorithmic
ideas to the network setting — particularly for network
topology with a high degree of locality — without com-
promising the convergence guarantees attainable in the
master/slave counterparts.

1.1 Our Contributions

This paper investigates the problem of empirical risk
minimization in the network setting, with the aim of
achieving communication and computation efficiency
simultaneously. We develop communication-efficient
decentralized (stochastic) optimization algorithms with
primal-only formulations, with the assistance of gra-
dient tracking. The proposed algorithmic ideas ac-
commodate both approximate Newton-type methods
and stochastic variance-reduced methods with provable
convergence guarantees.

Communication-Efficient Distributed Optimization in Networks

We start by studying an approximate Newton-type
method called DANE (Shamir et al., 2014), which is
one of the most popular communication-efficient algo-
rithms to solve empirical risk minimization. However,
DANE was only designed for the master/slave setting
in its original form. The main challenge in extending
such an algorithm to the network setting is to track
and adapt a faithful estimate of the global gradient
at each agent, despite the lack of centralized informa-
tion aggregation. Towards this end, we leverage the
powerful idea of dynamic average consensus in control
(Zhu and Martínez, 2010) to track and correct the lo-
cally aggregated gradients at each agent — a scheme
commonly referred to as gradient tracking. We then
employ the corrected gradient in local computation,
according to the subroutine adapted from DANE. This
simple idea leads to Network-DANE, which generalizes
the approximate Newton-type method DANE to the
network setting, without the need of communicating
the Hessians.

Our ideas for designing Network-DANE can be extended,
in a systematic manner, to obtain decentralized ver-
sions of other algorithms developed for the master/slave
setting, by modifying the local computation step prop-
erly. As a notable example, we develop Network-SVRG,
which performs variance-reduced stochastic optimiza-
tion locally to enable further computational savings
(Johnson and Zhang, 2013). The same approach can be
applied to other distribute stochastic variance-reduced
methods such as SARAH (Nguyen et al., 2017) to ob-
tain Network-SARAH.

The proposed algorithms achieve an intriguing trade-
off between communication and computation efficiency.
During each iteration, each agent only communicates
the parameter and the gradient estimate to its neigh-
bors, and is therefore communication-efficient globally;
moreover, the local subproblems at each agent can be
solved efficiently with accelerated or variance-reduced
gradient methods, and is thus computation-efficient
locally. Theoretically, we establish the linear conver-
gence of Network-DANE and Network-SVRG for smooth
strongly convex losses, and the linear convergence of
Network-SARAH for quadratic losses, using the method
of Lyapunov functions to handle the tight coupling of
optimization and network consensus errors.

Our results shed light on the impact of data homogene-
ity and network connectivity upon the rate of conver-
gence; in particular, the proposed algorithms provably
obtain faster convergence if the local data become more
similar. When the network exhibits a high degree of
locality, we show that by allowing multiple rounds of
local mixing within each iteration, an improved overall
communication complexity can be achieved as it ac-
celerates the rate of convergence. Extensive numerical
experiments are provided to corroborate our theoretical
findings, and demonstrate the practical efficacy of the

proposed algorithms over competitive baselines.

1.2 Related Work

First-order methods are of core interest to big data
analytics due to their superior scalability. However, it
is well-known that distributed gradient descent (DGD)
suffers from a “speed” versus “accuracy” dilemma when
naïvely implemented in a decentralized setting (Nedić
et al., 2018). Various fixes have been proposed to ad-
dress this issue, including the pioneering work such
as EXTRA (Shi et al., 2015) and NEXT (Di Lorenzo
and Scutari, 2016). Similar gradient tracking ideas
(Zhu and Martínez, 2010) have been incorporated to
adjust DGD to ensure its linear convergence using a
constant step size (Nedić et al., 2017; Qu and Li, 2018;
Li et al., 2019b; Scutari and Sun, 2019; Xin et al.,
2019b). The current paper is inspired by the use of
gradient tracking in these early results. Our paper
implements and verifies the effectiveness of gradient
tracking for algorithms that involve approximate New-
ton and variance reduction steps, which are far from
straightforward and require significant efforts. Dur-
ing the preparation of this paper, it was brought to
our attention that the SONATA algorithm (Sun et al.,
2019b), which also applies gradient tracking with con-
vergence guarantees, can be specialized to obtain the
same local sub-problem studied in Network-DANE, up
to different mixing approaches.

Scaman et al. (2017) proposed a multi-step dual accel-
erated (MSDA) method for network-distributed opti-
mization, which is optimal within a class of black-box
procedures that satisfy the span assumption — the
parameter updates fall in the span of the previous esti-
mates and their gradients. Further optimal algorithms
are proposed by Uribe et al. (2017) and Scaman et al.
(2018) for loss functions that are not necessarily con-
vex or smooth. Their algorithms require knowledge of
the dual formulation. In contrast, our algorithms are
directly applied to the primal problem, which are more
friendly for problems whose dual formulations are hard
to obtain. Our algorithms also do not obey the span
assumption and therefore do not fall into the class of
procedures studied by Scaman et al. (2017).

Fan et al. (2019) recently proposed algorithm CEASE
extended DANE with an additional proximal term
in the objective function and strengthened its anal-
ysis. The connections between DANE and SVRG
observed by Konečnỳ et al. (2015) motivate the de-
velopment of Network-SVRG in this paper, which
can be viewed as replacing the local optimization of
Network-DANE with variance-reduced stochastic gradi-
ent methods. The same idea can be easily applied to
obtain network-distributed versions of other algorithms
such as Katyusha (Allen-Zhu, 2017). Compared with
decentralized SGD (Lan et al., 2017; Lian et al., 2017),
the proposed Network-SVRG/SARAH employ variance

Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi

reduction to achieve much faster convergence. We note
that variance-reduced methods have been adapted to
the network setting by Mokhtari and Ribeiro (2016);
Yuan et al. (2018); Sun et al. (2019a); Xin et al. (2019a);
however, they either have a large memory complexity
or impose substantial communication burdens.

Paper organization and notations. Section 2
introduces the problem formulation and presents
some preliminaries. Section 3 presents the proposed
network-DANE together with its theoretical guarantees.
Section 4 presents network-SVRG/SARAH, which apply
variance reduction to further reduce local computation.
We provide numerical experiments in Section 5 and
conclude in Section 6. Extra experiments and all proofs
are provided by Li et al. (2019a) due to space limits.
Throughout this paper, we use boldface letters to rep-
resent vectors and matrices. In addition, ‖A‖ denotes
the spectral norm of a matrix A, ‖a‖2 represents the `2
norm of a vector a, ⊗ stands for the Kronecker product,
and In denotes the identity matrix of dimension n.

2 Formulation and Preliminaries

Consider the empirical risk minimization problem:

minimize
x∈Rd

f(x) ,
1

N

N∑
i=1

`(x; zi), (1)

where x ∈ Rd represents the parameter to optimize,
`(x; zi) encodes certain empirical loss of x w.r.t. the
ith sample zi, and N denotes the total number of
samples. This paper primarily focuses on the case
where the function `(·; z) is both convex and smooth
for any given z, although we shall also study nonconvex
problems in numerical experiments.

In a distributed optimization framework, the data sam-
ples are distributed over n agents. For simplicity, we
assume throughout that data samples are split into
disjoint subsets of equal sizes. The jth local data set,
represented byMj , thus contains m , N/n samples.
As such, the global loss function can alternatively be
represented by

f(x) =
1

n

n∑
j=1

fj(x), with fj(x) ,
1

m

∑
z∈Mj

`(x; z). (2)

Here, fj(x) denotes the local loss function at the jth
agent (1 ≤ j ≤ n). In addition, there exists a network
— represented by an undirected graph G of n nodes —
that captures the local connectivity across all agents.
More specifically, each node in G represents an agent,
and two agents are allowed to exchange information
only if there is an edge connecting them in G. The set
of neighbors of the jth agent over G is denoted by Nj .
The goal is to minimize f(·) in a decentralized manner,
subject to the aforementioned network-based communi-

cation constraints. Before continuing, we find it helpful
to introduce and explain two important concepts.

Mixing. Mathematically, the mixing of informa-
tion between neighboring nodes is often character-
ized by a mixing or gossiping matrix, denoted by
W = [wij]1≤i,j≤n ∈ Rn×n. More specifically, this
matrix satisfies

W>1n = 1n and W1n = 1n, (3)

where 1n ∈ Rn is the all-one vector. The spectral
quantity, which we call the mixing rate,

α0 , ‖W − 1
n1n1

>
n ‖ ∈ [0, 1) (4)

dictates how fast information mixes over the network.
As an example, in a fully-connected network, one can
attain α0 = 0 by setting W = 1

n1n1
>
n . Comprehensive

bounds on 1/(1−α0) for various graphs are provided by
Nedić et al. (2018). For instance, one has 1/(1−α0) � 1
with high probability for an Erdös-Rényi random graph,
as long as the edge between each pair of nodes is con-
nected independently with probability p = O(log n/n).

Dynamic average consensus. Assume that each
agent generates some time-varying quantity r

(t)
j

(e.g. the current local parameter estimate). We
are interested in tracking the dynamic average
1
n

∑n
j=1 r

(t)
j = 1

n1
>
n r

(t) at each of the agents, where

r(t) = [r
(t)
1 , · · · , r(t)n]>. To accomplish this, Zhu and

Martínez (2010) proposed a simple tracking algorithm:
suppose each agent maintains an estimate q(t)j in the
tth iteration, then the network collectively adopts the
following update rule

q(t) = Wq(t−1) + r(t) − r(t−1), (5)

where q(t) = [q
(t)
1 , · · · , q(t)n]>. The first term Wq(t−1)

represents the standard information mixing opera-
tion, whereas the term r(t) − r(t−1) tracks the (time-
varying) temporal difference. A crucial property of
(5) is 1>n q

(t) = 1>n r
(t), which indicates that the aver-

age of {q(t)i }1≤i≤n dynamically tracks the average of
{r(t)i }1≤i≤n. We shall adapt this procedure in our algo-
rithmic development, in the hope of reliably tracking
the global gradients (i.e. the average of the local, and
often time-varying, gradients at all agents).

3 Network-DANE

In this section, we propose an algorithm called
Network-DANE (cf. Alg. 1), which generalizes DANE
(Shamir et al., 2014) to the network / decentralized
setting. This is accomplished by carefully coordinat-
ing the information sharing mechanism and employing
dynamic average consensus for gradient tracking.

Communication-Efficient Distributed Optimization in Networks

Algorithm 1 Network-DANE

1: input: initial parameter estimate x
(0)
j ∈ Rd (1 ≤

j ≤ n), regularization parameter µ.
2: initialization: set y

(0)
j = x

(0)
j , s(0)j = ∇fj(y(0)

j)
for all agents 1 ≤ j ≤ n.

3: for t = 1, 2, · · · do
4: for Agents 1 ≤ j ≤ n in parallel do
5: Set y(t),0

j = x
(t−1)
j and s

(t),0
j = s

(t−1)
j .

6: for k = 1, 2, . . . ,K do
7: Receive information y

(t),k−1
i and s

(t),k−1
i

from its neighbors i ∈ Nj .
8: Aggregate parameter estimates from neigh-

bors:

y
(t),k
j =

∑
i∈Nj

wjiy
(t),k−1
i , (6a)

s
(t),k
j =

∑
i∈Nj

wjis
(t),k−1
i . (6b)

9: end for
10: Set y(t)

j = y
(t),K
j , and update the global gra-

dient estimate by gradient tracking:

s
(t)
j = s

(t),K
j +∇fj

(
y
(t)
j

)
−∇fj

(
y
(t−1)
j

)︸ ︷︷ ︸
gradient tracking

. (7)

11: Update the parameter estimate by solving:

x
(t)
j = argmin

z∈Rd

{
fj(z)−

〈
∇fj(y(t)

j)− s
(t)
j , z

〉
+
µ

2

∥∥z − y
(t)
j

∥∥2
2

}
. (8)

12: end for
13: end for

3.1 Algorithm Development

Recall the DANE algorithm Shamir et al. (2014) de-
veloped for the master/slave setting. In DANE, each
agent performs an update using both the local loss
function fj(·) and the gradient ∇f(·) of the global loss
function. In the tth iteration, the jth agent solves
the following Newton-type problem to update its local
estimate x

(t)
j :

x
(t)
j = argmin

z ∈Rd

fj(z)−
〈
∇fj

(
x(t)

)
−∇f

(
x(t)

)
, z
〉

+
µ

2

∥∥z − x(t)
∥∥2
2
, (9)

where µ > 0 is a tuning parameter.1 Here, x(t) =
1
n

∑n
i=1 x

(t−1)
i and ∇f(x(t)) = 1

n

∑n
i=1∇fi(x(t)) are

the global estimate of the parameter and the gradient,
respectively, which can be obtained via the assistance

1In Shamir et al. (2014), the second term in (9) contains
an extra tuning parameter η̃ as ∇fj(x(t))− η̃∇f(x(t)). We
set η̃ = 1 without loss of generality following Fan et al.
(2019).

of a parameter server. In the network setting, however,
the agents can no longer compute (9) locally, due to
the absence of centralization enabled by the parameter
server. More specifically, the agents do not have access
to either x(t) or ∇f(x(t)), both of which are required
when solving (9). To address this lack of global infor-
mation, one might naturally wonder whether we can
simply replace global averaging by local averaging; that
is, replacing x(t) and ∇f(x(t)) by 1

|Nj |
∑
i∈Nj

x
(t−1)
i

and 1
|Nj |

∑
i∈Nj

∇fi(x(t−1)
i), respectively, at the jth

agent. However, this simple idea fails to guarantee
convergence at local agents. For instance, the local esti-
mation errors may stay unchanged (but nonvanishing)
— as opposed to converging to zero — as the itera-
tions progress, primarily due to imperfect information
sharing.

With this convergence issue in mind, our key idea is to
maintain an additional estimate of the global gradient
at each agent — denoted by s

(t)
j at the jth agent. This

additional gradient estimate is updated via dynamic
average consensus (7), in the hope of tracking the global
gradient at y(t)

j , i.e. ∇f(y(t)
j). Here, y(t)

j stands for the
parameter estimate obtained after local mixing in the
tth iteration (see Alg. 1 for details). As the algorithm
converges, y(t)

j is expected to reach consensus, allowing
s
(t)
j to converge to the true global gradient.

In addition, we also allow multiple rounds of mixing
within each iteration, i.e. (6), which is particularly
helpful to accelerate the convergence when the network
exhibits a high degree of locality. In effect, by applying
K rounds of mixing, we improve the mixing rate to

α = αK0 . (10)

It reduces the network setting to the master/slave
setting by setting K → ∞. As we shall see later,
choosing a proper (but not too large) K leads to a
desirable trade-off between consensus and optimization,
which helps improve the overall communication cost.

Armed with such improved global gradient estimates,
we propose to solve a modified local optimization sub-
problem (8) in Network-DANE, which approximates the
original Newton-type problem (9) by replacing∇f(x(t))

with the local surrogate s
(t)
j . The proposed local sub-

problem (8) is convex and can be solved efficiently
via, say, Nesterov’s accelerated gradient methods. The
whole algorithm is presented in Alg. 1.

3.2 Convergence Guarantees

In this subsection, we provide theoretical guarantees for
the convergence of Network-DANE under one or more
of the following assumptions.
Assumption 1 (strongly convex loss). The loss func-
tion fj(x) at each agent is strongly convex and smooth,

Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi

namely, σI � ∇2fj(x) � LI (1 ≤ j ≤ n) for some
quantities 0 < σ ≤ L, where κ = L/σ is the condition
number.
Assumption 2 (quadratic loss). The loss function
fj(x) at each agent is quadratic w.r.t. x.

We further introduce a key quantity (Cen et al., 2019;
Fan et al., 2019), called the homogeneity parameter,

β := max
1≤j≤n

βj , βj := sup
x∈Rd

∥∥∇2fj(x)−∇2f(x)
∥∥, (11)

which measures the similarity of data across agents.
Let the global optimizer of f(x) be

yopt := argmin
x∈Rd

f(x). (12)

We define the (nd)-dimensional vector x(t) by

x(t) :=
[
x
(t)>
1 , · · · ,x(t)>

n

]>
, (13)

and similarly define y(t) and s(t). The average of each
(nd)-dimensional vector x = [x>1 , · · · ,x>n]> is defined
by x = 1

n

∑
j xj ∈ Rd. In addition, we introduce the

distributed gradient ∇F (x) ∈ Rnd and the full gradient
∇f(x) ∈ Rnd of an (nd)-dimensional vector x as

∇F (x) := [∇f1(x1)
>, · · · ,∇fn(xn)>]>, (14a)

∇f(x) := [∇f(x1)
>, · · · ,∇f(xn)>]>. (14b)

To characterize the convergence behavior of our al-
gorithm, we need to simultaneously track several in-
terrelated error metrics: (1) the convergence error:∥∥y(t) − yopt

∥∥
2
; (2) the parameter consensus error:∥∥y(t)− 1n⊗ y(t)
∥∥
2
; and (3) the gradient estimation er-

ror:
∥∥s(t) −∇f(y(t))

∥∥
2
. The Network-DANE algorithm

is said to converge linearly with a rate ρ ∈ (0, 1) if there
exists some constant C > 0 such that for all t ≥ 1,

max
{√

n
∥∥y(t) − yopt

∥∥
2
,
∥∥y(t) − 1n ⊗ y(t)

∥∥
2
,

L−1
∥∥s(t) −∇f(y(t))

∥∥
2

}
≤ Cρt

holds. By properly setting the tuning parameter µ, we
can guarantee the linear convergence of Network-DANE.
This is formally supplied in Theorem 1 for quadratic ob-
jective functions, and in Theorem 2 for general smooth
and strongly convex objective functions.
Theorem 1 (Network-DANE for quadratic losses). Sup-
pose Assumptions 1 and 2 hold. Set µ such that
σ+µ ≥ 140L

(1−α)2
(
β
σ +1

)
, where α = αK0 . Network-DANE

converges linearly with a rate ρ1 upper bounded by

max

{
1 + θ1

2
, α+

140κ

1− α

(
σ + β

σ + µ

)
,
1 + α

2
+

2β

σ + µ

}
,

where θ1 given by

θ1 :=1− σ

σ + µ
+

L

L+ µ

β2

(σ + µ)(σ + µ− β) . (15)

Remark 1. θ1 is the convergence rate of DANE in the
master/slave setting (Shamir et al., 2014, Theorem 1).

We have spent no efforts to optimize the constants in
the theorem. In view of Theorem 1, if the network is
sufficiently connected (α = αK0 is small), or the data
are sufficiently homogeneous across the agents (β is
small), we can use a smaller parameter µ, which in
turn makes θ1 (defined in (15)) smaller and results in
a faster convergence rate. In summary, Network-DANE
takes more iterations to converge when α and β are
large. This is formalized by the following corollary.
Corollary 1. Instate the assumptions of Theorem 1,
and set µ + σ = 180L

(1−α)2 (
β
σ + 1). To reach ε-

accuracy, Network-DANE takes at most O(κ(β/σ +
1) log(1/ε)/(1 − α)2) iterations and O(K · κ(β/σ +
1) log(1/ε)/(1− α)2) communication rounds.

By Corollary 1, if we set the number of local aver-
aging rounds as K = 1 and α = α0, to reach ε-
accuracy, Network-DANE takes no more than O

(
κ(1 +

β/σ) log(1/ε)/(1 − α0)
2
)

iterations/communication
rounds. If the homogeneous parameter β � σ is on the
order of σ, this improves to O

(
κ log(1/ε)/(1 − α0)

2
)
,

which is much faster than the corrected DGD (Qu and
Li, 2018) with gradient tracking, which converges in
O(κ2 log(1/ε)/(1− α0)

2) iterations. The convergence
rate of Network-DANE degenerates to that of DGD (Qu
and Li, 2018) with gradient tracking under the worst
condition β � O(L). This observation highlights the
communication efficiency of Network-DANE by harness-
ing the homogeneity of data across different agents.

More interestingly, consider the case where K > 1,
where Network-DANE performs K rounds of communi-
cations per iteration. The total communication cost
to reach ε-accuracy, in terms of the native network
parameter α0, is O

(
K ·κ(1+β/σ) log(1/ε)/(1−αK0)2

)
.

Therefore, by judiciously choosing K, it is possible to
significantly improve the overall communication com-
plexity, especially when α0 is close to 1. For example,
by setting K � 1/ log(1/α0) = O(1/(1 − α0)), we
can ensure αK0 � 1/2 and reduce the communication
complexity to O

(
κ · (β/σ + 1) log(1/ε)/(1− α0)

)
, thus

improving the dependence with the graph topology.

With more refined analysis, we can show that
by setting K = O(log κ/(1 − α0)) so that α =
αK0 � 1/(2κ), Network-DANE takes no more than
O
(
(β2/σ2 + 1) log(1/ε)

)
iterations, and O

(
log κ ·

(β2/σ2 + 1) log(1/ε)/(1− α0)
)
communications rounds

to reach ε-accuracy for quadratic losses, which are
almost independent of κ when β = O(σ).

We now state the convergence rate of Network-DANE
for the strongly convex setting, which is weaker than
the rate for quadratic loss functions.
Theorem 2. Suppose Assumption 1 holds. Set µ such
that σ + µ ≥ 170κL

(1−α)2 , where α = αK0 . Network-DANE

Communication-Efficient Distributed Optimization in Networks

converges linearly with a rate ρ2 upper bounded by

max

{
1 + θ2

2
, α+

170κ

1− α

(
L

σ + µ

)
,
1 + α

2
+

2β

σ + µ

}
,

where θ2 is given by

θ2 := 1− σ

σ + µ
+

β

σ + µ

√
1−

(µ

σ + µ

)2
. (16)

Remark 2. θ2 is the convergence rate of DANE in the
master/slave setting (Fan et al., 2019, Theorem 3.1).

Comparing the expressions of θ1 and θ2, we clearly see
that one pays a price for covering more general loss
functions. The complexity of Network-DNAE is summa-
rized in Corollary 2, which is worse than Corollary 1.
Corollary 2. Under the same assumptions of Theo-
rem 2, set σ+µ = 180κL/(1−α)2. To reach ε-accuracy,
Network-DANE takes no more than O

(
κ2 log(1/ε)/(1−

α)2
)
iterations and O

(
K · κ2 log(1/ε)/(1− α)2

)
com-

munication rounds.

The above complexity of Network-DANE is quite pes-
simistic; numerical experiments in Section 5 have
suggested that the performance of Network-DANE is
rather insensitive to the condition number κ. Sim-
ilar to the quadratic case, by setting K appropri-
ately so that α = αK0 � 1/(2κ), Network-DANE takes
no more than O(κ(β/σ + 1) log(1/ε)) iterations and
O
(
log κ ·κ(β/σ+1) log(1/ε)/(1−α0)

)
communication

rounds to reach ε-accuracy for general strongly convex
losses. This again outperforms DGD with gradient
tracking when β = O(σ), highlighting the benefits of
extra averaging.
Remark 3. The quantity β can be fairly small if the
data sets across different agents are sufficiently similar.
Shamir et al. (2014) provided bounds on β with respect
to the sample size m if the data samples at all agents are
i.i.d., with `(x; z) in (2) satisfying 0 � ∇2`(x; z) � L
for all z. With probability at least 1−δ over the samples,
we have β <

√
32L2

m log nd
δ . Therefore, the convergence

of Network-DANE is better than DGD if the local data
size m is sufficiently large.
Remark 4. The homogeneity parameter β (11) mea-
sures the largest deviation of local Hessian from the
global Hessian. A refined analysis using local devia-
tion βj is possible by permitting different regularization
parameters µj in (8) for each agent.

4 Generalizing the Algorithm Design
with Variance Reduction

The design of Network-DANE suggests a systematic
approach to obtain decentralized versions of other algo-
rithms, which we illustrate by reducing local computa-
tion of Network-DANE using stochastic variance reduc-
tion methods. Stochastic variance reduction methods

are a popular class of stochastic optimization algo-
rithms, developed to allow for constant step sizes and
faster convergence in finite-sum optimization (John-
son and Zhang, 2013; Xiao and Zhang, 2014; Nguyen
et al., 2017). It is therefore natural to ask whether
such variance reduction techniques can be leveraged
in a network setting to further save local computation
without compromising communication.

Algorithm 2 Network-SVRG/SARAH
1: Replace the local optimization (8) of

Network-DANE by the following:
2: Input: y(t)

j , s(t)j , step size δ, number of local iter-
ations S.

3: Initialization: set u(t),0
j = y

(t)
j , v(t),0

j = s
(t)
j .

4: for s = 1, ..., S do
5: u

(t),s
j = u

(t),s−1
j − δv(t),s−1

j .
6: Sample z fromMj uniformly at random, then,

v
(t),s
j = ∇`(u(t),s

j ; z)−∇`(u(t),0
j ; z)

+ v
(t),0
j ; (SVRG) (17)

v
(t),s
j = ∇`(u(t),s

j ; z)−∇`(u(t),s−1
j ; z)

+ v
(t),s−1
j .(SARAH) (18)

7: end for
8: Choose the new parameter estimate x

(t)
j from

{u(t),1
j , · · · ,u(t),S

j } uniformly at random.

Inspired by the connection between DANE and SVRG
, we introduce Network-SVRG/SARAH in Alg. 2, a dis-
tributed variant of SVRG and SARAH tailored to the
decentralized setting, with the assistance of proper
gradient tracking. In particular, the inner loop of
SVRG (Johnson and Zhang, 2013) or SARAH (Nguyen
et al., 2017) is adopted in place of the local compu-
tation step (8) of Network-DANE, where the reference
to global gradient is replaced by s

(t)
j to calculate the

variance-reduced stochastic gradient. The convergence
analysis of Alg. 2 is more challenging due to the bi-
ased stochastic gradient involved in each local iteration.
Encouragingly, the theorem below establishes the lin-
ear convergence of Network-SVRG for strongly convex
losses, and of Network-SARAH for quadratic losses, as
long as β is sufficiently small and the number of mixing
rounds K is sufficiently large. Again, the constants are
not optimized in the theorem.

Theorem 3. Suppose that the sample loss `(x; z) is
convex and L-smooth w.r.t. x for all z. and Assump-
tion 1 holds. If β/σ ≤ 1/200, then by setting K such
that α = αK0 � 1/κ and S large enough, Network-SVRG
converges linearly. If Assumption 2 further holds,
Network-SARAH also converges linearly. To reach ε-
accuracy, Network-SVRG/SARAH take no more than
O
(
log(1/ε)

)
iterations and O

(
log κ log(1/ε)/(1−α0)

)

Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi

0 20 40 60 80 100
10−13

10−10

10−7

10−4

10−1

#iters

(f
(x̄

(t
)
)
−
f
?
)/
f
?

κ = 10

100 101 102 103 104

#grads/#samples

κ = 10

0 20 40 60 80 100

#iters

κ = 104

100 101 102 103 104

#grads/#samples

κ = 104

DANE ADMM EXTRA DGD Network-DANE Network-SVRG Network-SARAH

Figure 1: The relative optimality gap with respect to the number of iterations and gradient evaluations under
different conditioning κ = 10 (left two panels) and κ = 104 (right two panels) for logistic regression.

communication rounds.

It is straightforward to extend this idea to obtain decen-
tralized variants of other stochastic variance reduced
algorithms such as Katyusha (Allen-Zhu, 2017), by re-
placing the local computation step (8) with the inner
loop update rules of the stochastic methods of interest.
For the sake of brevity, this paper does not pursue such
“plug-and-play” extensions.

5 Numerical Experiments

In this section, we evaluate the performance of
Network-DANE and Network-SVRG/SARAH2 for solving
both strongly convex and nonconvex problems, in order
to demonstrate its appealing performance in terms of
communication-computation trade-offs. Throughout,
we set the number of agents to be n = 20. We use a
symmetric fastest distributed linear averaging (FDLA)
matrix (Xiao and Boyd, 2004) generated according to
the communication graph as the mixing matrix W for
aggregating x

(t)
j in (6). For aggregating s

(t)
j in (7), we

use a convex combination of I and W which leads to
more stable performance in practice.

Experiments for the strongly convex setting.
We conduct a synthetic numerical experiment on lo-
gistic regression. We generate connected random com-
munication graphs using an Erdös-Rènyi graph with
p = 0.3. The same random starting point x(0) and
mixing matrix W are used for all algorithms.

The loss function of each agent is given as

fi(x) = −
1

m

m∑
j=1

[
b
(j)
i log

(
1

1 + exp(x>a(j)
i)

)

+ (1− b(j)i) log

(
exp(x>a(j)

i)

1 + exp(x>a(j)
i)

)]
+
λ

2
‖x‖22,

2In our experiments, we use the last iterate u
(t),S
j as

the new parameter estimate, which is more practical. Code
is available at github.com/liboyue/Network-Distributed-
Algorithm.

where a(j)
i ∈ Rd and b(j)i ∈ {0, 1} are samples stored at

agent i. We generate m = 1000 i.i.d. random samples
from N (0, I) for each agent, and change the condition
number κ by changing λ. We generate data according
to b(j)i = I(1 + exp(−x0

>a(j)
i)) < 0.5) with a random

signal x0, then flip 5% of labels uniformly at random,
where I(·) denotes the indicator function.

We compute the relative optimality gap, given as
(f(x(t))− f?)/f?, where x(t) is the average parameter
of all agents at the tth iteration, and f? denotes the op-
timal value. We compare Network-DANE (Alg. 1) and
Network-SVRG/SARAH (Alg. 2) with DANE (Shamir
et al., 2014) and ADMM (Boyd et al., 2011),3 and two
decentralized gradient descent algorithms DGD (Qu
and Li, 2018) and EXTRA (Shi et al., 2015).

Fig. 1 shows the relative optimality gap with respect to
the number of iterations as well as the number of gradi-
ent evaluations under different conditioning κ = 10 and
κ = 104 for logistic regression. In both experiments,
Network-DANE and Network-SVRG/SARAH significantly
outperform DGD and EXTRA in terms of the num-
bers of communication rounds. Network-SVRG/SARAH
has similar communication rounds with ADMM but
only communicates locally. In both experiments,
Network-DANE is quite insensitive to the condition num-
ber, performing nearly as well as the centralized DANE
algorithm, but operates in a fully decentralized set-
ting. On the other hand, Network-SVRG/SARAH fur-
ther outperforms other algorithms in terms of gradi-
ent evaluations in most settings, especially for well-
conditioned cases. The performances of Network-SVRG
and Network-SARAH are almost indistinguishable.

Benefits of extra mixing. We conduct syn-
thetic experiments to investigate the communication-
computation trade-off observed in Section 3.2 when
employing multiple rounds of mixing within every it-

3We apply ADMM to the constrained optimization
problem, which amounts to the master/slave setting,
minxi,x

1
n

∑
fi(xi) s.t. xi = x. Note that ADMM can also

be applied to the network setting, which is not shown here
since our network algorithms already outperform ADMM
in the master/slave setting.

https://github.com/liboyue/Network-Distributed-Algorithm
https://github.com/liboyue/Network-Distributed-Algorithm

Communication-Efficient Distributed Optimization in Networks

0 20 40 60 80 100
10−12

10−9

10−6

10−3

100

#iters

(f
(x̄

(t
)
)
−

f
?
)/
f
?

Network-DANE

0 100 200 300 400 500

#communication rounds

Network-DANE

0 20 40 60 80 100

#iters

Network-SVRG

K = 1 K = 2 K = 5 K = 20 K = 50

0 100 200 300 400 500

#communication rounds

Network-SVRG

Figure 2: The relative optimality gap with respect to the number of iterations and communication rounds under
different rounds of mixing K for Network-DANE and Network-SVRG. The mixing rate of the graph is α0 = 0.922.

0 50 100 150 200

0.5

1

1.5

2

2.5

#iters

T
ra
in
in
g
lo
ss

0 50 100 150 200

0.2

0.4

0.6

0.8

1

#iters

T
es
ti
n
g
ac
cu
ra
cy

10−2 10−1 100 101 102 103

0.5

1

1.5

2

2.5

#grads/#samples
T
ra
in
in
g
lo
ss

10−2 10−1 100 101 102 103

0.2

0.4

0.6

0.8

1

#grads/#samples

T
es
ti
n
g
a
cc
u
ra
cy

ADMM DSGD Network-SVRG Network-SARAH

Figure 3: The training loss and testing accuracy with respect to the number of iterations (left two panels) and
gradient evaluations (right two panels) for different algorithms on the MNIST dataset.

eration, over a poorly-connected network with mixing
rate α0 = 0.907. We plot the relative optimality gap for
a linear regression problem with κ = 10, with respect to
the number of iterations and communication rounds for
Network-DANE and Network-SVRG, under different val-
ues of K. Fig. 2 shows the relative optimality gap with
respect to the number of iterations and communication
rounds for Network-DANE and Network-SVRG. Due to
poor connectivity, Network-DANE and Network-SVRG
fail to converge when K = 1 using moderate parame-
ters. However, by using a largerK, due to improvement
in consensus, both algorithms converge faster in terms
of the number of iterations. Notice that after a certain
threshold, further increasing K will not improve the
convergence rate in terms of communications. It is
clear there is a trade-off between convergence speed
and communication rounds, where a properly selected
K will lead to an overall performance gain.

Experiments on neural network training.
Though our theory only applies to the strongly convex
case, we examine Network-SVRG/SARAH in the noncon-
vex case, by training a one-hidden-layer neural network
with 64 hidden neurons and sigmoid activations for a
classification task using the MNIST dataset. Training
samples are split evenly to all agents. Fig. 3 plots the
training loss and testing accuracy against the numbers
of iterations and gradient evaluations for different algo-
rithms, communicated over an an Erdös-Rènyi graph
with p = 0.3, where centralized ADMM and decen-
tralized stochastic algorithm (DSGD) are plotted as
baselines. Being more communication-efficient than
DSGD, and more computation-efficient than ADMM,

Network-SVRG/SARAH reach a desirable balance be-
tween computation and communication efficacies.

6 Conclusions

This paper proposes decentralized (stochastic) opti-
mization algorithms that are communication-efficient
over a network: Network-DANE based on the approxi-
mate Newton-type update, and Network-SVRG/SARAH
based on stochastic variance-reduced gradient updates.
Theoretical convergence guarantees are developed for
Network-DANE/SVRG for strongly convex losses, and
Network-SARAH for quadratic losses, highlighting the
impact of network topology and data homogeneity
across agents. Moreover, extensive numerical experi-
ments are conducted to verify the excellent performance
of the proposed algorithms. This work opens up many
exciting directions for future investigation, including
but not limited to establishing the convergence for a
broader family of Network-DANE/SVRG type algorithms
under general loss functions for both convex and non-
convex settings, with the possibility of asynchronous
updates across agents.

Acknowledgments
The work of B. Li, S. Cen and Y. Chi is supported
in part by the grants ONR N00014-18-1-2142 and
N00014-19-1-2404, ARO W911NF-18-1-0303, and NSF
CAREER ECCS-1818571, CCF-1806154 and CCF-
1901199. The work of Y. Chen is supported in
part by the grants AFOSR YIP award FA9550-19-
1-0030, ONR N00014-19-1-2120, ARO W911NF-18-1-
0303, NSF CCF-1907661 and IIS-1900140.

Boyue Li, Shicong Cen, Yuxin Chen, Yuejie Chi

References
Zeyuan Allen-Zhu. Katyusha: The first direct accelera-
tion of stochastic gradient methods. In Proceedings
of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1200–1205. ACM, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. Parallel
and distributed computation: numerical methods, vol-
ume 23. Prentice hall Englewood Cliffs, NJ, 1989.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in
Machine learning, 3(1):1–122, 2011.

Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen,
and Tie-Yan Liu. Convergence of distributed stochas-
tic variance reduced methods without sampling extra
data. arXiv preprint arXiv:1905.12648, 2019.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-
network nonconvex optimization. IEEE Transactions
on Signal and Information Processing over Networks,
2(2):120–136, 2016.

Jianqing Fan, Yongyi Guo, and Kaizheng Wang.
Communication-efficient accurate statistical estima-
tion. arXiv preprint arXiv:1906.04870, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In Advances in neural information processing sys-
tems, pages 315–323, 2013.

Jakub Konečnỳ, Brendan McMahan, and Daniel Ra-
mage. Federated optimization: Distributed opti-
mization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu,
Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Guanghui Lan, Soomin Lee, and Yi Zhou.
Communication-efficient algorithms for decen-
tralized and stochastic optimization. Mathematical
Programming, pages 1–48, 2017.

Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao
Yang. Distributed stochastic variance reduced gra-
dient methods by sampling extra data with replace-
ment. The Journal of Machine Learning Research,
18(1):4404–4446, 2017.

Boyue Li, Shicong Cen, Yuxin Chen, and Yuejie Chi.
Communication-efficient distributed optimization in
networks with gradient tracking and variance reduc-
tion. arXiv preprint arXiv:1909.05844, 2019a.

Zhi Li, Wei Shi, and Ming Yan. A decentralized
proximal-gradient method with network independent
step-sizes and separated convergence rates. IEEE

Transactions on Signal Processing, 67(17):4494–4506,
2019b.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems,
pages 5330–5340, 2017.

Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282, 2017.

Aryan Mokhtari and Alejandro Ribeiro. DSA: Decen-
tralized double stochastic averaging gradient algo-
rithm. The Journal of Machine Learning Research,
17(1):2165–2199, 2016.

Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo.
Constrained consensus and optimization in multi-
agent networks. IEEE Transactions on Automatic
Control, 55(4):922–938, 2010.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving
geometric convergence for distributed optimization
over time-varying graphs. SIAM Journal on Opti-
mization, 27(4):2597–2633, 2017.

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat.
Network topology and communication-computation
tradeoffs in decentralized optimization. Proceedings
of the IEEE, 106(5):953–976, 2018.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin
Takáč. Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In In-
ternational Conference on Machine Learning, pages
2613–2621, 2017.

Guannan Qu and Na Li. Harnessing smoothness to
accelerate distributed optimization. IEEE Transac-
tions on Control of Network Systems, 5(3):1245–1260,
2018.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. Hogwild: A lock-free approach to par-
allelizing stochastic gradient descent. In Advances
in neural information processing systems, pages 693–
701, 2011.

Kevin Scaman, Francis Bach, Sébastien Bubeck,
Yin Tat Lee, and Laurent Massoulié. Optimal algo-
rithms for smooth and strongly convex distributed
optimization in networks. In International Confer-
ence on Machine Learning, pages 3027–3036, 2017.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Lau-
rent Massoulié, and Yin Tat Lee. Optimal algorithms
for non-smooth distributed optimization in networks.
In Advances in Neural Information Processing Sys-
tems, pages 2740–2749, 2018.

Communication-Efficient Distributed Optimization in Networks

Gesualdo Scutari and Ying Sun. Distributed nonconvex
constrained optimization over time-varying digraphs.
Mathematical Programming, 176(1-2):497–544, 2019.

Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization us-
ing an approximate Newton-type method. In In-
ternational conference on machine learning, pages
1000–1008, 2014.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra:
An exact first-order algorithm for decentralized con-
sensus optimization. SIAM Journal on Optimization,
25(2):944–966, 2015.

Virginia Smith, Simone Forte, Chenxin Ma, Martin
Takáč, Michael I Jordan, and Martin Jaggi. Cocoa:
A general framework for communication-efficient dis-
tributed optimization. Journal of Machine Learning
Research, 18:230, 2018.

Haoran Sun, Songtao Lu, and Mingyi Hong. Improving
the sample and communication complexity for decen-
tralized non-convex optimization: A joint gradient
estimation and tracking approach. arXiv preprint
arXiv:1910.05857, 2019a.

Ying Sun, Amir Daneshmand, and Gesualdo Scutari.
Convergence rate of distributed optimization algo-
rithms based on gradient tracking. arXiv preprint
arXiv:1905.02637, 2019b.

César A Uribe, Soomin Lee, Alexander Gasnikov, and
Angelia Nedić. Optimal algorithms for distributed
optimization. arXiv preprint arXiv:1712.00232, 2017.

Lin Xiao and Stephen Boyd. Fast linear iterations for
distributed averaging. Systems and Control Letters,
53(1):65–78, 2004. ISSN 01676911. doi: 10.1016/j.
sysconle.2004.02.022.

Lin Xiao and Tong Zhang. A proximal stochastic
gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075,
2014.

Ran Xin, Usman A Khan, and Soummya Kar. Variance-
reduced decentralized stochastic optimization with
gradient tracking. arXiv preprint arXiv:1909.11774,
2019a.

Ran Xin, Anit Kumar Sahu, Usman A Khan, and Soum-
mya Kar. Distributed stochastic optimization with
gradient tracking over strongly-connected networks.
arXiv preprint arXiv:1903.07266, 2019b.

Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H Sayed.
Variance-reduced stochastic learning by networked
agents under random reshuffling. IEEE Transactions
on Signal Processing, 67(2):351–366, 2018.

Yuchen Zhang, Martin J Wainwright, and John C
Duchi. Communication-efficient algorithms for sta-
tistical optimization. In Advances in Neural Infor-
mation Processing Systems, pages 1502–1510, 2012.

Minghui Zhu and Sonia Martínez. Discrete-time dy-
namic average consensus. Automatica, 46(2):322–329,
2010.

	Introduction
	Our Contributions
	Related Work

	Formulation and Preliminaries
	Network-DANE
	Algorithm Development
	Convergence Guarantees

	Generalizing the Algorithm Design with Variance Reduction
	Numerical Experiments
	Conclusions

