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A Theorems and Proofs

A.1 Time complexity

The step 6 in Algorithm 1 involves of finding the ¢*
in a candidate set C that sets the estimating equa-
tion S, (g;T) closest to zero. We simply evaluate the
function S, (¢; 7) for all possible ¢ in C and find the min-
imum point. Note that for any fixed 7, S,,(¢; 7) is a step
function in g with jumps at Y;’s because the disconti-
nuities only happen at Y;’s for G (glx) (both equation 9
and equation 10) and >, w(X;,z)1(Y; > ¢). There-
fore, the candidate set C C {Y;}7,, and |C| = n in the
worst case.

But in fact, for any fixed z, only Y;’s with the corre-
sponding feature vector X; € R, equation 9 or with
w(X;,x) > 0 equation 10 will be jump points, and
hence, we can refine C = {Y; : X; € R, } for equation 9
or C ={Y; : w(X;,z) > 0} for equation 10. We then
have the following theorem.

Theorem 3. For a fized test point x, depending
on whether G(q|X) is estimated by equation 9 or
equation 10, the time complexity for Algorithm 1 is
O(nmax{k,log(n)}) or O(nmlog(n)P~1), respectively.

Proof of Theorem 3. To get the candidate set C, if we
use the k-nearest neighbor estimator equation 9, then
the first step is to sort n weights and choose the largest
k elements. This is in general a O(nlog(n)) procedure.
If we use the Beran estimator equation 10, then the
time complexity is O(n) because we need to find all
the nonzero weights.

After we have the candidate set C, evaluating S, (¢; 7)
for all ¢ € C and finding the minimum is a O(n|C|)
procedure. For equation 9, |C| = k; and for equation 10,
IC| is in the order of mlog(n)?~! by Lin and Jeon
(2006). O

A.2 Proof of Theorem 1

Proof. When the conditions 1 to 4 are satisfied, by
Theorem 3 in Athey et al. (2019) or Theorem 1 in
Meinshausen (2006), we have

n

> w(Xi,2)I{Y; < g} = P(Y < gla)| = 0,(1).

=1

Note that Y7, w(X;,z) = 1 and 0 < w(X;,z) <
1/m. For convenience, we suppress the dependency on
z and denote F,,(¢) = Y i, w(X;,z)1{Y; < ¢} and
F(q) =P(Y < g|z). Because F is continuous, choose
g < q1 < ... < gy, from Bsuch that F(q;) —F(gj—1) =
1/n. Then for any g € B, there exists j € {1,...,n}
such that ¢ € [gj_1,¢;], and hence F,,(q) — F(q) <

F.(q ) F((ijl) = ((IJ)
Fo(q) — F(q) > Fu(qj-1) —
we have

sup | F, (q)
qeB

F(q;) + 1/n. Similarly,
F(gj—1) — 1/n. Therefore,

— Flglo)l < max |Fu(q;) - Flgy)l +1/n.

Rt AR}

Then by Bonferroni’s inequality, we have
sup |1, (q) — F(q)|z)| = op(1).
qeB

Combined with Condition 4, we have the expected
result. O

A.3 Proof of Theorem 2

Proof of Theorem 2. By Van der Vaart (2000), we only
need to show for any 7 € (0,1), z € X,

Lo supge_pp [Sn(g;7) = S(g; 7)| = 0p(1).

2. For any € > 0, inf{|S(¢;7)| : |¢ — ¢*| > ¢,q €
[-r,r]} > 0. Here, ¢* stands for the true 7th
quantile of T'.

3. Sn(gn;T) = 0p(1).

Part 1 has been proved by Theorem 1. For part 2, note
that

S(g;7) = (1-71)G(glz) —P(Y > qlz)
= (1 -7)G(glz) = P(T > q|2)P(C > g|z)
= ((1—=71)=P(T > ql2))G(ql|z)

= (P(T < qlz) — 7)G(qlx).

The second equality is because of the conditionally
independency between T and C. Fix an € > 0, and
denote

E={|S(¢;7): la—q"| > e,q € [-r,7]}.

Since 0 < 7 < 1, by Condition 2, there exists some
1 > 0 such that G(g|x) > 1 and

IP(T < gle) = 7| =1

for ¢ € E. Now for part 3, by the definition of g, we
know

1S (gn; T)| = min [S,(q;7)].
qe[fr,r}
Also by definition of ¢*,
0=[S(¢";7)l = min [S(g;7)|
q€[—r,7]
Then we get
‘Sn(qm7')|
= [Sn(gn; )| = IS (q s7) + 1S (g5 7)) — 1S(g; 7))
< [Sn(g";7) — S(q";7)|
< sup [Sn(g; )—S(q;T)I
q€[—r,r]
= 0p(1)
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where the first inequality is because of the definition
of ¢, and the triangular inequality. O

B More Experiments

B.1 Prediction Intervals

All the forest methods can be used to get 95% pre-
diction intervals by predicting the 0.025 and 0.975
quantiles of the true response variable. Then for any
location z € X, a straightforward confidence interval
will be [Q(z;0.025), Q(x;0.975)]. The result is illus-
trated in Figure 7 for the case of univariate censored
sine model. For each data set, we bootstrap the data
and calculate the 0.025 and 0.975 quantile for the out
of bag points. Then for each node size, we repeat this
process for 20 times and calculate the average coverage
rate of the confidence intervals.

(e) grf

Figure 7: Prediction intervals of the univariate censored
since model. We observe that in all of the cases, our
method crf and qrf-oracle give the coverage closest to
95%. Both ¢rf and grf perform much worse on predict-
ing lower quantiles. They tend to under-estimate the
lower quantiles and hence make the confidence intervals
much wider than the true ones.

B.2 One-dimensional Sine-curve Model

Since the proposed method crf is nonparametric and
does not rely on any parametric assumption, it can
be used to estimate quantiles for any general model
T = f(X) + €. Hence we set f(x) = sin(x) and

T=25+sin(X)+e

where X ~ Unif(0, 27) and € ~ N(0,0.3%). The censor-
ing variable C' ~ 1 + sin(X) + Exp(A = 0.2) depends
on the covariates, and the censoring level is about 25%.
The results are in Figure 8.
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Figure 8: One-dimensional Sine model results.

Again, the proposed model crf produces almost identi-
cal quantile predictions compared with grf-oracle. Es-
pecially when 7 = 0.1, the grf result (blue dotted
curve) severely deviates from the true quantile, while
crf still predicts the correct quantile and performs as
good as the oracle grf-oracle.

B.3 Censoring Level

In this section, we investigate the impact of censoring
levels on the predictions of different forest algorithms.
The results are summarized in Figure 9.

We use the same multi-dimensional AFT data as in
section 5.1.1 but vary the parameter A of the Expo-
nential noise from 0.10 to 0.24, where larger A means
higher censoring level. As can be seen from Figure 9,
the performance of both vanilla qrf and grf deteriorate
fast when more data are censored. Meanwhile, all the
censoring forest algorithms are quite robust to censor-
ing, with almost flat quantile loss curves. Among them,
the proposed methods, crf-quantile and crf-generalized
still outperform rsf on almost all the censoring levels.
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Figure 9: Comparison of the quantile losses of different forest algorithms under various censoring levels.



