
Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

8 Appendix

Notation. For a fixed terminal time T > 0, we denote by T = [0, T] ⊆ R the time horizon. Let C∞ be the class
of infinitely differentiable functions from Rd to itself. Let Cp,q be the class of functions from Rd × T to Rd that
are p and q times continuously differentiable in the first and second component, respectively. Let Cp,qb ⊆ Cp,q be
the subclass with bounded derivatives of all possible orders. For a positive integer m, we adopt the short hand
[m] = {1, 2, . . . ,m}. We denote the Euclidean norm of a vector v by |v|. For f ∈ Cp,q, we denote its Jacobian
with respect to the first component by ∇f .

9 Additional Background

9.1 Adjoint Sensitivity Method

The adjoint sensitivity method is an efficient approach to solve control problems relying on the adjoint (co-
state) system [Pontryagin, 2018]. Chen et al. [2018] used this method to compute the gradient with respect to
parameters of a neural ODE, which is a particular model among many others inspired by the theory of dynamical
systems [Chang et al., 2017, 2018, Haber and Ruthotto, 2017, Lu et al., 2017, Ruthotto and Haber, 2018]. The
method, shown in Algorithm 2, is scalable, since the most costly computation is a vector-Jacobian product defining
its backwards dynamics. In addition, since the gradient is obtained by solving another ODE, no intermediate
computation is stored as in the case of regular backpropagation [Rumelhart et al., 1988].

Algorithm 2 ODE Adjoint Sensitivity
Input: Parameters θ, start time t0, stop time t1, final
state zt1 , loss gradient ∂L/zt1 , dynamics f(z, t, θ).

def f([zt, at, ·], t, θ): . Augmented dynamics
v = f(zt,−t, θ)
return [−v, at∂v/∂z, at∂v/∂θ]

 zt0
∂L/∂zt0
∂L/∂θ

 = odeint

 zt1
∂L/∂zt1

0p

, f ,−t1,−t0


return ∂L/∂zt0 , ∂L/∂θ

Algorithm 3 SDE Adjoint Sensitivity (Ours)
Input: Parameters θ, start time t0, stop time t1, final

state zt1 , loss gradient ∂L/zt1 , drift f(z, t, θ), diffusion
σ(z, t, θ), Wiener process sample w(t).
def f([zt, at, ·], t, θ): . Augmented drift

v = f(zt,−t, θ)
return [−v, at∂v/∂z, at∂v/∂θ]

def σ([zt, at, ·], t, θ): . Augmented diffusion
v = σ(zt,−t, θ)
return [−v, at∂v/∂z, at∂v/∂θ]

def w(t): . Replicated noise
return [−w(−t),−w(−t),−w(−t)] zt0

∂L/∂zt0
∂L/∂θ

 = sdeint

 zt1
∂L/∂zt1

0p

, f , σ, w,−t1,−t0


return ∂L/∂zt0 , ∂L/∂θ

Figure 6: Pseudocode of the (ODE) adjoint sensitivity method (left), and our generalization to Stratonovich
SDEs (right). Differences are highlighted in blue. Square brackets denote vector concatenation.

9.2 Stochastic Differential Equations

Here we briefly define stochastic differential equations: Consider a filtered probability space (Ω,F , {Ft}t∈T, P) on
which an m-dimensional adapted Wiener process (aka Brownian motion) {Wt}t∈T is defined. For a fixed terminal
time T > 0, we denote by T = [0, T] ⊆ R the time horizon. We denote the ith component of Wt by W

(i)
t . A

stochastic process {Zt}t∈T can be defined by an Itô SDE

ZT =z0+

∫ T

0

b(Zt, t) dt+

m∑
i=1

∫ T

0

σi(Zt, t) dW
(i)
t , (10)

where z0 ∈ Rd is the starting value, and b : Rd × R → Rd and σi : Rd × R → Rd are the drift and diffusion
functions, respectively. For ease of presentation, we let m = 1 in the following unless otherwise stated, and note

Scalable Gradients for Stochastic Differential Equations

that our contributions can be easily generalized to cases where m > 1. Here, the second integral on the right
hand side of (10) is the Itô stochastic integral [Øksendal, 2003]. When the coefficients are globally Lipschitz in
both the state and time, there exists a unique strong solution to the SDE [Øksendal, 2003].

9.3 Neural Stochastic Differential Equations

Similar to neural ODEs, one can consider drift and diffusion functions defined by neural networks, a model known
as the neural SDE [Jia and Benson, 2019, Liu et al., 2019, Tzen and Raginsky, 2019a,b].

Amongst work on neural SDEs, none has enabled an efficient training framework. In particular, Tzen and
Raginsky [2019a] and Liu et al. [2019] considered computing the gradient by simulating the forward dynamics of
an explicit Jacobian matrix. This Jacobian has size of either the square of the number of parameters, or the
number of parameters times the number of states, building on the pathwise approach [Gobet and Munos, 2005,
Yang and Kushner, 1991]. In contrast, our approach only requires a small number of cheap vector-Jacobian
products, independent of the dimension of the parameter and state vectors. These vector-Jacobian products have
the same asymptotic time cost as evaluating the drift and diffusion functions, and can be easily computed by
automatic differentiation [Abadi et al., 2016, Frostig et al., 2018, Maclaurin et al., 2015, Paszke et al., 2017].

9.4 Backward Stratonovich Integral

Our stochastic adjoint sensitivity method involves stochastic processes running forward and backward in time.
The Stratonovich stochastic integral, due to its symmetry, gives nice expressions for the backward dynamics and
is more convenient for our purpose. Our results can be straightforwardly applied to Itô SDEs as well, using a
simple conversion (see e.g. [Platen, 1999, Sec. 2]).

Following the treatment of Kunita [Kunita, 2019], we introduce the forward and backward Stratonovich integrals.
Let {Fs,t}s≤t;s,t∈T be a two-sided filtration, where Fs,t is the σ-algebra generated by {Wv −Wu : s ≤ u ≤ v ≤ t}
for s, t ∈ T such that s ≤ t. For a continuous semimartingale {Yt}t∈T adapted to the forward filtration {F0,t}t∈T,
the Stratonovich stochastic integral is

∫ T
0
Yt ◦ dWt= lim

|Π|→0

N∑
k=1

(Ytk+Ytk−1)
2

(
Wtk −Wtk−1

)
,

where Π = {0 = t0 < · · · < tN = T} is a partition of the interval T = [0, T], |Π| = maxk tk − tk−1 denotes the
size of largest segment of the partition, and the limit is to be interpreted in the L2 sense. The Itô integral uses
instead the left endpoint Ytk rather than the average. In general, the Itô and Stratonovich integrals differ by a
term of finite variation.

To define the backward Stratonovich integral, we consider the backward Wiener process {Ŵ t}t∈T defined as
Ŵ t = Wt−WT for all t ∈ T that is adapted to the backward filtration {Ft,T }t∈T. For a continuous semimartingale
Ŷ t adapted to the backward filtration, the backward Stratonovich integral is

∫ T
s
Ŷ t ◦ dŴ t= lim

|Π|→0

N∑
k=1

(
Ŷ tk+Ŷ tk−1

)
2

(
Ŵ tk−1

− Ŵ tk

)
,

where Π = {0 = tN < · · · < t0 = T} is the partition.

9.5 Proof of Theorem 3.1

Proof of Theorem 3.1. We have Js,t(z) = ∇Ψ̂s,t(z), where Ψ̂s,t(z) is defined in (2). Now we take the gradient
with respect to z on both sides. The solution is differentiable with respect to z and we may differentiate under the
stochastic integral [Kunita, 2019, Proposition 2.4.3]. Theorem 3.4.3 Kunita [2019] is sufficient for the regularity
conditions required. Since Ks,t(z) = Js,t(z)−1, applying the Stratonovich version of Itô’s formula to (3), we have
(4).

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

9.6 Proof of Theorem 3.3

Proof of Theorem 3.3. By the triangle inequality,

|F(G(z,W·),W·)− Fh(Gh(z,W·),W·)|
≤ |F(G(z,W·),W·)− F(Gh(z,W·),W·)|︸ ︷︷ ︸

I
(1)
h

+ |F(Gh(z,W·),W·)− Fh(Gh(z,W·),W·)|︸ ︷︷ ︸
I
(2)
h

.

We show that both I(1)
h and I(2)

h converge to 0 in probability as h→ 0. For simplicity, we suppress z and W·.

Bounding I(1)
h . Let ε > 0 be given. Since Gh → G in probability, there exist M1 > 0 and h0 > 0 such that

P(|G| > M1) < ε, P(|Gh| > 2M1) < ε, for all h ≤ h0.

By Lemma 2.1(iv) of Ocone and Pardoux [1989] which can be easily adapted to our context, there exists a positive
random variable C1, finite almost surely, such that sup|z|≤2M1

|∇zF| ≤ C1, and there exists M2 > 0 such that
P(|C1| > M2) < ε. Given M2, there exists h1 > 0 such that

P
(
|G−Gh| >

ε

M2

)
< ε, for all h ≤ h1.

Now, suppose h ≤ min{h0, h1}. Then, by the union bound, with probability at least 1− 4ε, we have

|G| ≤M1, |Gh| ≤ 2M1, |C1| ≤M2, |G−Gh| ≤
ε

M2
.

On this event, we have
I

(1)
h = |F(G)− F(Gh)| ≤ C1|G−Gh| ≤M2

ε

M2
= ε.

Thus, we have shown that I(1)
h converges to 0 in probability as h→ 0.

Bounding I(2)
h . The idea is similar. By condition (ii), we have

lim
h→0

sup
|zT |≤M

|Fh(zT)− F(zT)| = 0

in probability. Using this and condition (i), for given ε > 0, there exist M > 0 and h2 > 0 such that for all h ≤ h2,
we have

|Gh| ≤M and sup
|zT |≤M

|Fh(zT)− F(zT)| < ε

with probability at least 1− ε. On this event, we have

|F(Gh)− Fh(Gh)| ≤ sup
|zT |≤M

|Fh(zT)− F(zT)| < ε.

Thus I(2)
h also converges to 0 in probability as h→ 0.

9.7 Euler-Maruyama Scheme Satisfies Condition (ii)

Here we verify that the Euler-Maruyama scheme satisfies condition (ii) when d = 1. Our proof can be extended
to the case where d > 1 assuming an Lp of the error; see the discussion after the proof of Proposition 9.1.
Proposition 9.1. Let Fh(z) be the Euler-Maruyama discretization of a 1-dimensional SDE with mesh size h of
F(z). Then, for any compact A ⊂ R, we have

plimh→0 sup
z∈A
|Fh(z)− F(z)| = 0.

Usual convergence results in stochastic numerics only control the error for a single fixed starting point. Here, we
strengthen the result to local uniform convergence. Our main idea is to apply a Sobolev inequality argument
[Ocone and Pardoux, 1989, Part II]. To do so, we need some preliminary results about the Euler-Maruyama
discretization of the original SDE and its derivative. We first recall a theorem characterizing the expected squared
error for general schemes.

Scalable Gradients for Stochastic Differential Equations

Theorem 9.2 (Mean-square order of convergence [Milstein and Tretyakov, 2013, Theorem 1.1]). Let {Zzt }t≥0 be
the solution to an Itô SDE, and {Z̃zk}k∈N be a numerical discretization with fixed step size h, both of which are
started at z ∈ Rd and defined on the same probability space. Let the coefficients of the SDE be C1,∞

b . Furthermore,
suppose that the numerical scheme has order of accuracy p1 for the expectation of deviation and order of accuracy
p2 for the mean-square deviation. If p1 ≥ p2 + 1/2 and p2 ≥ 1/2, then, for any N ∈ N, k ∈ [N], and z ∈ Rd

E
[
|Zztk − Z̃

z
k |2
]
≤ C

(
1 + |z|2

)
h2p2−1,

for a constant C that does not depend on h or z.

We refer the reader to [Milstein and Tretyakov, 2013] for the precise definitions of orders of accuracy and the
proof. Given this theorem, we establish an estimate regarding errors of the discretization and its derivative with
respect to the initial position.

Lemma 9.3. We have

E
[
|F(z)− Fh(z)|2 + |∇zF(z)−∇zFh(z)|2

]
≤C1(1 + |z|2)h, ,

where C1 is a constant independent of z and h.

Proof of Lemma 9.3. Since the coefficients of the SDE are of class C∞,1b , we may differentiate the SDE in z to
get the SDE for the derivative ∇zZzt [Kunita, 2019]. Specifically, letting Y zt = ∇zZzt , we have

Y zt = Id +

∫ t

0

∇b(Zzs , s)Y zs ds+

∫ t

0

∇σ(Zzs , s)Y
z
s dWs.

Note that the augmented process (F(z),∇zF(z)) satisfies an SDE with C∞,1b coefficients. By the chain rule,
one can easily show that the derivative of the Euler-Maruyama discretization Fh(z) is the discretization of the
derivative process Y zt . Thus, (Fh(z),∇zFh(z)) is simply the discretization of (F(z),∇zF(z)).

Since the Euler-Maruyama scheme has orders of accuracy (p1, p2) = (1.5, 1.0) [Milstein and Tretyakov, 2013,
Section 1.1.5], by Theorem 9.2, we have

E
[
|F(z)− Fh(z)|2 + |∇zF(z)−∇zFh(z)|2

]
≤ C1(1 + |z|2)h, z ∈ Rd

for some constant C1 that does not depend on z or h.

We also recall a variant of the Sobolev inequality which we will apply for d = 1.

Theorem 9.4 (Sobolev inequality [Adams, 1975, Theorem 5.4.1.c]). For any p > d, there exists a universal
constant cp such that

sup
x∈Rd

|f(x)| ≤ cp ‖f‖1,p ,

where

‖f‖p1,p :=

∫
Rd
|f(x)|p dx+

∫
Rd
|∇xf(x)|p dx,

for all continuously differentiable f : Rd → R.

Proof of Proposition 9.1. Define Hαh : Ω× R→ R, regarded as a random function Hαh(ω) : R→ R, by

Hαh(z) =
F(z)− Fh(z)

(1 + |z|2)1/2+α
,

where α > 1/2 is a fixed constant. Since Hαh is continuously differentiable a.s., by Theorem 9.4,

|F(z)− Fh(z)| ≤ c2(1 + |z|2)1/2+α ‖Hαh‖1,2 , for all z ∈ R a.s.

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

Without loss of generality, we may let the compact set be A = {z : |z| ≤M} where M > 0. Then,

sup
|z|≤M

|F(z)− Fh(z)| ≤ c2(1 +M2)1/2+α ‖Hαh‖1,2 , a.s. (11)

It remains to estimate ‖Hαh‖1,2. Starting from the definition of ‖·‖1,p, a standard estimation yields

‖Hαh‖
2
1,2 ≤C2

∫
R

|F(z)− Fh(z)|2 + |∇zF(z)−∇zFh(z)|2

(1 + |z|2)1+2α
dz,

where C2 is a deterministic constant depending only on α (but not z and h).

Now we take expectation on both sides. By Lemma 9.3, we have

E
[
‖Hαh‖

2
1,2

]
≤C2

∫
R

E[|F(z)− Fh(z)|2 + |∇zF(z)−∇zFh(z)|2]

(1 + |z|2)1+2α
dz,

≤C1C2h

∫
R

1

(1 + |z|2)2α
dz,

where the last integral is finite since α > 1/2.

We have shown that E
[
‖Hαh‖

2
1,2

]
= O(h). Thus ‖Hαh‖1,2 → 0 in L2, and hence also in probability, as h→ 0. From

equation 11, we have that supz∈A |Fh(z)− F(z)| converges to 0 in probability as h→ 0.

It is clear from the above proof that we may generalize to the case where d > 1 and other numerical schemes if
we can bound the expected W 1,p-norm of Fh − F in terms of z and h, for p > d, where W 1,p here denotes the
Sobolev space consisting of all real-valued functions on Rd whose weak derivatives are functions in Lp. For the
Euler scheme and d > 1, we need only bound the Lp norm of the discretization error in term of z and h for
general p. To achieve this, we would need to make explicit the dependence on z for existing estimates (see e.g.
[Kloeden and Platen, 2013, Chapter 10]).

Generically extending the argument to other numerical schemes, however, is technically non-trivial. We plan to
address this question in future research.

9.8 Stochastic Adjoint has Commutative Noise when Original SDE has Diagonal Noise

Recall the Stratonovich SDE (1) with drift and diffusion functions b, σ1, . . . , σm ∈ Rd×R→ Rd governed by a set
of parameters θ ∈ Rp. Consider the augmented state composed of the original state and parameters Yt = (Zt, θ).
The augmented state satisfies a Stratonovich SDE with the drift function f(y, t) = (b(z, t),0p) and diffusion
functions gi(y, t) = (σi(z, t),0p) for i ∈ [m]. By (4) and (5), the dynamics for the adjoint process of the augmented
state is characterized by the backward SDE:

Ayt = AyT +

∫ T

t

∇f(Ys, s)
>Ays dt+

m∑
i=1

∫ T

t

∇gi(Ys, s)>Ays ◦ dŴ
(i)

s .

By definitions of f and gi, the Jacobian matrices ∇f(x, s) and ∇gi(x, s) can be written as:

∇f(y, s) =

(
∂b(z,s)
∂z 0d×p

0p×d 0p×p

)
∈ R(d+p)×(d+p), ∇gi(y, s) =

(
∂σi(z,s)
∂z 0d×p

0p×d 0p×p

)
∈ R(d+p)×(d+p).

Thus, we can write out the backward SDEs for the adjoint processes of the state and parameters separately:

Azt =AzT +

∫ T

t

∂b(z, s)

∂z

∣∣∣∣>
z=Zs

Azs dt+

m∑
i=1

∫ T

t

∂σi(z, s)

∂z

∣∣∣∣>
z=Zs

Azs ◦ dŴ
(i)

s , (12)

Aθt =AθT +

∫ T

t

∂b(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs dt+

m∑
i=1

∫ T

t

∂σi(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs ◦ dŴ
(i)

s .

Scalable Gradients for Stochastic Differential Equations

Now assume the original SDE has diagonal noise. Then, m = d and Jacobian matrix ∇σi(z) can be written as:

∂σi(z)

∂z
=

0 ... 0 0 0 ... 0

0 ... 0
∂σi,i(z)
∂zi

0 ... 0

0 ... 0 0 0 ... 0

 . (13)

Consider the adjoint process for the augmented state along with the backward flow of the backward SDE (2). We
write the overall state as Xt = (Zt, A

z
t , A

θ
t), where we abuse notation slightly to let {Zt}t∈T denote the backward

flow process. Then, by (12) and (13), {Xt}t∈T satisfies a backward SDE with a diffusion function that can be
written as:

G(x) =



−σ1,1(z1) 0 . . . 0 0
. . .

0 0 . . . 0 −σd,d(zd)
∂σ1,1(z1)
∂z1

az1 0 . . . 0 0

. . .
0 0 . . . 0

∂σd,d(zd)
∂zd

azd
∂σ1,1(z1)
∂θ1

az1
∂σd,d(zd)

∂θ1
azd

.
∂σ1,1(z1)
∂θp

az1
∂σd,d(zd)
∂θp

azd


∈ R(2d+p)×d. (14)

Recall, for an SDE with diffusion function Σ(x) ∈ Rd×m, it is said to satisfy the commutativity property [Rößler,
2004] if

d∑
i=1

Σi,j2(x)
∂Σk,j1(x)

∂xi
=

d∑
i=1

Σi,j1(x)
∂Σk,j2(x)

∂xi
, (15)

for all j1, j2 ∈ [m] and k ∈ [d]. When an SDE has commutative noise, the computationally intensive double Itô
integrals (and the Lévy areas) need not be simulated by having the numerical scheme take advantage of the
following property of iterated integrals [Ilie et al., 2015]:∫ t

s

∫ u

s

dW (i)
r dW (j)

u +

∫ t

s

∫ u

s

dW (j)
r dW (i)

u = ∆W (i)∆W (j),

where the Brownian motion increment ∆W (i) = W
(i)
t −W

(i)
s for i ∈ [m] can be easily sampled.

To see that the diffusion function (14) indeed satisfies the commutativity condition (15), we consider several cases:

• k = 1, . . . , d: Both LHS and RHS are zero unless j1 = j2 = k, since for Σi,j2(x)
∂Σk,j1 (x)

∂xi
to be non-zero,

i = j1 = j2 = k.

• k = d+ 1 . . . , 2d: Similar to the case above.

• k = 2d+ 1 . . . , 2d+ p: Write k = 2d+ l, where l ∈ [p]. Both LHS and RHS are zero unless j1 = j2 = l, since
for Σi,j2(x)

∂Σk,j1 (x)

∂xi
to be non-zero i = l or i = d+ l and j1 = j2 = l.

Since in all scenarios, LHS = RHS, we conclude that the commutativity condition holds.

Finally, we comment that the Milstein scheme for the stochastic adjoint of diagonal noise SDEs can be implemented
such that during each iteration of the backward solve, vjp is only called a number of times independent respect
to the dimensionality of the original SDE.

9.9 Background on Latent SDE

9.9.1 Setup

We consider a simple scenario where the posterior process that we intend to learn is governed by the SDE:

dXt = b(Xt) dt+ dWt, X0 = x0 ∈ Rd,

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

where {Wt}t≥0 is defined on the probability space (Ω,F , P) and adapted to the filtration {Ft}t≥0. Suppose we
use a Wiener process as the prior process that is started at x0, i.e. defined by the SDE

dX̃t = dWt, X̃0 = x0 ∈ Rd.

By Girsanov Theorem I [Oksendal, 2013, Theorem 8.6.3], the posterior process is a Wiener process under a
different probability measure Q on the measurable space (Ω,F) defined by

dQ = ZT dP,

where ZT is the Radon-Nikodym derivative for a finite terminal time T . More generally, by the theorem, {Zt}t≥0

is the Radon-Nikodym derivative process given by

Zt = exp

(
−
∫ t

0

1

2
|b(Xs)|2 ds−

∫ t

0

b(Xs)
> dWs

)
, 0 ≤ t ≤ T.

9.9.2 Derivation of the Variational Bound

Let yt1 , . . . , ytN be observation data at times t1, . . . , tN , whose conditional distributions only depend on the
respective latent states Xt1 , . . . , XtN . Since {Xt}t≥0 is a Wiener process under Q and {X̃t}t≥0 is a Wiener process
under P ,

logEP

[
N∏
i=1

p(yti |X̃ti)

]

= logEQ

[
N∏
i=1

p(yti |Xti)

]

= logEP

[
N∏
i=1

p(yti |Xti)ZT

]

≥EP

[
N∑
i=1

log p(yti |Xti) + logZT

]

=EP

[
N∑
i=1

log p(yti |Xti)−
∫ T

0

1

2
|b(Xt)|2 dt−

∫ T

0

b(Xt)
> dWt

]

=EP

[
N∑
i=1

log p(yti |Xti)−
∫ T

0

1

2
|b(Xt)|2 dt

]
,

where the second equality follows from the definition of Q and the inequality follows from Jensen’s. The derived
result is the evidence lower bound (9) for simple case of the constant one function being the diffusion coefficient.

The derivation can be extended to processes with non-constant diffusion coefficients and prior processes with
non-zero drift functions (see e.g. [Oksendal, 2013, Theorems 8.6.4, 8.6.5]), so long as certain regularity conditions
of the coefficients hold and that the prior and posterior processes have the same diffusion coefficient.

9.10 Stochastic Adjoint for Latent SDE

Note that the variational free energy (9) can be derived from Girsanov’s change of measure theorem
citepopper2019variational. To efficiently Monte Carlo estimate this quantity and its gradient, we simplify the
equation by noting that for a one-dimensional process {Vt}t∈T adapted to the filtration generated by a one-
dimensional Wiener process {Wt}t∈T, if Novikov’s condition
citepoksendal2003stochastic is satisfied, then the process defined by the Itô integral

∫ t
0
Vs dWs is a Martingale

citepoksendal2003stochastic. Hence, E
[∫ T

0
u(Zt, t)

> dWt

]
= 0, and

LVI = E
[

1
2

∫ T
0
|u(Zt, t)|2 dt−

∑N
i=1 log p(yti |zti)

]
.

Scalable Gradients for Stochastic Differential Equations

To Monte Carlo simulate the quantity in the forward pass along with the original dynamics, we need only extend
the original augmented state with an extra variable Lt such that the new drift and diffusion functions for the new
augmented state Yt = (Z>t , θ

>, Lt)
> are

f(x, t) =

 b(z, t)
0p

1
2 |u(z, t)|22

 ∈ Rd+p+1, gi(x, t) =

σi(z, t)0p
0

 ∈ Rd+p+1, i ∈ [m].

By (6), the backward SDEs of the adjoint processes become

Azt =AzT +

∫ T

t

(
∂b(z, s)

∂z

∣∣∣∣>
z=Zs

Azs +
1

2

∂ ‖u(z, s)‖22
∂z

∣∣∣∣
z=Zs

Als

)
dt+

m∑
i=1

∫ T

t

∂σi(z, s)

∂z

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s ,

Aθt =AθT +

∫ T

t

(
∂b(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs +
1

2

∂ ‖u(z, s)‖22
∂θ

∣∣∣∣
z=Zs

Als

)
dt+

m∑
i=1

∫ T

t

∂σi(z, s)

∂θ

∣∣∣∣>
z=Zs

Azs ◦ ďW (i)
s ,

Alt =AlT .

(16)

In this case, neither do we need to actually simulate the backward SDE of the extra variable nor do we need to
simulate its adjoint. Moreover, when considered as a single system for the augmented adjoint state, the diffusion
function of the backward SDE (16) satisfies the commutativity property (15).

9.11 Test Problems

In the following, α, β, and p are parameters of SDEs, and x0 is a fixed initial value.

Example 1.

dXt = αXt dt+ βXt dWt, X0 = x0.

Analytical solution:

Xt = X0e

(
β−α2

2

)
t+αWt .

Example 2.

dXt =−
(
p2
)2

sin (Xt) cos3 (Xt) dt+ p cos2 (Xt) dWt, X0 = x0

Analytical solution:

Xt = arctan (pWt + tan (X0)) .

Example 3.

dXt =

(
β√

1 + t
− 1

2(1 + t)
Xt

)
dt+

αβ√
1 + t

dWt, X0 = x0

Analytical solution:

Xt =
1√

1 + t
X0 +

β√
1 + t

(t+ αWt) .

In each numerical experiment, we duplicate the equation 10 times to obtain a system of SDEs where each
dimension had their own parameter values sampled from the standard Gaussian distribution and then passed
through a sigmoid to ensure positivity. Moreover, we also sample the initial value for each dimension from a
Gaussian distribution.

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

1e-1 1e-2 1e-3 1e-4
Step Size

10 7

10 5

10 3

10 1

Er
ro

r

(a) Fixed Step Size vs Error

0 1 2 3 4 5 6 7
NFE Total 1e4

10 5

10 3

10 1

101

Er
ro

r

10 6

10 5

10 4

10 3

10 2

10 1

(b) Total NFE vs Error

0.5 0.6 0.7 0.8 0.9 1.0
Relative Walltime

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r

Euler backprop (dt=0.001)
Milstein backprop (dt=0.01)
Milstein adjoint (dt=0.01)

(c) Efficiency Comparison

1e-1 1e-2 1e-3 1e-4
Step Size

10 9

10 7

10 5

10 3

Er
ro

r

(d) Fixed Step Size vs Error

0.0 0.5 1.0 1.5 2.0
NFE Total 1e4

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

10 6

10 5

10 4

10 3

10 2

10 1

(e) Total NFE vs Error

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Walltime

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Er
ro

r Euler backprop (dt=0.001)
Milstein backprop (dt=0.01)
Milstein adjoint (dt=0.01)

(f) Efficiency Comparison

Figure 7: (a-c) Example 1. (d-f) Example 3.

9.12 Results for Example 1 and 3

9.13 Toy Datasets Configuration

9.13.1 Geometric Brownian Motion

Consider a geometric Brownian motion SDE:

dXt = µXt dt+ σXt dWt, X0 = x0.

We use µ = 1, σ = 0.5, and x0 = 0.1 + ε as the ground-truth model, where ε ∼ N (0, 0.032). We sample 1024 time
series, each of which is observed at intervals of 0.02 from time 0 to time 1. We corrupt this data using Gaussian
noise with mean zero and standard deviation 0.01.

To recover the dynamics, we use a GRU-based [Cho et al., 2014] latent SDE model where the GRU has 1 layer
and 100 hidden units, the prior and posterior drift functions are MLPs with 1 hidden layer of 100 units, and the
diffusion function is an MLP with 1 hidden layer of 100 hidden units and the sigmoid activation applied at the
end. The drift function in the posterior is time-inhomogenous in the sense that it takes in a context vector of size
1 at each observation that is output by the GRU from running backwards after processing all future observations.
The decoder is a linear mapping from a 4 dimensional latent space to observation space. For all nonlinearities, we
use the softplus function. We fix the observation model to be Gaussian with noise standard deviation 0.01.

We optimize the model jointly with respect to the parameters of a Gaussian distribution for initial latent state
distribution, the prior and posterior drift functions, the diffusion function, the GRU encoder, and the decoder.
We use a fixed discretization with step size of 0.01 in both the forward and backward pass. We use the Adam
optimizer [Kingma and Ba, 2014] with an initial learning rate of 0.01 that is decay by a factor of 0.999 after each
iteration. We use a linear KL annealing schedule over the first 50 iterations.

Scalable Gradients for Stochastic Differential Equations

9.13.2 Stochastic Lorenz Attractor

Consider a stochastic Lorenz attractor SDE with diagonal noise:

dXt =σ (Yt −Xt) dt+ αx dWt, X0 = x0,

dYt = (Xt (ρ− Zt)− Yt) dt+ αy dWt, Y0 = y0,

dZt = (XtYt − βZt) dt+ αz dWt, Z0 = z0.

We use σ = 10, ρ = 28, β = 8/3, (αx, αy, αz) = (.15, .15., .15), and (x0, y0, z0) sampled from the standard
Gaussian distribution as the ground-truth model. We sample 1024 time series, each of which is observed at
intervals of 0.025 from time 0 to time 1. We normalize these samples by their mean and standard deviation across
each dimension and corrupt this data by Gaussian noise with mean zero and standard deviation 0.01.

We use the same architecture and training procedure for the latent SDE model as in the geometric Brownian
motion section, except that the diffusion function consists of four small neural networks, each for a single dimension
of the latent SDE.

9.14 Additional Visualization

y1
y2

y 3

Training data

y1
y2

y 3

Posterior sample 1

Reconstruction
Data y1

y2
y 3

Posterior sample 2

Reconstruction
Data y1

y2

y 3

Posterior sample 3

Reconstruction
Data y1

y2

y 3

Posterior sample 4

Reconstruction
Data

y1
y2

y 3

Samples from learned prior

t

y t

Latent dimension 1

t

y t

Latent dimension 2

t

y t
Latent dimension 3

t

y t

Latent dimension 4

y1
y2

y 3

Samples from learned prior

t

y t

Latent dimension 1

t

y t

Latent dimension 2

t

y t

Latent dimension 3

t

y t

Latent dimension 4

Figure 8: Additional visualizations of learned posterior and prior dynamics on the synthetic stochastic Lorenz
attractor dataset. First row displays the true data and posterior reconstructions. Second row displays samples
with initial latent state for each trajectory is sampled independently. Third row displays samples with initial
latent state sampled and fixed to be the same for different trajectories.

See Figure 8 for additional visualization on the synthetic Lorenz attractor dataset. See Figure 9 for visualization
on the synthetic geometric Brownian motion dataset. We comment that for the second example, the posterior
reconstructs the data well, and the prior process exhibit behavior of the data. However, from the third row, we
can observe that the prior process is learned such that most of the uncertainty is account for in the initial latent
state. We leave the investigation of more interpretable prior process for future work.

9.15 Model Architecture for Learning from Motion Capture Dataset

We use a latent SDE model with an MLP encoder which takes in the first three frames and outputs the mean
and log-variance of the variational distribution of the initial latent state and a context vector. The decoder has a
similar architecture as that for the ODE2VAE model [Yıldız et al., 2019] and projects the 6-dimensional latent
state into the 50-dimensional observation space. The posterior drift function takes in a 3-dimensional context
vector output by the encoder and the current state and time, whereas the prior drift only takes in the current
state and time. The diffusion function is composed of multiple small neural nets, each producing a scalar for the

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

Figure 9: Visualizations of learned posterior and prior dynamics on the synthetic geometric Brownian motion
dataset. First row displays the true data and posterior reconstructions. Orange contour covers 95% of 512 samples.
Second row displays samples with initial latent state for each trajectory is sampled independently. Third row
displays samples with initial latent state sampled and fixed to be the same for different trajectories.

corresponding dimension such that the posterior SDE has diagonal noise. We use the same observation likelihood
as that of the ODE2VAE model [Yıldız et al., 2019]. We comment that the overall parameter count of our model
(11605) is smaller than that of ODE2VAE for the same task (12157).

The latent ODE baseline was implemented with a similar architecture, except is does not have the diffusion and
prior drift components, and its vector field defining the ODE does not take in a context vector. Therefore, the
model has slightly fewer parameters (10573) than the latent SDE model. See Figure 10 for overall details of the
architecture.

The main hyperparameter we tuned was the coefficient for reweighting the KL. For both the latent ODE and SDE,
we considered training the model with a reweighting coefficient in {1, 0.1, 0.01, 0.001}, either with or without a
linear KL annealing schedule that increased from 0 to the prescribed value over the first 200 iterations of training.

Scalable Gradients for Stochastic Differential Equations

Figure 10: Architecture specifics for the latent SDE model used to train on the mocap dataset. First row from
left to right are the encoder and decoder. Second row from left to right are the prior drift, posterior drift, and
diffusion functions.

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

9.16 Stochastic Adjoint Implementation

We include the core implementation of the stochastic adjoint, assuming access to a callable Brownian motion
bm, an Euler-Maruyama integrator ito_int_diag for diagonal noise SDEs, and several helper functions whose
purposes can be inferred from their names.

class _SdeintAdjointMethod(torch.autograd.Function):

@staticmethod
def forward(ctx, *args):

(y0, f, g, ts, flat_params_f, flat_params_g, dt, bm) = (
args[:-8], args[-7], args[-6], args[-5], args[-4], args[-3], args[-2], args[-1])

ctx.f, ctx.g, ctx.dt, ctx.bm = f, g, dt, bm

def g_prod(t, y, noise):
g_eval = g(t=t, y=y)
g_prod_eval = tuple(

g_eval_i * noise_i for g_eval_i, noise_i in _zip(g_eval, noise))
return g_prod_eval

with torch.no_grad():
ans = ito_int_diag(f, g_prod, y0, ts, dt, bm)

ctx.save_for_backward(ts, flat_params_f, flat_params_g, *ans)
return ans

@staticmethod
def backward(ctx, *grad_outputs):

ts, flat_params_f, flat_params_g, *ans = ctx.saved_tensors
f, g, dt, bm = ctx.f, ctx.g, ctx.dt, ctx.bm
f_params, g_params = tuple(f.parameters()), tuple(g.parameters())
n_tensors = len(ans)

def aug_f(t, y_aug):
y, adj_y = y_aug[:n_tensors], y_aug[n_tensors:2 * n_tensors]

with torch.enable_grad():
y = tuple(y_.detach().requires_grad_(True) for y_ in y)
adj_y = tuple(adj_y_.detach() for adj_y_ in adj_y)

g_eval = g(t=-t, y=y)
gdg = torch.autograd.grad(

outputs=g_eval, inputs=y,
grad_outputs=g_eval,
create_graph=True)

f_eval = f(t=-t, y=y)
f_eval = _sequence_subtract(gdg, f_eval) # -f + gdg.

vjp_y_and_params = torch.autograd.grad(
outputs=f_eval, inputs=y + f_params + g_params,
grad_outputs=tuple(-adj_y_ for adj_y_ in adj_y),
retain_graph=True, allow_unused=True)

vjp_y = vjp_y_and_params[:n_tensors]
vjp_f = vjp_y_and_params[-len(f_params + g_params):-len(g_params)]
vjp_g = vjp_y_and_params[-len(g_params):]

vjp_y = tuple(torch.zeros_like(y_)
if vjp_y_ is None else vjp_y_ for vjp_y_, y_ in zip(vjp_y, y))

adj_times_dgdx = torch.autograd.grad(
outputs=g_eval, inputs=y,
grad_outputs=adj_y,
create_graph=True)

extra_vjp_y_and_params = torch.autograd.grad(
outputs=g_eval, inputs=y + f_params + g_params,
grad_outputs=adj_times_dgdx,
allow_unused=True)

Scalable Gradients for Stochastic Differential Equations

extra_vjp_y = extra_vjp_y_and_params[:n_tensors]
extra_vjp_f = extra_vjp_y_and_params[-len(f_params + g_params):-len(g_params)]
extra_vjp_g = extra_vjp_y_and_params[-len(g_params):]

extra_vjp_y = tuple(
torch.zeros_like(y_) if extra_vjp_y_ is None
else extra_vjp_y_ for extra_vjp_y_, y_ in zip(extra_vjp_y, y))

vjp_y = _sequence_add(vjp_y, extra_vjp_y)
vjp_f = vjp_f + extra_vjp_f
vjp_g = vjp_g + extra_vjp_g

return (*f_eval, *vjp_y, vjp_f, vjp_g)

def aug_g_prod(t, y_aug, noise):
y, adj_y = y_aug[:n_tensors], y_aug[n_tensors:2 * n_tensors]

with torch.enable_grad():
y = tuple(y_.detach().requires_grad_(True) for y_ in y)
adj_y = tuple(adj_y_.detach() for adj_y_ in adj_y)

g_eval = tuple(-g_ for g_ in g(t=-t, y=y))
vjp_y_and_params = torch.autograd.grad(

outputs=g_eval, inputs=y + f_params + g_params,
grad_outputs=tuple(-noise_ * adj_y_ for noise_, adj_y_ in zip(noise, adj_y)),
allow_unused=True)

vjp_y = vjp_y_and_params[:n_tensors]
vjp_f = vjp_y_and_params[-len(f_params + g_params):-len(g_params)]
vjp_g = vjp_y_and_params[-len(g_params):]

vjp_y = tuple(
torch.zeros_like(y_) if vjp_y_ is None
else vjp_y_ for vjp_y_, y_ in zip(vjp_y, y)

)
g_prod_eval = _sequence_multiply(g_eval, noise)

return (*g_prod_eval, *vjp_y, vjp_f, vjp_g)

def aug_bm(t):
return tuple(-bmi for bmi in bm(-t))

T = ans[0].size(0)
with torch.no_grad():

adj_y = tuple(grad_outputs_[-1] for grad_outputs_ in grad_outputs)
adj_params_f = torch.zeros_like(flat_params_f)
adj_params_g = torch.zeros_like(flat_params_g)

for i in range(T - 1, 0, -1):
ans_i = tuple(ans_[i] for ans_ in ans)
aug_y0 = (*ans_i, *adj_y, adj_params_f, adj_params_g)
aug_ans = ito_int_diag(

f=aug_f, g_prod=aug_g_prod, y0=aug_y0,
ts=torch.tensor([-ts[i], -ts[i - 1]]).to(ts),
dt=dt, bm=aug_bm)

adj_y = aug_ans[n_tensors:2 * n_tensors]
adj_params_f, adj_params_g = aug_ans[-2], aug_ans[-1]

Take the result at the end time.
adj_y = tuple(adj_y_[1] for adj_y_ in adj_y)
adj_params_f, adj_params_g = adj_params_f[1], adj_params_g[1]

Accumulate gradients at intermediate points.
adj_y = _sequence_add(

adj_y, tuple(grad_outputs_[i - 1] for grad_outputs_ in grad_outputs)
)

return (*adj_y, None, None, None, adj_params_f, adj_params_g, None, None)

Xuechen Li∗, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

10 Discussion

We presented a generalization of the adjoint method to compute gradients through solutions of SDEs. In contrast
to existing approaches, this method has nearly the same time and memory complexity as solving the SDE itself.
We showed how our adjoint framework can be combined with a gradient-based stochastic variational inference
scheme for training latent SDEs.

It is worthwhile to mention that SDEs and the commonly used GP models define two distinct classes of
stochastic processes, albeit having a nonempty intersection (e.g. Ornstein-Uhlenbeck processes fall under both).
Computationally, the cost of fitting GPs lies in the matrix inversion, whereas the computational bottleneck of
training SDEs is the sequential numerical solve. Another avenue of research is to reduce the variance of gradient
estimates. In the future, we may adopt techniques such as control variates or antithetic paths.

On the application side, our method opens opportunities for fitting any differentiable SDE model, such as Wright-
Fisher models with selection and mutation parameters [Ewens, 2012], derivative pricing models in finance, or
infinitely-deep Bayesian neural networks [Peluchetti and Favaro, 2019]. In addition, the latent SDE model enabled
by our framework can be extended to include domain knowledge and structural or stationarity constraints [Ma
et al., 2015] in the prior process for specific applications.

On the theory side, there remain fundamental questions to be answered. Convergence rates of numerical gradients
estimated with general schemes are unknown. Additionally, since our analyses are based on strong orders of
schemes, it is natural to question whether convergence results still hold when we consider weak errors.

	Appendix
	Additional Background
	Adjoint Sensitivity Method
	Stochastic Differential Equations
	Neural Stochastic Differential Equations
	Backward Stratonovich Integral
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Euler-Maruyama Scheme Satisfies Condition (ii)
	Stochastic Adjoint has Commutative Noise when Original SDE has Diagonal Noise
	Background on Latent SDE
	Setup
	Derivation of the Variational Bound

	Stochastic Adjoint for Latent SDE
	Test Problems
	Results for Example 1 and 3
	Toy Datasets Configuration
	Geometric Brownian Motion
	Stochastic Lorenz Attractor

	Additional Visualization
	Model Architecture for Learning from Motion Capture Dataset
	Stochastic Adjoint Implementation

	Discussion

