Scalable Gradients for Stochastic Differential Equations

Xuechen Li*
Google Research

Ting-Kam Leonard Wong
University of Toronto

Abstract

The adjoint sensitivity method scalably com-
putes gradients of solutions to ordinary differ-
ential equations. We generalize this method
to stochastic differential equations, allowing
time-efficient and constant-memory compu-
tation of gradients with high-order adaptive
solvers. Specifically, we derive a stochastic dif-
ferential equation whose solution is the gradi-
ent, a memory-efficient algorithm for caching
noise, and conditions under which numerical
solutions converge. In addition, we combine
our method with gradient-based stochastic
variational inference for latent stochastic dif-
ferential equations. We use our method to
fit stochastic dynamics defined by neural net-
works, achieving competitive performance on
a 50-dimensional motion capture dataset.

1 Introduction

Deterministic dynamical systems can often be modeled
by ordinary differential equations (ODEs). The adjoint
sensitivity method can efficiently compute gradients
of ODE solutions with constant memory cost. This
method was well-known in the physics, numerical anal-
ysis, and control communities for decades [Andersson,
2013, Andersson et al., 2019, Pearlmutter, 1995, Pon-
tryagin, 2018|. Recently, it was combined with modern
reverse-mode automatic differentiation packages, en-
abling ODEs with millions of parameters to be fit to
data [Chen et al., 2018] and allowing more flexible
density estimation and time-series models [Grathwohl
et al., 2019, Jia and Benson, 2019, Rubanova et al.,
2019.

Stochastic differential equations (SDEs) generalize
ODEs, adding instantaneous noise to their dynam-

*A portion of work done during AI Residency.

Proceedings of the 23" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

David Duvenaud
University of Toronto
Vector Institute

Ricky T. Q. Chen
University of Toronto
Vector Institute

ics [@ksendal, 2003, Sarkka, 2013, Sarkkd and Solin,
2019]. They are a natural model for phenomena gov-
erned by many small and unobserved interactions, such
as motion of molecules in a liquid [Brown, 1828], allele
frequencies in a gene pool [Ewens, 2012], or prices in
a market [Shreve, 2004]. Previous attempts on fitting
SDEs mostly relied on methods with poor scaling prop-
erties. The pathwise approach [Gobet and Munos, 2005,
Yang and Kushner, 1991], a form of forward-mode au-
tomatic differentiation, scales poorly in time with the
number of parameters and states in the model. On the
other hand, simply differentiating through the opera-
tions of an SDE solver [Giles and Glasserman, 2006]
scales poorly in memory.

In this work, we generalize the adjoint method to
stochastic dynamics defined by SDEs. We give a sim-
ple and practical algorithm for fitting SDEs with tens
of thousands of parameters, while allowing the use of
high-order adaptive time-stepping SDE solvers. We call
this approach the stochastic adjoint sensitivity method.

Method Memory Time
Pathwise approach o) O(LD)
Backprop through solver O(L) O(L)
Stochastic adjoint (ours) O(1) O(Llog L)

Table 1: Asymptotic complexity comparison. L is the
number of steps used in a fixed-step solve, and D is the
number of state and parameters. Both memory and
time are expressed in units of the cost of evaluating
the drift and diffusion functions once each.

There are two main difficulties in generalizing the ad-
joint formulation for ODEs to SDEs. The first is math-
ematical: SDEs are defined using nonstandard integrals
that usually rely on Ité calculus. The adjoint method
requires solving the dynamics backwards in time from
the end state. However, it is not clear exactly what
“running the SDE backwards” means in the context of
stochastic calculus, and when it correctly reconstructs
the forward trajectory. We address this problem in Sec-
tion 3, deriving a backward Stratonovich SDE whose
dynamics compute the necessary gradient.



Scalable Gradients for Stochastic Differential Equations

The second difficulty is computational: To retrace the
steps, one needs to reconstruct the noise sampled on the
forward pass, ideally without storing it. In Section 4,
we give an algorithm that allows querying a Brownian
motion sample at any time point arbitrarily-precisely,
while only storing a single random seed.

We combine our adjoint approach with a gradient-based
stochastic variational inference scheme for efficiently
marginalizing over latent SDE models with arbitrary
differentiable likelihoods. This model family general-
izes several existing families such as latent ODEs [Chen
et al., 2018, Rubanova et al., 2019], Gaussian state-
space models [Kitagawa and Gersch, 1996, Turner et al.,
2010], and deep Kalman filters [Krishnan et al., 2017],
and can naturally handle irregularly-sampled times se-
ries and missing observations. We train latent SDEs
on toy and real datasets, demonstrating competitive
performance compared to existing approaches for dy-
namics modeling.

2 Background: Stochastic Flows

We present background on stochastic flows of dif-
feomorphisms, which justifies “running SDEs back-
wards” and inspired our new adjoint method. Due
to space constraints, we include background on back-
ward Stratonovich SDEs and the adjoint method for
ODEs in Appendix 9.

2.1 Stochastic Flow of Diffeomorphisms

It is well known that an ODE defines a flow of dif-
feomorphisms [Arnold, 1978]. Here we consider the
stochastic analog for the Stratonovich SDE

T T
ZT:zo—i—/ b(Zo, 1) dt+/ o(Zet)o dW,. (1)
0 0

Throughout, we assume that both b and o have in-
finitely many bounded derivatives w.r.t. the state, and
bounded first derivatives w.r.t. time, i.e. b,o € 050’17
so that the SDE has a unique strong solution. Let
D, .(z) := Z;"* be the solution at time ¢ when the
process is started from z at time s. Given a realiza-
tion of the Wiener process, this defines a collection of
continuous maps S = {®; 4 }s<t.s ter from R? to itself.

The following theorem shows that these maps are dif-
feomorphisms (after choosing a suitable modification)
and that they satisfy backward SDEs.

Theorem 2.1 ([Kunita, 2019, Thm. 3.7.1]). (a)
With  probability 1, the collection S =
{®s,1}s<t:s,teT satisfies the flow property

Dy t(2) = Put(Psu(2), s<u<t z€ RY.

Moreover, each @5 is a smooth diffeomorphism
from R? to itself. We thus call S the stochastic
flow of diffeomorphisms generated by the SDE (1).

(b) The backward flow ¥, ; = @;% satisfies the back-
ward SDE:

~

U, . (2) = z—/ b(Uy.4(2),u) du—
/ o(Uui(2),u) 0 dW,, (2)

for all z € R? and s,t € T such that s < t.

The coefficients in (1) and (2) differ by only a neg-
ative sign. This symmetry is due to our use of the
Stratonovich integral (see Figure 1).

Z

—— True solution
= Itd Reverse
* Strat Reverse

0 1

Figure 1: Negating the drift and diffusion functions
for an Itd6 SDE and simulating backwards from the end
state gives the wrong solution. Negating the drift and
diffusion functions for the converted Stratonovich SDE
gives the correct path when simulated backwards.

3 Sensitivity via Stochastic Adjoint

We present our main contribution: a stochastic analog
of the adjoint sensitivity method for SDEs. We use (2)
to derive another backward Stratonovich SDE, which
we call the stochastic adjoint process. The direct impli-
cation is a gradient computation algorithm that works
by solving a set of dynamics in reverse time, and relies
on cheap vector-Jacobian products without storing any
intermediate quantities.

3.1 Stochastic Adjoint Process

The goal is to derive a stochastic adjoint process
{0L/0Z;}ter that can be simulated by evaluating
only vector-Jacobian products, where £ = L(Zr) is a
scalar loss of the terminal state from the forward flow
ZT = @O,T(ZO)~

We first derive a backward SDE for the process
{0Z1/0Z;}1er, assuming that Z; = clllt7T(ZT) follows
the inverse flow from a deterministic end state Zp € R4



Xuechen Li*, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

that does not depend on the realized Wiener pro-
cess (Lemma 3.1). We then extend to the case where
Zp = ®g 1 (%0) is obtained by the forward flow starting
from a deterministic initial state 29 € R¢ (Theorem 3.2).
This latter part is unconventional, and the resulting
value cannot be interpreted as the solution to a back-
ward SDE anymore due to loss of adaptedness. Instead,
we will formulate the result with the Ité6 map [Rogers
and Williams, 2000]. Finally, it is straightforward to ex-
tend the state Z; to include parameters of the drift and
diffusion functions such that the desired gradient can
be obtained for stochastic optimization; we comment
on this step in Section 3.3.

We first present the SDE for the Jacobian matrix of
the backward flow.

Lemma 3.1 (Dynamics of 0Zr/0Z;). Consider the
stochastic flow generated by the backward SDE (2) as
in Theorem 2.1(b). Letting Jo(z) := V.U, r(z), we
have

t
Jai(z) = Ia— | VbW, 4(2),7)Jp(2) dr—

>
s
t

Vo (U, (2),r)Jpi(2) 0 dW,, (3)

)
S

and * € R,

<t Furthermore, letting
Js,t(z)*l, we have

forall s <t and ¢ € R?,

The proof included in Appendix 9.5 relies on Itd’s
lemma in the Stratonovich form [Kunita, 2019, Theo-
rem 2.4.1]. We stress that this lemma considers only
the case where the endpoint z is fixed and deterministic.

Now, we extend to the case where the endpoint is not
deterministic, but rather computed from the forward
flow. To achieve this, we compose the state process and
the loss function. Consider A, ;(z) = IL(D;,(2))/0z.
The chain rule gives A, (2) = VL(D, . (2))VPs4(2).
Let

ES,t(Z) ::AS,t({I(/&t(Z)) = (5)
VL(2)V®, (U, 1(2) = VL(2)Ks1(2).

s )

Note that A,.(z) = Z.s,t(‘l’s,t(z))-

~ ~

Since VL(z) is

a constant, (A, .(2), ¥s.(2)) satisfies the augmented

backward SDE system

Agi(2) =VL(2) + / t Vb(F, 4 (2),7) " Ay (2) drt

t

t
/ o(U,.1(2),r) 0 dW,.

Since the drift and diffusion functions of this augmented
SDE system are C,*° ’1, it has a unique strong solution.
Let ¢ = 0. Since (6) admits a strong solution, we may
write

Ao(2) = F(z, W), (7)

where W. = {W, }o<:<7 denotes the path of the Wiener
process and

F:R? x C(]0,1],R™) — R?

is a deterministic measurable function (the Ito
map) [Rogers and Williams, 2000, Chapter V, Defi-
nition 10.9]. Intuitively, F can be thought as a black
box that computes the solution to the backward SDE
system (6) given the position z at time 7" and the real-
ized Wiener process sample. Similarly, we let G be the
solution map for the forward flow (1). The next theo-
rem follows immediately from (5) and the definition of
F.

Theorem 3.2. For P-almost all w € 2, we have
Aor(2) = Ao(2) = F(G(z, W.(w)), W.(w)),
where G(z, W.(w)) = @o.7(2)(w).

Proof. This is a consequence of composing Ao r(z) =
EO,T(q)&T(Z)) and (7) O

This shows that one can obtain the gradient by “com-
posing” the backward SDE system (6) with the original
forward SDE (1) and ends our continuous-time analysis.

3.2 Numerical Approximation

In practice, we compute solutions to SDEs with nu-
merical solvers Fj, and Gy, where h = T'/L denotes the
mesh size of a fixed grid. The approximate algorithm
thus outputs Fp(Gp(z, W.), W.). The following theorem
provides sufficient conditions for convergence.

Theorem 3.3. Suppose the schemes Fp, and Gp sat-
isfy the following conditions: (i) Fy(z, W.) = F(z,W.)
and Gp(z,W.) — G(z,W.) converge to 0 in proba-
bility as h — 0, and (i) for any M > 0, we have



Scalable Gradients for Stochastic Differential Equations

sup|, < [Fr(z, W.) = F(2,W))| — 0 in probability as
h — 0. Then, for any starting point z of the forward
flow, we have

Fh(Gh(z, W), W) — F(G(Z7 W)7 W) = AO’T(Z)
in probability as h — 0.

See Appendix 9.6 for the proof. Usual schemes such
as the Euler-Maruyama scheme (more generally Ito-
Taylor schemes) converge pathwise (i.e. almost surely)
from any fixed starting point [Kloeden and Neuenkirch,
2007|, satisfying (¢). While (4¢) is strong, we note
that the SDEs considered here have smooth coefficients
and thus solutions enjoy nice regularity properties in
the starting position. Therefore, it is reasonable to
expect that the corresponding numerical schemes to
also behave nicely as a function of both the mesh size
and the starting position. To the best of our knowledge,
this property is not considered at all in the literature on
numerical methods for SDEs (where the initial position
is fixed), but is crucial in the proof of Theorem 3.3.
In Appendix 9.7, we prove condition (i¢) holds for the
Euler-Maruyama scheme. Detailed analysis for other
schemes is beyond the scope of this paper.

3.3 The Algorithm

So far we have derived the gradient of the loss with
respect to the initial state. We can extend these results
to give gradients with respect to parameters of the
drift and diffusion functions by treating them as an
additional part of the state whose dynamics has zero
drift and diffusion. We summarize this in Algorithm 3,
assuming access only to a black-box solver sdeint. All
terms required for the augmented dynamics, such as
a; Ob/96 and a] do /00 can be cheaply evaluated by
calling vjp(as,b,0) and vip(as,o,0), respectively.

Difficulties with non-diagonal diffusion. In prin-
ciple, we can simulate the forward and backward adjoint
dynamics with any high-order solver of choice. However,
for general matrix-valued diffusion functions o, to ob-
tain a numerical solution with strong order! beyond 1/2,
we need to simulate multiple integrals of the Wiener
process such as f(f fos aw s aw P, i,j € [m],i # j.
These random variables are difficult to simulate and
costly to approximate [Wiktorsson et al., 2001].

Fortunately, if we restrict our SDE to have diagonal
noise, then even though the backward SDE for the
stochastic adjoint will not in general have diagonal
noise, it will satisfy a commutativity property [RoRler,

YA numerical scheme is of strong order p if
E[| X7 — Xny|] < CnP for all T > 0, where X; and Xy,
are respectively the coupled true solution and numerical
solution, N and 7 are respectively the iteration index and
step size such that Nn =T, and C is independent of 7.

2004]. In that case, we can safely adopt certain nu-
merical schemes of strong order 1.0 (e.g. Milstein [Mil-
stein, 1994] and stochastic Runge-Kutta [Rofler, 2010])
without approximating multiple integrals or the Lévy
area during simulation. We formally show this in Ap-
pendix 9.8.

One may also consider numerical schemes with high
weak order [Kloeden and Platen, 2013]. However, anal-
ysis of this scenario is beyond the current scope.

3.4 Software and Implementation

We have implemented several common SDE solvers
in PyTorch [Paszke et al., 2017] with adaptive time-
stepping using a PI controller [Burrage et al., 2004,
Ilie et al., 2015]. Following torchdiffeq [Chen et al.,
2018], we have created a user-friendly subclass of
torch.autograd.Function that facilitates gradient
computation using our stochastic adjoint framework
for SDEs that are subclasses of torch.nn.Module. We
include a short code snippet covering the main idea of
the stochastic adjoint in Appendix 9.16 and plan to
release remaining code.

4 Virtual Brownian Tree

Our formulation of the adjoint can be numerically
integrated efficiently, since simulating its dynamics
only requires evaluating cheap vector-Jacobian prod-
ucts, as opposed to whole Jacobians. However, the
backward-in-time nature introduces a new difficulty:
The same Wiener process sample path used in the for-
ward pass must be queried again during the backward
pass. Naively storing Brownian motion increments im-
plies a large memory consumption, and complicates the
usage of adaptive time-stepping integrators, where the
evaluation times in the backward pass may be different
from those in the forward pass.

To overcome this issue, we combine Brownian trees with
splittable pseudorandom number generators (PRNGs)
to give an algorithm that can query values of a Wiener
process sample path at arbitrary times. This algorithm,
which we call the virtual Brownian tree, has O(1) mem-
ory cost, and time cost logarithmic with respect to the
inverse error tolerance.

4.1 Brownian Bridges and Brownian Trees

Lévy’s Brownian bridge [Revuz and Yor, 2013] states
that given a start time ¢, and end time t. along with
their respective Wiener process values ws and w,, the
marginal of the process at time t € (ts,1.) is a normal

distribution:
N ((te —tws + (t —ts)we (te —t)(t— tS)Id> )

te_ts ’ te_ts




Xuechen Li*, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

Figure 2: Evaluating a Brownian motion sample at
time ¢, using a virtual Brownian tree. Our algorithm
repeatedly bisects the interval, sampling from a Brow-
nian bridge at each halving to determine intermediate
values. Each call to the random number generator uses
a unique key whose value depends on the path taken
to reach it.

We can recursively apply this formula to evaluate the
process at the midpoint of any two distinct timestamps
where the values are already known. Constructing the
whole sample path of a Wiener process in this manner
results in what is known as the Brownian tree |Gaines
and Lyons, 1997|. Storing this tree would be memory-
intensive, but we show how to reconstruct any node in
this tree as desired.

4.2 Brownian Trees using Splittable Seeds

We assume access to a splittable PRNG [Claessen and
Palka, 2013], which has an operation split that deter-
ministically generates two keys from an existing key.
Given a key, the function BrownianBridge samples de-
terministically from (8). To obtain the Wiener process
value at a specific time, we must first know or sample
the values at the initial and terminal times. Then,
the virtual Brownian tree recursively samples from the
midpoint of Brownian bridges, each sample using a
key split from that of its parent node. The algorithm
terminates when the most recently sampled time is
close enough to the desired time. We outline the full
procedure in Algorithm 1.

This algorithm has constant memory cost. For a fixed-
step-size solver taking L steps, the tolerance that the
tree will need to be queried at scales as 1/L. Thus the
per-step time complexity scales as log L. Our imple-
mentation uses an efficient count-based PRNG [Salmon
et al., 2011] which avoids passing large random states,
and instead simply passes integers. Table 1 compares
the asymptotic time complexity of this approach against
existing alternatives.

Algorithm 1 Virtual Brownian Tree

Input: Seed s, query time ¢, error tolerance ¢, start
time tg, start state ws, end time t., end state w,.
tmid = (ts + te)/Q
Wmid = BrownianBridge(ts, ws, te, We, tmid, S)
while |t — tiiq] > € do

S1, 8r = split(s)

if t < tiq then te, Tey, S = tmid, Wmid, SI

else ts,Ts,S = tmid, Wmid, Sr

end if

tmid = (ts + te)/2

Wmid = BrownianBridge(ts, ws, te, We, tmid, S)
end while
return wpyiq

5 Latent SDE

The algorithms presented in Sections 3 and 4 allow
us to efficiently compute gradients of scalar objectives
with respect to SDE parameters, letting us fit SDEs to
data. This raises the question: Which loss to optimize?

Simply fitting SDE parameters to maximize likelihood
will in general cause overfitting, and will result in the
diffusion function going to zero. In this section, we
show how to do efficient variational inference in SDE
models, and optimize the marginal log-likelihood to fit
both prior (hyper-)parameters and the parameters of a
tractable approximate posterior over functions.

In particular, we can parameterize both a prior over
functions and an approximate posterior using SDEs:

AZ, = he(Zy,t) + 0(Zy, t) AW, (prior)
dZ; = h¢(Z,t) + o(Zs,t) AWy, (approx. posterior)

where hg, hg, and o are Lipschitz in both arguments,
and both processes have the same starting value.

If both processes share the same diffusion function o,
then the KL divergence between them is finite, and can
be estimated by sampling paths from the posterior pro-
cess. Then, the evidence lower bound (ELBO) [Opper,
2019] can be written as:

logp(x17x27"'7xN‘0) 2 (9)
N T 1
Eg, L_leogp(acti z,) — /0 §\u(zt,t)\2 dt],
where

u(z,t) = o(z,t)71 (ho(z,t) — hg(z,1)),

o(z,t)7! is the left inverse, and the expectation is
taken over the approximate posterior process defined
by (approx. posterior). The likelihoods of the obser-
vations x1,...,xN at times tq,...,ty, depend only on
the latent states z; at the corresponding times.




Scalable Gradients for Stochastic Differential Equations

(a) Generation

Figure 3:

(b) Recognition

Graphical models for the generative process (decoder) and recognition network (encoder) of the

latent stochastic differential equation model. This model can be viewed as a variational autoencoder with
infinite-dimensional noise. Red circles represent entire function draws from Brownian motion. Given the initial

state zp and a Brownian motion sample path w(:), the intermediate states z,..., 2,

approximated by a numerical SDE solver.

To compute the gradient with respect to prior param-
eters 6 and variational parameters ¢, we need only
augment the forward SDE with an extra scalar variable
whose drift function is £|u(Z;,t)[* and whose diffusion
function is zero. The backward dynamics can be derived
analogously using (6). We include a detailed derivation
in Appendix 9.10. Thus, a stochastic estimate of the
gradients of the loss w.r.t. all parameters can be com-
puted in a single pair of forward and backward SDE
solves.

The variational parameters ¢ can either be optimized
individually for each sequence, or if multiple time series
are sharing parameters, then an encoder network can
be trained to input the observations and output ¢. This
architecture, shown in figure 3, can be viewed as an
infinite-dimensional variational autoencoder.

6 Related Work

Sensitivity Analysis for SDEs. Gradient compu-
tation is closely related to sensitivity analysis. Comput-
ing gradients with respect to parameters of vector fields
of an SDE has been extensively studied in the stochas-
tic control literature [Kushner and Dupuis, 2013]. In
particular, for low dimensional problems, this is done
effectively using dynamic programming [Baxter and
Bartlett, 2001] and finite differences [Glasserman and
Yao, 1992, L’Ecuyer and Perron, 1994]. However, both
approaches scale poorly with the dimensionality of the
parameter vector.

Analogous to REINFORCE (or the score-function esti-
mator) [Glynn, 1990, Kleijnen and Rubinstein, 1996,
Williams, 1992], Yang and Kushner [1991] considered
deriving the gradient as VE [£(Z7)] = E [£(Zr)H] for

are deterministically

some random variable H. However, H usually depends
on the density of Zpr with respect to the Lebesgue
measure which can be difficult to compute. Gobet and
Munos [2005] extended this approach by weakening a
non-degeneracy condition using Mallianvin calculus.

Closely related to the current approach is the path-
wise method [Yang and Kushner, 1991], which is also
a continuous-time analog of the reparameterization
trick [Kingma and Welling, 2013, Rezende et al., 2014].
Existing methods in this regime [Gobet and Munos,
2005, Liu et al., 2019, Tzen and Raginsky, 2019a] all
require simulating a (forward) SDE where each step
requires computing entire Jacobian matrices. This
computational cost is prohibitive for high-dimensional
systems with a large number of parameters.

Based on the Euler discretization, Giles and Glasser-
man [2006] considered simply performing reverse-mode
automatic differentiation through all intermediate steps.
They named this method the adjoint approach, which,
by modern standards, is a form of “backpropagation
through the operations of a numerical solver”. This
approach, widely adopted in the field of finance for cal-
ibrating market models [Giles and Glasserman, 2006,
has high memory cost, and relies on a fixed Euler-
Maruyama discretization. Recently, this approach was
also used by Hegde et al. [2019] to learn parameterized
drift and diffusion functions of an SDE. In scientific
computing, Innes et al. [2019] considered backpropa-
gating through high-order implicit SDE solvers.

In the machine learning literature, Ryder et al. [2018]
perform variational inference over the state and param-
eters for Euler-discretized latent SDEs and optimize the
model with regular backpropagation. This approach
should not be confused with the formulation of vari-



Xuechen Li*, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

10°
10774
10—1,
§ 1072
-3
‘6 10
° =
w10
1077
10*5,

107

Error

10-7!

le-1 le-2 le-3 le-4 0.0 0.5
Step Size

(a) Fixed Step Size vs Error

Figure 4:

NFE Total
(b) Forward NFE vs Error

107t
0.012 e Euler backprop (dt=0.001)
: Milstein backprop (dt=0.01)
1072 0.010 « Milstein adjoint (dt=0.01)
1073 0.008
.
<
10.006
1074 .
o
0.004 [N
4
. 10—5
S - 0002, e -* S
S -
o
-6
15 2.0 10 000304 o5 o6 07 08 09 10

led Relative Walltime
(c) Efficiency Comparison

(a) Same fixed step size used in both forward and reverse simulation. Boxplot generated by repeating

the experiment with different Brownian motion sample paths 64 times. (b) Colors of dots represent tolerance
levels and correspond to the colorbar on the right. Only atol was varied and rtol was set to 0.

ational inference for non-discretized SDEs presented
in previous works [Ha et al., 2018, Opper, 2019, Tzen
and Raginsky, 2019a] and our work, as it is unclear
whether the limit of their discretization corresponds to
that obtained by operating with continuous-time SDEs
using Girsanov’s theorem.

Backward SDEs. Our stochastic adjoint process re-
lies on the notion of backward SDEs devised by Kunita
[2019], which is based on two-sided filtrations. This is
different from the more traditional notion of backward
SDEs where only a single filtration is defined [Pardoux
and Peng, 1992, Peng, 1990]. Based on the latter notion,
forward-backward SDEs (FBSDEs) have been proposed
to solve stochastic optimal control problems [Peng and
Wu, 1999]. However, simulating FBSDEs is costly due
to the need to estimate conditional expectations in the
backward pass [Pardoux and Peng, 1992].

Bayesian Learning of SDEs. Recent works have
considered the problem of inferring an approximate
posterior SDE given observed data under a prior SDE
with the same diffusion coefficient [Ha et al., 2018,
Opper, 2019, Tzen and Raginsky, 2019a]. In particular,
computing the KL divergence between two SDEs over a
finite time horizon has been well-explored in the control
literature [Kappen and Ruiz, 2016, Theodorou, 2015].
We include background on this topic in Appendix 9.9.

Bayesian learning and parameter estimation of SDEs
has a long history [Gupta and Mehra, 1974]. Techniques
which don’t require positing a variational family such as
extended Kalman filter and Markov chain Monte Carlo
have been considered in the literature [Mbalawata et al.,
2013].

7 Experiments

The aim of this section is threefold. We first empirically
verify our theory by comparing the gradients obtained

by our stochastic adjoint framework against analyti-
cally derived gradients for problems having closed-form
solutions. We then fit latent SDE models with our
framework on two synthetic datasets, verifying that
the variational inference framework allows learning
a generative model of time series. Finally, we learn
dynamics parameterized by neural networks with a
latent SDE from a motion capture dataset, demon-
strating competitive performance compared to existing
approaches.

We report results based on an implementation of Brow-
nian motion that stores all intermediate queries. The
virtual Brownian tree allowed training with much larger
batch sizes on GPUs, but was not necessary for our
small-scale experiments. Notably, our adjoint approach,
even when combined with the Brownian motion im-
plementation that stores noise, was able to reduce the
memory usage by 1/2-1/3 compared to directly back-
propagating through solver operations on the tasks we
considered.

7.1 Numerical Studies

We consider three test problems (examples 1-3 from
[Rackauckas and Nie, 2017]; details in Appendix 9.11),
all of which have closed-form solutions. We compare
the gradient computed from simulating our stochastic
adjoint process using the Milstein scheme against the
exact gradient. Figure 5(a) shows that for test example
2, the error between the adjoint gradient and analytical
gradient decreases with step size.

For all three test problems, the mean squared error
across dimensions tends to be smaller as the absolute
tolerance of the adaptive solver is reduced (e.g. see Fig.
5 (b)). However, the Number of Function Evaluations
(NFEs) tends to be much larger than that in the ODE
case [Chen et al., 2018].

Additionally, for two out of three test problems, we



Scalable Gradients for Stochastic Differential Equations

found that our adjoint approach with the Milstein
scheme and fixed step size can be much more time-
efficient than regular backpropagation through opera-
tions of the Milstein and Euler schemes (see e.g. Fig.
5(c)). Backpropagating through the Euler scheme gives
gradients of higher error compared to the Milstein
method. On the other hand, directly backpropagating
through the Milstein solve requires evaluating high-
order derivatives and can be costly.

Results for examples 1 and 3 are in Appendix 9.12.

Training data

Posterior sample

y3
y3

— < — Reconstruction <
T x  Data S

Latent dimension 1

Samples from learned prior

Figure 5: Learned posterior and prior dynamics on
data from a stochastic Lorenz attractor. All samples
from our model are continuous-time paths, and form a
multi-modal, non-Gaussian distribution.

7.2 Synthetic Datasets

We trained latent SDEs with our adjoint framework to
recover (1) a 1D Geometric Brownian motion, and (2)
a 3D stochastic Lorenz attractor process. The main
objective is to verify that the learned posterior can
reconstruct the training data, and that the learned
priors are not deterministic. We jointly optimize the
evidence lower bound (9) with respect to parameters of
the prior and posterior distributions at the initial latent
state zp, the prior and posterior drift, the diffusion
function, the encoder, and the decoder. We include the
details of datasets and architectures in Appendix 9.13.

For the stochastic Lorenz attractor, not only is the
model able to reconstruct the data well, but also the
learned prior process can produce bimodal samples in
both data and latent space. This is showcased in the
last row of Figure 5 where the latent and data space
samples cluster around two modes. This is hard to
achieve using a latent ODE with a unimodal Gaussian
initial approximate posterior. We include additional
visualizations in Appendix 9.14.

7.3 Motion Capture Dataset

To demonstrate that latent SDEs can learn complex
dynamics from real-world datasets, we evaluated their
predictive performance on a 50-dimensional motion cap-
ture dataset. The dataset, from Gan et al. [2015], con-
sists of 23 walking sequences of subject 35 partitioned
into 16 training, 3 validation, and 4 test sequences. We
follow the preprocessing of Wang et al. [2007].

In designing the recognition network, we follow Yildiz
et al. [2019] and use a fully connected network to en-
code the first three observations of each sequence and
thereafter predicted the remaining sequence. This en-
coder is chosen for fair comparison to existing models,
and could be extended to a recurrent or attention
model [Vaswani et al., 2017]. The overall architecture
is described in Appendix 9.15 and is similar to that of
ODE?VAE [Yildiz et al., 2019], with a similar number
of parameters. We also use a fixed step size 1/5 of
smallest interval between any two observations [Yildiz
et al., 2019].

We train latent ODE and latent SDE models with the
Adam optimizer [Kingma and Ba, 2014] and its default
hyperparameter settings, with an initial learning rate
of 0.01 that is exponentially decayed with rate 0.999
during each iteration. We perform validation over the
number of training iterations, KL penalty [Higgins
et al., 2017], and KL annealing schedule. All models
were trained for at most 400 iterations, where we start
to observe severe overfitting for most model instances.
We report the test MSE on future observations follow-
ing Yildiz et al. [2019]. We believe that the improved
performance is due to the strong regularization in path
space, as removing the KL penalty improve training
error but caused validation error to deteriorate.

Table 2: Test MSE on 297 future frames averaged over
50 samples. 95% confidence interval reported based on
t-statistic. fresults from [Yildiz et al., 2019].

Method Test MSE
DTSBN-S [Gan et al., 2015] 34.86 & 0.021
npODE [Heinonen et al., 2018§] 22.961
NeuralODE [Chen et al., 2018] 22.49 4 0.881
ODE*VAE [Yildiz et al., 2019] 10.06 4 1.41
ODE*VAE-KL [Yildiz et al., 2019 8.09 + 1.95
Latent ODE [Rubanova et al., 2019] 5.98 £0.28
Latent SDE (this work) 4.03 +£0.20




Xuechen Li*, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

Acknowledgements

We thank Yulia Rubanova, Danijar Hafner, Mufan Li,
Shengyang Sun, Kenneth R. Jackson, Simo S&rkké,
and Daniel Lacker for helpful discussions. We thank
Cagatay Yildiz for helpful discussions regarding eval-
uation settings of the mocap task. We also thank
Guodong Zhang, Kevin Swersky, Chris Rackauckas,
and members of the Vector Institute for helpful com-
ments on an early draft of this paper.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine
learning. In 12th Symposium on Operating Systems
Design and Implementation, pages 265283, 2016.

R Adams. Sobolev Spaces. Academic Press, 1975.

Joel Andersson. A general-purpose software framework
for dynamic optimization. PhD thesis, Arenberg
Doctoral School, KU Leuven, 2013.

Joel Andersson, Joris Gillis, Greg Horn, James B Rawl-
ings, and Moritz Diehl. CasADi: a software frame-
work for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1—
36, 2019.

VI Arnold. Ordinary Differential Equations. The MIT
Press, 1978.

Jonathan Baxter and Peter L Bartlett. Infinite-horizon
gradient-based policy search. 2001.

Robert Brown. ... microscopical observations ... on
the particles contained in the pollen of plants. The
Philosophical Magazine, 4(21):161-173, 1828.

Pamela M Burrage, R Herdiana, and Kevin Burrage.
Adaptive stepsize based on control theory for stochas-
tic differential equations. Journal of Computational
and Applied Mathematics, 170(2):317-336, 2004.

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung,
and David Begert. Multi-level residual networks
from dynamical systems view. arXiv preprint
arXiv:1710.10348, 2017.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto,
David Begert, and Elliot Holtham. Reversible archi-
tectures for arbitrarily deep residual neural networks.
In Thirty-Second AAAI Conference on Artificial In-
telligence, 2018.

Ricky Tian Qi Chen, Yulia Rubanova, Jesse Betten-
court, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural infor-
mation processing systems, pages 6571-6583, 2018.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078,
2014.

Koen Claessen and Michal H Paltka. Splittable pseu-
dorandom number generators using cryptographic
hashing. In ACM SIGPLAN Notices, volume 48,
pages 47-58. ACM, 2013.

Warren J Ewens. Mathematical population genetics 1:
theoretical introduction, volume 27. Springer Science
& Business Media, 2012.

Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level
tracing, 2018.

Jessica G Gaines and Terry J Lyons. Variable step
size control in the numerical solution of stochastic
differential equations. SIAM Journal on Applied
Mathematics, 57(5):1455-1484, 1997.

Zhe Gan, Chunyuan Li, Ricardo Henao, David E Carl-
son, and Lawrence Carin. Deep temporal sigmoid
belief networks for sequence modeling. In Advances

in Neural Information Processing Systems, pages
2467-2475, 2015.

Mike Giles and Paul Glasserman. Smoking adjoints:
Fast Monte Carlo greeks. Risk, 19(1):88-92, 2006.

Paul Glasserman and David D Yao. Some guidelines
and guarantees for common random numbers. Man-

agement Science, 38(6):884-908, 1992.

Peter W Glynn. Likelihood ratio gradient estimation
for stochastic systems. Communications of the ACM,
33(10):75-84, 1990.

Emmanuel Gobet and Rémi Munos. Sensitivity analysis
using It6—Malliavin calculus and martingales, and ap-
plication to stochastic optimal control. SIAM Jour-
nal on control and optimization, 43(5):1676-1713,
2005.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt,
Ilya Sutskever, and David Duvenaud. FFJORD: Free-
form continuous dynamics for scalable reversible gen-
erative models. International Conference on Learning
Representations, 2019.

Narendra Gupta and Raman Mehra. Computational
aspects of maximum likelihood estimation and re-
duction in sensitivity function calculations. IEEE
transactions on automatic control, 19(6):774-783,
1974.

Jung-Su Ha, Young-Jin Park, Hyeok-Joo Chae, Soon-
Seo Park, and Han-Lim Choi. Adaptive path-integral
autoencoders: Representation learning and planning
for dynamical systems. In Advances in Neural Infor-
mation Processing Systems, pages 8927-8938, 2018.



Scalable Gradients for Stochastic Differential Equations

Eldad Haber and Lars Ruthotto. Stable architectures
for deep neural networks. Inverse Problems, 34(1):
014004, 2017.

Pashupati Hegde, Markus Heinonen, Harri Lidhdesméki,
and Samuel Kaski. Deep learning with differential
gaussian process flows. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1812-1821, 2019.

Markus Heinonen, Cagatay Yildiz, Henrik Manner-
strom, Jukka Intosalmi, and Harri Lahdesmaki.
Learning unknown ode models with gaussian pro-
cesses. arXiv preprint arXiv:1803.04303, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learn-

ing basic visual concepts with a constrained varia-
tional framework. ICLR, 2(5):6, 2017.

Silvana Ilie, Kenneth R Jackson, and Wayne H Enright.
Adaptive time-stepping for the strong numerical so-
lution of stochastic differential equations. Numerical
Algorithms, 68(4):791-812, 2015.

Mike Innes, Alan Edelman, Keno Fischer, Chris Rack-
auckus, Elliot Saba, Viral B Shah, and Will Tebbutt.
Zygote: A differentiable programming system to
bridge machine learning and scientific computing.
arXiw preprint arXiv:1907.07587, 2019.

Neural Jump
arXiv e-prints,

Junteng Jia and Austin R. Benson.
Stochastic Differential Equations.
art. arXiv:1905.10403, May 2019.

Hilbert Johan Kappen and Hans Christian Ruiz. Adap-
tive importance sampling for control and inference.
Journal of Statistical Physics, 162(5):1244-1266,
2016.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Genshiro Kitagawa and Will Gersch. Linear gaussian
state space modeling. In Smoothness Priors Analysis
of Time Series, pages 55—65. Springer, 1996.

Jack PC Kleijnen and Reuven Y Rubinstein. Optimiza-
tion and sensitivity analysis of computer simulation
models by the score function method. Furopean Jour-
nal of Operational Research, 83(3):413-427, 1996.

Peter E Kloeden and Andreas Neuenkirch. The
pathwise convergence of approximation schemes for
stochastic differential equations. LMS journal of
Computation and Mathematics, 10:235-253, 2007.

Peter E Kloeden and Eckhard Platen. Numerical solu-
tion of stochastic differential equations, volume 23.
Springer Science & Business Media, 2013.

Rahul G Krishnan, Uri Shalit, and David Sontag. Struc-
tured inference networks for nonlinear state space
models. In Thirty-First AAAI Conference on Artifi-
cial Intelligence, 2017.

Hiroshi Kunita. Stochastic Flows and Jump-Diffusions.
Springer, 2019.

Harold Kushner and Paul G Dupuis. Numerical meth-
ods for stochastic control problems in continuous time,
volume 24. Springer Science & Business Media, 2013.

Pierre L’Ecuyer and Gaétan Perron. On the conver-
gence rates of ipa and fdc derivative estimators. Op-
erations Research, 42(4):643-656, 1994.

Xuanging Liu, Si Si, Qin Cao, Sanjiv Kumar, and
Cho-Jui Hsieh. Neural sde: Stabilizing neural
ode networks with stochastic noise. arXiv preprint
arXiv:1906.02355, 2019.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong.
Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations.
arXiww preprint arXiv:1710.10121, 2017.

Yi-An Ma, Tianqgi Chen, and Emily Fox. A complete
recipe for stochastic gradient mcmc. In Advances in
Neural Information Processing Systems, pages 2917—
2925, 2015.

Dougal Maclaurin, David Duvenaud, M Johnson, and
RP Adams. Autograd: Reverse-mode differentiation
of native python. In ICML workshop on Automatic
Machine Learning, 2015.

Isambi S Mbalawata, Simo Sérkka, and Heikki Haario.
Parameter estimation in stochastic differential equa-
tions with markov chain monte carlo and non-linear
kalman filtering. Computational Statistics, 28(3):
1195-1223, 2013.

Grigori Noah Milstein and Michael V Tretyakov.
Stochastic Numerics for Mathematical Physics.
Springer Science & Business Media, 2013.

Grigorii Noikhovich Milstein. Numerical integration of
stochastic differential equations, volume 313. Springer

Science & Business Media, 1994.

Daniel Ocone and Etienne Pardoux. A generalized ito-
ventzell formula. application to a class of anticipating
stochastic differential equations. 25(1):39-71, 1989.

Bernt (Oksendal.
Springer, 2003.

Stochastic Differential FEquations.

Bernt Oksendal. Stochastic differential equations: an
introduction with applications. Springer Science &
Business Media, 2013.



Xuechen Li*, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud

Manfred Opper. Variational inference for stochastic
differential equations. Annalen der Physik, 531(3):
1800233, 2019.

Etienne Pardoux and Shige Peng. Backward stochas-
tic differential equations and quasilinear parabolic
partial differential equations. In Stochastic Partial
Differential Equations and Their Applications, pages
200-217. Springer, 1992.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

Barak A Pearlmutter. Gradient calculations for dy-
namic recurrent neural networks: A survey. IEEE
Transactions on Neural networks, 6(5):1212-1228,
1995.

Stefano Peluchetti and Stefano Favaro.  Neural
stochastic differential equations. arXiv preprint
arXw:1904.01681, 2019.

Shige Peng. A general stochastic maximum principle for
optimal control problems. SIAM Journal on Control
and Optimization, 28(4):966-979, 1990.

Shige Peng and Zhen Wu. Fully coupled forward-
backward stochastic differential equations and appli-
cations to optimal control. SIAM Journal on Control
and Optimization, 37(3):825-843, 1999.

Eckhard Platen. An introduction to numerical methods
for stochastic differential equations. Acta numerica,
8:197-246, 1999.

Lev Semenovich Pontryagin. Mathematical Theory of
Optimal Processes. Routledge, 2018.

Christopher Rackauckas and Qing Nie. Adaptive meth-
ods for stochastic differential equations via natural
embeddings and rejection sampling with memory.

Discrete and Continuous Dynamical Systems. Series
B, 22(7):2731, 2017.

Daniel Revuz and Marc Yor. Continuous martingales
and Brownian motion, volume 293. Springer Science
& Business Media, 2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. arXiv
preprint arXiw:1401.4082, 2014.

L Chris G Rogers and David Williams. Diffusions,
Markov Processes and Martingales: Volume 2, Ité
Calculus, volume 2. Cambridge University Press,
2000.

Andreas Rokler. Runge—Kutta methods for
stratonovich stochastic differential equation systems
with commutative noise. Journal of Computational
and Applied mathematics, 164:613-627, 2004.

Andreas Rokler. Runge-Kutta methods for the strong
approximation of solutions of stochastic differential
equations. SIAM Journal on Numerical Analysis, 48
(3):922-952, 2010.

Yulia Rubanova, Ricky TQ Chen, and David Duvenaud.
Latent odes for irregularly-sampled time series. Neu-
ral Information Processing Systems, 2019.

David E Rumelhart, Geoffrey E Hinton, Ronald J
Williams, et al. Learning representations by back-
propagating errors. Cognitive Modeling, 5(3):1, 1988.

Lars Ruthotto and Eldad Haber. Deep neural networks
motivated by partial differential equations. arXiv
preprint arXiv:1804.04272, 2018.

Thomas Ryder, Andrew Golightly, A Stephen Mc-
Gough, and Dennis Prangle. Black-box variational
inference for stochastic differential equations. arXiv
preprint arXiv:1802.03335, 2018.

John K Salmon, Mark A Moraes, Ron O Dror, and
David E Shaw. Parallel random numbers: as easy as
1, 2, 3. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, page 16. ACM, 2011.

Simo Sarkkéa. Bayesian filtering and smoothing, vol-
ume 3. Cambridge University Press, 2013.

Simo Sarkka and Arno Solin. Applied stochastic differ-
ential equations, volume 10. Cambridge University
Press, 2019.

Steven E Shreve. Stochastic calculus for finance II:
Continuous-time models, volume 11. Springer Science
& Business Media, 2004.

Evangelos Theodorou. Nonlinear stochastic control
and information theoretic dualities: Connections, in-
terdependencies and thermodynamic interpretations.
Entropy, 17(5):3352-3375, 2015.

Ryan Turner, Marc Deisenroth, and Carl Rasmussen.
State-space inference and learning with gaussian pro-
cesses. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
pages 868-875, 2010.

Belinda Tzen and Maxim Raginsky. Neural stochastic
differential equations: Deep latent gaussian models in
the diffusion limit. arXiv preprint arXiv:1905.09883,
2019a.

Belinda Tzen and Maxim Raginsky. Theoretical guaran-
tees for sampling and inference in generative models
with latent diffusions. Proceeings of the Conference
on Learning Theory, 2019b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, fukasz
Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in neural information processing
systems, pages 5998-6008, 2017.



Scalable Gradients for Stochastic Differential Equations

Jack M Wang, David J Fleet, and Aaron Hertzmann.
Gaussian process dynamical models for human mo-

tion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2):283-298, 2007.

Magnus Wiktorsson et al. Joint characteristic function
and simultaneous simulation of iterated itd integrals
for multiple independent brownian motions. The
Annals of Applied Probability, 11(2):470-487, 2001.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.

Machine Learning, 8(3-4):229-256, 1992.

Jichuan Yang and Harold J Kushner. A monte carlo
method for sensitivity analysis and parametric op-
timization of nonlinear stochastic systems. SIAM
Journal on Control and Optimization, 29(5):1216—
1249, 1991.

Cagatay VYildiz, Markus Heinonen, and Harri
Lahdesmaiki. Ode2vae: Deep generative second order
odes with bayesian neural networks. arXiv preprint
arXiv:1905.10994, 2019.



	Introduction
	Background: Stochastic Flows
	Stochastic Flow of Diffeomorphisms

	Sensitivity via Stochastic Adjoint
	Stochastic Adjoint Process
	Numerical Approximation
	The Algorithm
	Software and Implementation

	Virtual Brownian Tree
	Brownian Bridges and Brownian Trees
	Brownian Trees using Splittable Seeds

	Latent SDE
	Related Work
	Experiments
	Numerical Studies
	Synthetic Datasets
	Motion Capture Dataset


