
Gradient Descent with Early Stopping is Provably Robust
to Label Noise for Overparameterized Neural Networks

Mingchen Li Mahdi Soltanolkotabi Samet Oymak
University of California

Riverside, CA
University of Southern California

Los Angeles, CA
University of California

Riverside, CA

Abstract

Modern neural networks are typically trained
in an over-parameterized regime where the
parameters of the model far exceed the size
of the training data. Such neural networks in
principle have the capacity to (over)fit any
set of labels including significantly corrupted
ones. Despite this (over)fitting capacity in
this paper we demonstrate that such over-
parameterized networks have an intriguing
robustness capability: they are surprisingly
robust to label noise when first order meth-
ods with early stopping is used to train them.
This paper also takes a step towards demys-
tifying this phenomena. Under a rich dataset
model, we show that gradient descent is prov-
ably robust to noise/corruption on a constant
fraction of the labels. In particular, we prove
that: (i) In the first few iterations where the
updates are still in the vicinity of the initial-
ization gradient descent only fits to the cor-
rect labels essentially ignoring the noisy la-
bels. (ii) To start to overfit to the noisy labels
network must stray rather far from the ini-
tialization which can only occur after many
more iterations. Together, these results show
that gradient descent with early stopping is
provably robust to label noise and shed light
on the empirical robustness of deep networks
as well as commonly adopted heuristics to
prevent overfitting.

1 Introduction

This paper focuses on an intriguing phenomena: over-
parameterized neural networks are surprisingly robust
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to label noise when first order methods with early stop-
ping is used to train them. To observe this phenom-
ena consider Figure 1 where we perform experiments
on the MNIST data set. Here, we corrupt a fraction
of the labels of the training data by assigning their
label uniformly at random. We then fit a four layer
model via stochastic gradient descent and plot vari-
ous performance metrics in Figures 1a and 1b. Figure
1a (blue curve) shows that indeed with a sufficiently
large number of iterations the neural network does in
fact perfectly fit the corrupted training data. How-
ever, Figure 1a also shows that such a model does not
generalize to the test data (yellow curve) and the accu-
racy with respect to the ground truth labels degrades
(orange curve). These plots clearly demonstrate that
the model overfits with many iterations. In Figure
1b we repeat the same experiment but this time stop
the updates after a few iterations (i.e. use early stop-
ping). In this case the train accuracy degrades linearly
(blue curve). However, perhaps unexpected, the test
accuracy (yellow curve) remains high even with a sig-
nificant amount of corruption. This suggests that with
early stopping the model does not overfit but general-
izes to new test data. Even more surprising, the train
accuracy (orange curve) with respect to the ground
truth labels continues to stay around 100% even when
50% of the labels are corrupted (see also Guan et al.
(2018) and Rolnick et al. (2017) for related empirical
experiments). That is, with early stopping overparam-
eterized neural networks even correct the corrupted
labels! These plots collectively demonstrate that over-
parameterized neural networks when combined with
early stopping have unique generalization and robust-
ness capabilities. As we detail further in Section 3 this
phenomena holds (albeit less pronounced) for richer
data models and architectures.

This paper aims to demystify the surprising robust-
ness of overparameterized neural networks when early
stopping is used. We show that gradient descent is in-
deed provably robust to noise/corruption on a constant
fraction of the labels in such over-parameterized learn-
ing scenarios. In particular, under a fairly expressive
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(b) Trained model with early stopping

Figure 1: In these experiments we use a 4 layer neural network consisting of two convolution layers followed by two
fully-connected layers to train MNIST with various amounts of random corruption on the labels. In this architecture the
convolution layers have width 64 and 128 kernels, and the fully-connected layers have 256 and 10 outputs, respectively.
Overall, there are 4.8 million trainable parameters. We use 50k samples for training, 10k samples for validation, and we
test the performance on a 10k test dataset. We depict the training accuracy both w.r.t. the corrupted and uncorrupted
labels as well as the test accuracy. (a) Shows the performance after 200 epochs of Adadelta where near perfect fitting to
the corrupted data is achieved. (b) Shows the performance with early stopping. We observe that with early stopping the
trained neural network is robust to label corruption.

dataset model and focusing on one-hidden layer net-
works, we show that after a few iterations (a.k.a. early
stopping), gradient descent finds a model (i) that is
within a small neighborhood of the point of initializa-
tion and (ii) only fits to the correct labels essentially
ignoring the noisy labels. We complement these find-
ings by proving that if the network is trained to overfit
to the noisy labels, then the solution found by gradient
descent must stray rather far from the initial model.
Together, these results highlight the key features of a
solution that generalizes well vs. a solution that fits
well.

Our theoretical results further highlight the role of
the distance between final and initial network weights
as a key feature that determines noise robustness vs.
overfitting. This is inherently connected to the com-
monly used early stopping heuristic for DNN training
as this heuristic helps avoid models that are too far
from the point of initialization. In the presence of la-
bel noise, we show that gradient descent implicitly ig-
nores the noisy labels as long as the model parameters
remain close to the initialization. Hence, our results
help explain why early stopping improves robustness
and helps prevent overfitting. Under proper normal-
ization, the required distance between the final and
initial network and the predictive accuracy of the final
network is independent of the size of the network such
as number of hidden nodes. Our extensive numeri-
cal experiments corroborate our theory and verify the
surprising robustness of DNNs to label noise. Finally,
we would like to note that while our results show that
solutions found by gradient descent are inherently ro-
bust to label noise, specialized techniques such as `1
penalization or sample reweighting are known to fur-
ther improve robustness. Our theoretical framework

may enable more rigorous understandings of the bene-
fits of such heuristics when training overparameterized
models.

1.1 Prior Art

Our work is connected to recent advances on theory
for deep learning as well as heuristics and theory sur-
rounding outlier robust optimization.

Robustness to label corruption: DNNs have the
ability to fit to pure noise Zhang et al. (2016), however
they are also empirically observed to be highly resilient
to label noise and generalize well despite large corrup-
tion Rolnick et al. (2017). In addition to early stop-
ping, several heuristics have been proposed to specifi-
cally deal with label noise Reed et al. (2014); Malach
and Shalev-Shwartz (2017); Scott et al. (2013); Han
et al. (2018); Zhang and Sabuncu (2018); Khetan et al.
(2017); Basri et al. (2019); Bartlett et al. (2019). See
also Frénay et al. (2014); Shen and Sanghavi (2018);
Menon et al. (2018); Ren et al. (2018); Arazo et al.
(2019) for additional work on dealing with label noise
in classification tasks. Label noise is also connected to
outlier robustness in regression which is a traditionally
well-studied topic. In the context of robust regression
and high-dimensional statistics, much of the focus is
on regularization techniques to automatically detect
and discard outliers by using tools such as `1 penaliza-
tion Chen et al. (2013); Li (2013); Balakrishnan et al.
(2017); Liu et al. (2018); Bhatia et al. (2015); Foygel
and Mackey (2014); Candès et al. (2011). We would
also like to note that there is an interesting line of work
that focuses on developing robust algorithms for cor-
ruption not only in the labels but also input data Di-
akonikolas et al. (2018); Prasad et al. (2018); Klivans
et al. (2018). Finally, noise robustness is particularly
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important in safety critical domains. Noise robust-
ness of neural nets has been empirically investigated
by Hinton and coauthors in the context of automated
medical diagnosis Guan et al. (2018).

Overparameterized neural networks: Intriguing
properties and benefits of overparameterized networks
have been the focus of a growing list of publica-
tions Zhang et al. (2016); Soltanolkotabi et al. (2018);
Brutzkus et al. (2017a); Chizat and Bach (2018); Arora
et al. (2018a); Ji and Telgarsky (2018); Venturi et al.
(2018); Zhu et al. (2018); Soudry and Carmon (2016);
Brutzkus and Globerson (2018); Azizan and Hassibi
(2018); Neyshabur et al. (2018). A recent line of work
Li and Liang (2018); Allen-Zhu et al. (2018a,b); Du
et al. (2018b); Zou et al. (2018); Du et al. (2018a); Oy-
mak and Soltanolkotabi (2019); Papyan (2019) shows
that overparameterized neural networks can fit the
data with random initialization if the number of hid-
den nodes are polynomially large in the size of the
dataset. This line of work however is not informative
about the robustness of the trained network against
corrupted labels. Indeed, such theory predicts that
(stochastic) gradient descent will eventually fit the cor-
rupted labels. In contrast, our focus here is not in
finding a global minima, rather a solution that is ro-
bust to label corruption. In particular, we show that
with early stopping we fit to the correct labels without
overfitting to the corrupted training data. Our result
also differs from this line of research in another way.
The key property utilized in this research area is that
the Jacobian of the neural network is well-conditioned
at a random initialization if the dataset is sufficiently
diverse (e.g. if the points are well-separated). In con-
trast, in many practical settings the Jacobian is ap-
proximately low-rank. We leverage this low-rankness
to prove that gradient descent is robust to label cor-
ruptions. We further utilize this to explain why neural
nets can work with much smaller amounts of overpa-
rameterization where the number of parameters grow
with rank rather than the sample size. Furthermore,
our numerical experiments verify that the Jacobian
matrix of real datasets (such as CIFAR10) indeed ex-
hibit low-rank structure. This is related to the obser-
vations on the Hessian of deep networks which is em-
pirically observed to be low-rank Sagun et al. (2017);
Chaudhari et al. (2016); Javadi et al. (2019); Ghorbani
et al. (2019). Recent papers Su and Yang (2019); Oy-
mak et al. (2019); Rahaman et al. (2018) leverage re-
lated phenomena to prove/explain generalization and
approximation ability of deep nets. More recently, Hu
et al. (2019)1 shows label noise robustness by utiliz-
ing the Rademacher complexity based generalization

1We note that the first draft of this manuscript ap-
peared earlier than Hu et al. (2019); Su and Yang (2019);
Oymak et al. (2019).

results of Arora et al. (2019). Also see Arora et al.
(2018b); Bartlett et al. (2017); Golowich et al. (2017);
Song et al. (2018); Brutzkus et al. (2017b); Belkin
et al. (2018a,b); Liang and Rakhlin (2018); Oymak
et al. (2019); Cao and Gu (2019); Arora et al. (2019);
Ma et al. (2019); Allen-Zhu et al. (2018a) for further
recent neural network generalization results. While
this work does not tackle generalization in the tradi-
tional sense, we do show that solutions found by gradi-
ent descent are robust to label noise/corruption which
demonstrates their predictive capabilities and in turn
suggests better generalization. Finally, related to our
work, the role of early-stopping in gradient descent is
studied by Yao et al. (2007) in the context of function
approximation via kernels.

1.2 Models

We now describe the dataset model used in our the-
oretical results. We note that while we mainly focus
on this model for exposition purposes our results holds
for any data set for which the Jacobian of the network
is approximately low-rank with a range that is not too
spiky (See Section 4 and the supplementary for further
detail). In this model we assume that the input sam-
ples x1,x2, . . . ,xn ∈ Rd come from K clusters which
are located on the unit Euclidean ball in Rd. We also
assume our dataset consists of K̄ ≤ K classes where
each class can be composed of multiple clusters. We
consider a deterministic dataset with n samples with
roughly balanced clusters each consisting on the order
of n/K samples.2 Finally, while we allow for multiple
classes, in our model we assume the labels are scalars
and take values in [−1,1] interval. Each unit Euclidean
norm x is assigned to one of these class labels as de-
scribed next. We formally define our dataset model
below and provide an illustration in Figure 2.

Definition 1.1 ((ε0, δ) Clusterable dataset) A
clusterable dataset {(xi, yi)}ni=1 ∈ Rd×R is described as
follows. The input samples have unit Euclidean norm
and originate from K clusters with the `th cluster
containing n` data points where clow

n
K

≤ n` ≤ cup
n
K

for some positive constants clow and cup. Cluster cen-
ters are unit norm vectors denoted by {c`}K`=1 ⊂ Rd.
An input x that belong to the `th cluster obey∥x − c`∥`2 ≤ ε0, with ε0 denoting the input noise level.

The labels yi belong to one of K̄ ≤ K classes. Specifi-
cally, yi ∈ {α1, . . . , αK̄} with {α`}K̄`=1 ∈ [−1,1] denoting
the labels associated with each class. All elements of
the same cluster belong to the same class and have
the same label. However, a class can contain multiple
clusters. The labels are separated in the sense that

2This is for ease of exposition rather than a particular
challenge arising in the analysis.
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Figure 2: Visualization of the input/label samples and
classes according to the clusterable model in Definition 1.1.
In the depicted example there are K = 6 clusters, K̄ =
3 classes. In this example the number of data points is
n = 30 with each cluster containing 5 data points. The
labels associated to classes 1, 2, and 3 are α1 = −1, α2 =
0.1, and α3 = 1, respectively so that δ = 0.9. We note
that the placement of points are exaggerated for clarity. In
particular, per definition the cluster center and data points
all have unit Euclidean norm.

∣αr − αs∣ ≥ δ for r ≠ s, (1)

for some separation δ > 0. Any two clusters `, `′ be-
longing to different classes obey ∥c` − c`′∥`2 ≥ 2ε0.

In the data model above {c`}K`=1 are the K cluster
centers that govern the input distribution. We note
that in this model different clusters can be assigned
to the same label. Hence, this setup is rich enough to
model data which is not linearly separable: e.g. over
R2, we can assign cluster centers (0,1) and (0,−1) to
label 1 and cluster centers (1,0) and (−1,0) to label−1. Note that the maximum number of classes are dic-
tated by the separation δ, in particular, K̄ ≤ 2

δ
+1. Our

dataset model is inspired from mixture models and is
also related to the setup of Li and Liang (2018) which
provides polynomial guarantees for learning shallow
networks. Next, we introduce our noisy/corrupted
dataset model.

Definition 1.2 ((ρ, ε0, δ) corrupted dataset) A(ρ, ε0, δ) noisy/corrupted dataset {(xi, yi)}ni=1 is gen-
erated from an (ε0, δ) clusterable dataset {(xi, ỹi)}ni=1

as follows. For each cluster 1 ≤ ` ≤ K, at most ρn` of
the labels associated with that cluster (which contains
n` points) is assigned to another label value chosen

from {α`}K̄`=1. We shall refer to the initial labels{ỹi}ni=1 as the ground truth labels.

We note that this definition allows for a fraction ρ of
corruptions in each cluster. Next we define the ground
truth label function.

Definition 1.3 (Ground truth label function)
Consider the setting of Def. 1.1 with cluster cen-
ters {c`}K`=1 ⊂ Rd and class labels {α`}K̄`=1. Define
the ground truth label function x ↦ ỹ(x) as the
function that maps a point x ∈ Rd to a class label

{α1, α2, . . . , αK̄} by assigning it the label corresponding
to the closest cluster center. Mathematically

ỹ(x) = label of cˆ̀ where ˆ̀= arg min
1≤`≤K

∥x − c`∥`2 .
In particular, when applied to the training data it
yields the ground truth labels i.e. ỹ(xi) = ỹi.
Network model: We will study the ability of neural
networks to learn this corrupted dataset model. To
proceed, let us introduce our neural network model.
We consider a network with one hidden layer that
maps Rd to R. Denoting the number of hidden nodes
by k, this network is characterized by an activation
function φ, input weight matrix W ∈ Rk×d and output
weight vector v ∈ Rk. In this work, we will fix output
v to be a unit vector where half the entries are 1/√k
and other half are −1/√k to simplify the exposition.
We will only optimize over the weight matrixW which
contains most of the network parameters and will be
shown to be sufficient for robust learning. We will also
assume φ has bounded first and second order deriva-
tives, i.e. ∣φ′(z)∣ , ∣φ′′(z)∣ ≤ Γ for some constant Γ > 0
for all z. The network’s prediction at an input sample
x is given by

x↦ f(W ,x) = vTφ(Wx), (2)

where the activation function φ applies entrywise.
Given a dataset {(xi, yi)}ni=1, we shall train the net-
work via minimizing the empirical risk over the train-
ing data via a quadratic loss

L(W ) = 1

2

n∑
i=1

(yi − f(W ,xi))2. (3)

In particular, we will run gradient descent with a con-
stant learning rate η, starting from a random initial-
ization W0 via the following gradient descent updates

Wτ+1 =Wτ − η∇L(Wτ). (4)

2 Main Results

Our main result shows that overparameterized neu-
ral networks, when trained via gradient descent us-
ing early stopping are fairly robust to label noise.
Throughout, ∥ ⋅ ∥ denotes the largest singular value of
a given matrix. c, c0, C, C0 etc. represent numerical
constants. The ability of neural networks to learn from
the training data, even without label corruption, nat-
urally depends on the diversity of the input training
data. Indeed, if two input data are nearly the same
but have different uncorrupted labels reliable learning
is difficult. We will quantify this notion of diversity via
a notion of condition number related to a covariance
matrix involving the activation φ and the cluster cen-
ters {c`}K`=1. This definition is induced by the Neural
Tangent Kernel (Jacot et al. (2018)) which provides a
linearization of the network at random initialization.
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Definition 2.1 (Neural Net Cluster Covariance)
Define the matrix of cluster centers

C = [c1 . . . cK]T ∈ RK×d.

Let g ∼ N(0,Id). Define the neural net covariance
matrix Σ(C) as

Σ(C) = (CCT )⊙Eg[φ′(Cg)φ′(Cg)T ].
Here ⊙ denotes the elementwise product. Also denote
the minimum eigenvalue of Σ(C) by λ(C).

One can view Σ(C) as an empirical kernel matrix as-
sociated with the network where the kernel is given
by K(ci,cj) = Σij(C). Note that Σ(C) is triv-
ially rank deficient if there are two cluster centers
that are identical. In this sense, the minimum eigen-
value of Σ(C) will quantify the ability of the neural
network to distinguish between distinct cluster cen-
ters. The more distinct the cluster centers, the larger
λ(C) is. Throughout we shall assume that λ(C)
is strictly positive. Related assumptions are empir-
ically and theoretically studied in earlier works by
Allen-Zhu et al. (2018b); Xie et al. (2016); Du et al.
(2018b,a). For instance, when the cluster centers are
maximally diverse e.g. uniformly at random from the
unit sphere λ(C) scales like a constant (Oymak and
Soltanolkotabi (2019)). Additionally, for ReLU activa-
tion, if the cluster centers are separated by a distance
ν > 0, then λ(C) ≥ ν

100K2 (Zou et al. (2018); Oymak
and Soltanolkotabi (2019)).

Now that we have a quantitative characterization of
distinctiveness/diversity in place we are now ready to
state our main result. We note that this theorem is
slightly simplified by ignoring logarithmic terms and
precise dependencies on Γ. The supplementary pro-
vides precise statements.

Theorem 2.2 (Main result) Consider a dataset{(xi, yi)}ni=1 ∈ Rd ×R per Def. 1.2. Starting from an

initial weight matrix W0
i.i.d.∼ N(0,1) entries, run gra-

dient updates Wτ+1 = Wτ − η∇L(Wτ) with properly
chosen constant step size η and assume

k ≳ K2∥C∥4

λ(C)4
,

If ε0 ≲ δλ(C)2/K2 and ρ ≤ δ/8 with high probabil-

ity, after T ∝ ∥C∥2
λ(C) iterations, the model WT predicts

the true label function ỹ(x) for all input x ∈ Rd that
lie within ε0 neighborhood of a cluster center {ck}Kk=1.
That is,

arg min
α`∶1≤`≤K̄

∣f(WT ,x) − α`∣ = ỹ(x). (5)

Eq. (5) applies to all training samples. Finally, for all
0 ≤ τ ≤ T , the distance to initialization obeys

∥Wτ −W0∥F ≲ (√K + K2

∥C∥2
τε0) .

Theorem 2.2 shows that gradient descent with early
stopping is robust and predicts the correct labels de-
spite the corruption. See below for further properties.

Robustness. The solution found by gradient descent
with early stopping degrades gracefully as the label
corruption level ρ grows. In particular, as long as ρ ≤
δ/8, the final model is able to correctly classify any
input data. In particular, when applied to the training
data (5) yields arg minα`∶1≤`≤K̄ ∣f(Wτ ,x) − α`∣ = ỹi so
that the network labels are identical to the ground
truth labels completely removing the corruption on the
training data. In our setup, intuitively the label gap
obeys δ ∼ 1

K̄
, hence, we prove robustness to

Total number of corrupted labels ≲ n

K̄
.

This result is independent of number of clusters and
only depends on number of classes. An interesting
future direction is to improve this result to allow on
the order of n corrupted labels.

Early stopping time. Only a few iterations suffice to
find a good model (at most order K iterations typically
max(1,K/d) modulo condition numbers).

Modest overparameterization. Our result applies
as soon as the number of hidden units in the network
exceeds K2∥C∥4 which lies between K2 and K4 which
is independent of the sample size n. This can be in-
terpreted as network having enough capacity to fit the
cluster centers {c`}K`=1 and their true labels. If cluster
centers are incoherent (e.g. random) and K ≥ d, the
required number of parameters in the network (k × d)
scales as dK2∥C∥4 ≲K4.

Distance from initialization. Another feature of
Theorem 2.2 is that the network weights do not stray
far from the initialization as the distance between the
initial model and the final model (at most) grows with
the square root of the number of clusters (

√
K). Intu-

itively, more clusters correspond to a richer data dis-
tribution, hence we need to travel further away to find
a viable model. While our focus in this work is early
stopping, the importance of distance to initialization
motivates the use of `2-regularization with respect to
the initial point i.e. solving the regularized empirical
risk minimization

Wridge = arg min
W

1

2

n∑
i=1

(yi − f(W ,xi))2 + λ∥W −W0∥2
F ,

where W0 is the point of initialization for the gradient
based algorithm that will be used to solve above.

2.1 To (over)fit to corrupted labels requires
straying far from initialization

In this section we wish to provide further insight into
why early stopping enables robustness and generaliz-
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Figure 3: We depict the training accuracy of a LENET model trainined on 3000 samples from MNIST as a function of
relative distance from initialization. Here, the x-axis keeps track of the distance between the current and initial weights
of all layers combined.

able solutions. Our main insight is that while a neural
network maybe expressive enough to fit a corrupted
dataset, the model has to travel a longer distance from
the point of initialization as a function of the distance
from the cluster centers ε0 and the amount of corrup-
tion. We formalize this idea as follows. Suppose (1)
two input points are close to each other (e.g. they are
from the same cluster), (2) but their labels are differ-
ent, hence the network has to map them to distant
outputs. Then, the network has to be large enough
so that it can amplify the small input difference to
create a large output difference. Our first result for-
malizes this for a randomly initialized network. Our
random initialization picksW with i.i.d. standard nor-
mal entries which ensures that the network is isometric
i.e. given input x, E[f(W ,x)2] = O(∥x∥2

`2
).

Theorem 2.3 Let x1,x2 ∈ Rd be two vectors with
unit `2 norm obeying ∥x2 −x1∥`2 ≤ ε0. Let f(W ,x) =
vTφ (Wx) where v is fixed, W ∈ Rk×d, and k ≥ cd
where c, c′, c′′ are constants and ∣φ′∣ , ∣φ′′∣ ≤ Γ. Let y1

and y2 be two scalars satisfying ∣y2 − y1∣ ≥ δ. Suppose

W0
i.i.d.∼ N(0,1). Then, with probability 1 − 2e−(k+d) −

2e−
t2

2 , for any W such that ∥W −W0∥F ≤ c′√k and

f(W ,x1) = y1 and f(W ,x2) = y2,

holds, we have ∥W −W0∥ ≥ c′′δ
Γε0

− t
1000

.

In words, this result shows that in order to fit to a
dataset with a single corrupted label, a randomly ini-
tialized network has to traverse a distance of at least
δ/ε0. The supplementary clarifies the role of the cor-
ruption amount s and shows that more label corrup-
tion within a fixed class requires a model with a larger
norm in order to fit the labels.

Can we really overfit to corruption? A natu-
ral question is whether early stopping is necessary
i.e. can we perfectly interpolate to the corrupted
dataset model of Definition 1.2. The recent works Du

et al. (2018a); Allen-Zhu et al. (2018b); Oymak and
Soltanolkotabi (2019) on neural net optimization an-
swers this affirmatively. In particular, as long as no
two input samples are identical, sufficiently wide neu-
ral networks trained with gradient descent can prov-
ably and perfectly interpolate a corrupted dataset.

3 Numerical experiments

We conduct several experiments to investigate the ro-
bustness capabilities of deep networks to label corrup-
tion. In our first set of experiments, we explore the
relationship between loss, accuracy, and amount of la-
bel corruption on the MNIST dataset to corroborate
our theory. Our next experiments study the distri-
bution of the loss and the Jacobian on the CIFAR-10
dataset. Finally, we simulate our theoretical model by
generating data according to the corrupted data model
of Definition 1.2 and verify the robustness capability
of gradient descent with early stopping in this model3.

In Figure 3, we train the same model used in Figure 1
with n = 3,000 MNIST samples for different amounts
of corruption. Our theory predicts that more label
corruption leads to a larger distance to initialization.
To probe this hypothesis, Figure 3a and 3b visualizes
training accuracy and training loss as a function of the
distance from the initialization. These results demon-
strate that the distance from initialization gracefully
increase with more corruption.

Next, we study the distribution of the individual sam-
ple losses on CIFAR-10. We conducted two experi-
ments using Resnet-20 with least square loss. In Figure
4a and 4b we assess the noise robustness of gradient
descent where we used all 50,000 samples with either
30% random corruption or 50% random corruption.
The supplementary shows that when the corruption

3All experiments use least square loss corresponding to
our theory, but we have same observation on cross entropy
loss and provide figures in appendix.
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Least square loss
(a) 30% corruption

Least square loss
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Singular value
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Figure 4: (a)(b) Are histograms of the least square loss of individual data points based on a model trained on 50,000
samples from CIFAR-10 with early stopping. The loss distribution of clean and corrupted data are separated but gracefully
overlap as corruption increases. (c) is histogram of singular values obtained by forming the Jacobian by taking partial
derivatives of class Airplane and Automobile on 10000 samples.
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Figure 5: We experiment with the corrupted dataset model of Definition 1.2. We picked K = 2 classes and set n = 400
and ε0 = 0.5. Trained 30% corrupted data with k = 1000 hidden units. In average 15% of labels actually flip which is
highlighted by the dashed green line.

level is small, the loss distribution of corrupted vs.
clean samples should be separable. Figure 4a shows
that when 30% of the data is corrupted the distribu-
tions are approximately separable. When we increase
the corruption to 50% in Figure 4b, the training loss
on the clean data increases as predicted by our theory
and the distributions start to gracefully overlap.

As we briefly discuss in Section 4 (see proofs in the sup-
plementary for more extensive discussion), our techni-
cal framework utilizes the low-rank structure of the
Jacobian matrix of the model. We now further inves-
tigate this hypothesis. For a binary class task, size of
the Jacobian matrix is sample size (n) × total number
of parameters in the model (p). The neural network
model we used for CIFAR 10 has around p = 270,000
parameters in total. In Figure 4c we illustrate the sin-
gular value histogram of binary Jacobian model where
the training classes are Airplane and Automobile. We
trained the model with all samples and focus on the
histogram of all training data (n = 10,000) before and
after the training. In particular, only 10 to 20 singular
values are larger than 0.1× the top one. This is consis-
tent with earlier works that studied the Hessian spec-
trum. Another intriguing finding is that the distribu-
tion of before and after training are fairly close to each
other highlighting that even at random initialization,

the Jacobian spectrum exhibits bimodal structure.

In Figure 5, we turn our attention to verifying our find-
ings for the corrupted dataset model of Definition 1.2.
We generated K = 2 classes where the associated clus-
ters centers are generated uniformly at random on the
unit sphere of Rd=20. We also generate the input sam-
ples at random around these two clusters uniformly
at random on a sphere of radius ε0 = 0.5 around the
corresponding cluster center. Hence, the clusters are
guaranteed to be at least 1 distance from each other
to prevent overlap. Overall we generate n = 400 sam-
ples (200 per class/cluster). Here, K̄ = K = 2 and
the class labels are 0 and 1. We picked a network
with k = 1000 hidden units and trained on a data set
with 400 samples where 30% of the labels were cor-
rupted. Figure 5a plots the trajectory of training er-
ror and highlights the model achieves good classifica-
tion in the first few iterations and ends up overfitting
later on. In Figures 5b and 5c, we focus on the loss
distribution of 5a at iterations 80 and 4500. In this
figure, we visualize the loss distribution of clean and
corrupted data. Figure 5b highlights the loss distri-
bution with early stopping and implies that the gap
between corrupted and clean loss distributions is sur-
prisingly resilient despite a large amount of corruption
and the high-capacity of the model. In Figure 5c, we
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repeat plot after many more iterations at which point
the model overfits. This plot shows that the distribu-
tion of the two classes overlap demonstrating that the
model has overfit the corruption and lacks generaliza-
tion/robustness.

4 Key Insights and Technical Ideas

Our key idea is that semantically meaningful datasets
(such as the clusterable dataset model) should have
a low-dimensional representation. We use Jacobian
mapping of the neural network to capture such struc-
ture in data which is represented as follow.

J (W ) = [∂f(x1,W )
∂W

. . . ∂f(xn,W )
∂W

]T .
The key insight that enable our proofs is that the Ja-
cabian mapping of neural networks typically exhibit
(1) low-rank structure with a few large singular values
and many small ones and (2) the sparse corruptions
are mostly aligned with the small singular directions.
We have empirically verified that both properties hold
for a variety of neural networks and data sets.

Using these insights we show that the optimization
is implicitly decomposed into two stages which corre-
sponds to the column subspaces induced by the large
and small singular values of the Jacobian. To make
this precise let us denote the overall network predic-
tion by f(W ) = [f(W ,x1) . . . (W ,xn)] and note
that the gradient mapping takes the form

J T (f(Wτ) − y)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
corrupted residual

= J T (f(Wτ) − ỹ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
clean residual

+ (ỹ − y)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
label corruption

We prove that the clean residual is aligned with the
top singular direction whereas label noise is aligned
with the small singular directions. The latter is a con-
sequence of the fact that the top singular vectors are
diffused and the label noise is sparse (constant fraction
of corruption). As a result, gradient descent learns
the useful information (clean residual) in few itera-
tions whereas it takes much longer to overfit to noise
justifying the use of early stopping.

The following meta theorem focuses on the first stage
of the optimization and shows that in a general non-
linear learning problem if the Jacobian is low-rank and
has a diffused range then the label noise is effectively
suppressed in the first few iterations. This in turn pro-
vides a sharp control on the impact of noise on the final
model for each input example. Formally, we assume
that the range space S = range(J (θ)) is diffused in the

sense that any unit length v ∈ S satisfies ∥v∥`∞ ≤ √
γ/n

for a small γ (e.g. v is scaled all ones vector). We note
that for this diffuseness property to hold it is sufficient
for the Jacobian to be approximately low-rank and the
prominent directions to be diffused.

Theorem 4.1 (Robustness via diffuseness)
Consider a nonlinear least squares problem of the
form L(θ) = 1

2
∥f(θ) − y∥2

`2
. Suppose f(θ0) = 0

and assume that J (θ) is sufficiently smooth func-
tion of θ (see Assumption 3 in supplementary)
and S = range(J (θ)) is γ-diffused as above. Let
ỹ = [ỹ1 . . . ỹn] ∈ S denote the uncorrupted labels and
e = y− ỹ denote the label corruption. Also assume e is
ρn-sparse and its entries are bounded by 1 in absolute
value. Then, running gradient descent with a constant
learning rate, after polynomially many iterations, we
have ∥f(θτ) − ỹ∥`∞ ≤ γρ.
In words, more diffused subspace and sparser vector
leads to smaller entrywise prediction error. Note that
as long as γρ < δ/2 (where δ is class label separa-
tion), network accurately classifies all examples. For
our proofs surrounding the clusterable dataset model,
we show that S is indeed very diffused (essentially con-
stant γ) to obtain such tight entrywise error control.

5 Conclusions
In this paper, we studied the robustness of overpa-
rameterized neural networks to label corruption from
a theoretical lens. We provided robustness guaran-
tees for training networks with gradient descent when
early stopping is used and complemented these guar-
antees with lower bounds. Our results point to the
distance between final and initial network weights as
a key feature to determine robustness vs. overfitting
which is inline with weight decay and early stopping
heuristics. We also carried out extensive numerical ex-
periments to verify the theoretical predictions as well
as technical assumptions. While our results shed light
on the intriguing properties of overparameterized neu-
ral network optimization, it would be appealing (i) to
extend our results to deeper network architecture, (ii)
to more complex data models, and also (iii) to explore
other heuristics that can further boost the robustness
of gradient descent methods.
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7 Improvements for perfectly cluster-able data

We would like to note that in the limit of ε0 → 0 where the input data set is perfectly clustered one can improve
the amount of overparamterization. Indeed, the result above is obtained via a perturbation argument from this
more refined result stated below.

Theorem 7.1 (Training with perfectly clustered data) Consier the setting and assumptions of Theorem
7.1 with ε0 = 0. Starting from an initial weight matrix W0 selected at random with i.i.d. N(0,1) entries we
run gradient descent updates of the form Wτ+1 = Wτ − η∇L(Wτ) on the least-squares loss (3) with step size
η ≤ K

2cupnΓ2∥C∥2 . Furthermore, assume the number of hidden nodes obey

k ≥ CΓ4K log(K)∥C∥2

λ(C)2
,

with λ(C) is the minimum cluster per Definition 2.1. Then, with probability at least 1 − 2/K100 over randomly

initialized W0
i.i.d.∼ N(0,1), the iterates Wτ obey the following properties.

• The distance to initial point W0 is upper bounded by

∥Wτ −W0∥F ≤ cΓ√
K logK

λ(C) .

• After τ ≥ τ0 ∶= c K
ηnλ(C) log (Γ

√
n logK

ρ
) iterations, the entrywise predictions of the learned network with

respect to the ground truth labels {ỹi}ni=1 satisfy

∣f(Wτ ,xi) − ỹi∣ ≤ 4ρ,

for all 1 ≤ i ≤ n. Furthermore, if the noise level ρ obeys ρ ≤ δ/8 the network predicts the correct label for all
samples i.e.

arg min
α`∶1≤`≤K̄

∣f(Wτ ,xi) − α`∣ = ỹi for i = 1,2, . . . , n. (6)

This result shows that in the limit ε0 → 0 where the data points are perfectly clustered, the required amount
of overparameterization can be reduced from kd ≳ K4 to kd ≳ K2. In this sense this can be thought of a
nontrivial analogue of Oymak and Soltanolkotabi (2019) where the number of data points are replaced with the
number of clusters and the condition number of the data points is replaced with a cluster condition number.
This can be interpreted as ensuring that the network has enough capacity to fit the cluster centers {c`}K`=1 and
the associated true labels. Interestingly, the robustness benefits continue to hold in this case. However, in this
perfectly clustered scenario there is no need for early stopping and a robust network is trained as soon as the
number of iterations are sufficiently large. In fact, in this case given the clustered nature of the input data the
network never overfits to the corrupted data even after many iterations.

8 To (over)fit to corrupted labels requires straying far from initialization

Lemma 8.1 Let c ∈ Rd be a cluster center. Consider 2s data points {xi}si=1 and {x̃i}si=1 in Rd generated
i.i.d. around c according to the following distribution

c + g with g ∼ N(0, ε2
0

d
Id).

Assign {xi}si=1 with labels yi = y and {x̃i}si=1 with labels ỹi = ỹ and assume these two labels are δ separated
i.e. ∣y − ỹ∣ ≥ δ. Also suppose s ≤ d and ∣φ′∣ ≤ Γ. Then, any W ∈ Rk×d satisfying

f(W ,xi) = yi and f(W , x̃i) = ỹi for i = 1, . . . , s,

obeys ∥W ∥F ≥ √
sδ

5Γε0
with probability at least 1 − e−d/2.
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Unlike Theorem 2.3 this result lower bounds the network norm in lieu of the distance to the initialization W0.
However, using the triangular inequality we can in turn get a guarantee on the distance from initialization W0

via triangle inequality as long as ∥W0∥F ≲ O(√sδ/ε0) (e.g. by choosing a small ε0).

The above Theorem implies that the model has to traverse a distance of at least

∥Wτ −W0∥F ≳√
ρn

K

δ

ε0
,

to perfectly fit corrupted labels. In contrast, we note that the conclusions of the upper bound in Theorem 2.2
show that to be able to fit to the uncorrupted true labels the distance to initialization grows at most by τε0 after
τ iterates. This demonstrates that there is a gap in the required distance to initialization for fitting enough to
generalize and overfitting. To sum up, our results highlight that, one can find a network with good generalization
capabilities and robustness to label corruption within a small neighborhood of the initialization and that the
size of this neighborhood is independent of the corruption. However, to fit to the corrupted labels, one has to
travel much more, increasing the search space and likely decreasing generalization ability. Thus, early stopping
can enable robustness without overfitting by restricting the distance to the initialization.

9 Technical Approach and General Theory

In this section, we outline our approach to proving robustness of overparameterized neural networks. Towards
this goal, we consider a general formulation where we aim to fit a general nonlinear model of the form x↦ f(θ,x)
with θ ∈ Rp denoting the parameters of the model. For instance in the case of neural networks θ represents
its weights. Given a data set of n input/label pairs {(xi, yi)}ni=1 ⊂ Rd ×R, we fit to this data by minimizing a
nonlinear least-squares loss of the form

L(θ) = 1

2

n∑
i=1

(yi − f(θ,xi))2.

which can also be written in the more compact form

L(θ) = 1

2
∥f(θ) − y∥2

`2
with f(θ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(θ,x1)
f(θ,x2)⋮
f(θ,xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To solve this problem we run gradient descent iterations with a constant learning rate η starting from an initial
point θ0. These iterations take the form

θτ+1 = θτ − η∇L(θτ) with ∇L(θ) = J T (θ) (f(θ) − y) . (7)

Here, J (θ) is the n × p Jacobian matrix associated with the nonlinear mapping f defined via

J (θ) = [∂f(θ,x1)
∂θ

. . . ∂f(θ,xn)
∂θ

]T . (8)

9.1 Bimodal jacobian structure

Our approach is based on the hypothesis that the nonlinear model has a Jacobian matrix with bimodal spectrum
where few singular values are large and remaining singular values are small. This assumption is inspired by the
fact that realistic datasets are clusterable in a proper, possibly nonlinear, representation space. Indeed, one may
argue that one reason for using neural networks is to automate the learning of such a representation (essentially
the input to the softmax layer). We formalize the notion of bimodal spectrum below.

Assumption 1 (Bimodal Jacobian) Let β ≥ α ≥ ε > 0 be scalars. Let f ∶ Rp → Rn be a nonlinear mapping
and consider a set D ⊂ Rp containing the initial point θ0 (i.e. θ0 ∈ D). Let S+ ⊂ Rn be a subspace and S− be its
complement. We say the mapping f has a Bimodal Jacobian with respect to the complementary subpspaces S+
and S− as long as the following two assumptions hold for all θ ∈ D.
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• Spectrum over S+: For all v ∈ S+ with unit Euclidian norm we have

α ≤ ∥J T (θ)v∥
`2
≤ β.

• Spectrum over S−: For all v ∈ S− with unit Euclidian norm we have

∥J T (θ)v∥
`2
≤ ε.

We will refer to S+ as the signal subspace and S− as the noise subspace.

When ε << α the Jacobian is approximately low-rank. An extreme special case of this assumption is where ε = 0
so that the Jacobian matrix is exactly low-rank. We formalize this assumption below for later reference.

Assumption 2 (Low-rank Jacobian) Let β ≥ α > 0 be scalars. Consider a set D ⊂ Rp containing the initial
point θ0 (i.e. θ0 ∈ D). Let S+ ⊂ Rn be a subspace and S− be its complement. For all θ ∈ D, v ∈ S+ and w ∈ S−
with unit Euclidian norm, we have that

α ≤ ∥J T (θ)v∥
`2
≤ β and ∥J T (θ)w∥

`2
= 0.

Our dataset model in Definition 1.2 naturally has a low-rank Jacobian when ε0 = 0 and each input example is
equal to one of the K cluster centers {c`}K`=1. In this case, the Jacobian will be at most rank K since each row

will be in the span of {∂f(c`,θ)
∂θ

}K
`=1

. The subspace S+ is dictated by the membership of each cluster as follows:
Let Λ` ⊂ {1, . . . , n} be the set of coordinates i such that xi = c`. Then, subspace is characterized by

S+ = {v ∈ Rn ∣ vi1 = vi2 for all i1, i2 ∈ Λ` and 1 ≤ ` ≤K}.
When ε0 > 0 and the data points of each cluster are not the same as the cluster center we have the bimodal
Jacobian structure of Assumption 1 where over S− the spectral norm is small but nonzero.

In Section 3, we verify that the Jacobian matrix of real datasets indeed have a bimodal structure i.e. there
are few large singular values and the remaining singular values are small which further motivate Assumption 2.
This is inline with earlier papers which observed that Hessian matrices of deep networks have bimodal spectrum
(approximately low-rank) Sagun et al. (2017) and is related to various results demonstrating that there are flat
directions in the loss landscape Hochreiter and Schmidhuber (1997).

9.2 Meta result on learning with label corruption

Define the n-dimensional residual vector r where r(θ) = [f(x1,θ) − y1 . . . f(xn,θ) − yn]T . A key idea in our
approach is that we argue that (1) in the absence of any corruption r(θ) approximately lies on the subspace S+
and (2) if the labels are corrupted by a vector e, then e approximately lies on the complement space. Before we
state our general result we need to discuss another assumption and definition.

Assumption 3 (Smoothness) The Jacobian mapping J (θ) associated to a nonlinear mapping f ∶ Rp → Rn

is L-smooth if for all θ1,θ2 ∈ Rp we have ∥J (θ2) − J (θ1)∥ ≤ L ∥θ2 − θ1∥`2 .4

Additionally, to connect our results to the number of corrupted labels, we introduce the notion of subspace
diffusedness defined below.

Definition 9.1 (Diffusedness) S+ is γ diffused if for any vector v ∈ S+
∥v∥`∞ ≤ √

γ/n∥v∥`2 ,
holds for some γ > 0.

4Note that, if ∂J(θ)
∂θ

is continuous, the smoothness condition holds over any compact domain (albeit for a possibly
large L).
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The following theorem is the formal version of Theorem 4.1 and is our meta result on the robustness of gradient
descent to sparse corruptions on the labels when the Jacobian mapping is exactly low-rank. Theorem 7.1 for the
perfectly clustered data (ε0 = 0) is obtained by combining this result with specific estimates developed for neural
networks.

Theorem 9.2 (Gradient descent with label corruption) Consider a nonlinear least squares problem of the

form L(θ) = 1
2
∥f(θ) − y)∥2

`2
with the nonlinear mapping f ∶ Rp → Rn obeying Assumptions 2 and 3 over a unit

Euclidian ball of radius
4∥r0∥`2

α
around an initial point θ0 and y = [y1 . . . yn] ∈ Rn denoting the corrupted labels.

Also let ỹ = [ỹ1 . . . ỹn] ∈ Rn denote the uncorrupted labels and e = y − ỹ the corruption. Furthermore, suppose
the initial residual f(θ0) − ỹ with respect to the uncorrupted labels obey f(θ0) − ỹ ∈ S+. Then, running gradient

descent updates of the from (7) with a learning rate η ≤ 1
2β2 min(1, αβ

L∥r0∥`2
), all iterates obey

∥θτ − θ0∥`2 ≤ 4∥r0∥`2
α

.

Furthermore, assume ν > 0 is a precision level obeying ν ≥ ∥ΠS+(e)∥`∞ . Then, after τ ≥ 5
ηα2 log ( ∥r0∥`2

ν
) iterations,

θτ achieves the following error bound with respect to the true labels

∥f(θτ) − ỹ∥`∞ ≤ 2ν.

Furthermore, if e has at most s nonzeros and S+ is γ diffused per Definition 9.1, then using ν = ∥ΠS+(e)∥`∞
∥f(θτ) − ỹ∥`∞ ≤ 2∥ΠS+(e)∥`∞ ≤ γ√s

n
∥e∥`2 .

This result shows that when the Jacobian of the nonlinear mapping is low-rank, gradient descent enjoys two
intriguing properties. First, gradient descent iterations remain rather close to the initial point. Second, the
estimated labels of the algorithm enjoy sample-wise robustness guarantees in the sense that the noise in the
estimated labels are gracefully distributed over the dataset and the effects on individual label estimates are
negligible. This theorem is the key result that allows us to prove Theorem 7.1 when the data points are perfectly
clustered (ε0 = 0). Furthermore, this theorem when combined with a perturbation analysis allows us to deal with
data that is not perfectly clustered (ε0 > 0) and to conclude that with early stopping neural networks are rather
robust to label corruption (Theorem 2.2).

Finally, we note that a few recent publication Oymak and Soltanolkotabi (2018); Allen-Zhu et al. (2018b); Du
et al. (2018b) require the Jacobian to be well-conditioned to fit labels perfectly. In contrast, our low-rank model
cannot perfectly fit the corrupted labels. Furthermore, when the Jacobian is bimodal (as seems to be the case
for many practical data sets and neural network models) it would take a very long time to perfectly fit the labels
and as demonstrated earlier such a model does not generalize and is not robust to corruptions. Instead we focus
on proving robustness with early stopping.

9.3 To (over)fit to corrupted labels requires straying far from initialization

In this section we state a result that provides further justification as to why early stopping of gradient descent
leads to more robust models without overfitting to corrupted labels. This is based on the observation that while
finding an estimate that fits the uncorrupted labels one does not have to move far from the initial estimate in
the presence of corruption one has to stray rather far from the initialization with the distance from initialization
increasing further in the presence of more corruption. We make this observation rigorous below by showing that
it is more difficult to fit to the portion of the residual that lies on the noise space compared to the portion on
the signal space (assuming α≫ ε).

Theorem 9.3 Denote the residual at initialization θ0 by r0 = f(θ0) −y. Define the residual projection over the
signal and noise space as

E+ = ∥ΠS+(r0)∥`2 and E− = ∥ΠS−(r0)∥`2 .
Suppose Assumption 1 holds over an Euclidian ball D of radius R < max (E+

β
, E−
ε
) around the initial point θ0 with

α ≥ ε. Then, over D there exists no θ that achieves zero training loss. In particular, if D = Rp, any parameter
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θ achieving zero training loss (f(θ) = y) satisfies the distance bound

∥θ − θ0∥`2 ≥ max(E+

β
,
E−

ε
) .

This theorem shows that the higher the corruption (and hence E−) the further the iterates need to stray from
the initial model to fit the corrupted data.

10 Proofs

10.1 Proofs for General Theory

We begin by defining the average Jacobian which will be used throughout our analysis.

Definition 10.1 (Average Jacobian) We define the average Jacobian along the path connecting two points
x,y ∈ Rp as

J (y,x) ∶= ∫ 1

0
J (x + α(y −x))dα. (9)

Lemma 10.2 (Linearization of the residual) Given gradient descent iterate θ̂ = θ − η∇L(θ), define

C(θ) = J (θ̂,θ)J (θ)T .
The residuals r̂ = f(θ̂) − y, r = f(θ) − y obey the following equation

r̂ = (I − ηC(θ))r.
Proof Following Definition 10.1, denoting f(θ̂) − y = r̂ and f(θ) − y = r, we find that

r̂ =r − f(θ) + f(θ̂)
(a)= r + J (θ̂,θ)(θ̂ − θ)
(b)= r − ηJ (θ̂,θ)J (θ)Tr= (I − ηC(θ))r. (10)

Here (a) uses the fact that Jacobian is the derivative of f and (b) uses the fact that ∇L(θ) = J (θ)Tr.

Using Assumption 9.1, one can show that sparse vectors have small projection on S+.

Lemma 10.3 Suppose Assumption 9.1 holds. If r ∈ Rn is a vector with s nonzero entries, we have that

∥ΠS+(r)∥`∞ ≤ γ√s
n

∥r∥`2 . (11)

Proof First, we bound the `2 projection of r on S+ as follows

∥ΠS+(r)∥`2 = sup
v∈S+

vTr∥v∥`2 ≤ √
γ

n
∥r∥`1 ≤ √

γs

n
∥r∥`2 .

where we used the fact that ∣vi∣ ≤ √
γ∥v∥`2/√n. Next, we conclude with

∥ΠS+(r)∥`∞ ≤ √
γ

n
∥ΠS+(r)∥`2 ≤ γ

√
s

n
∥r∥`2 .
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10.1.1 Proof of Theorem 9.2

Proof The proof will be done inductively over the properties of gradient descent iterates and is inspired from
the recent work Oymak and Soltanolkotabi (2018). In particular, Oymak and Soltanolkotabi (2018) requires a
well-conditioned Jacobian to fit labels perfectly. In contrast, we have a low-rank Jacobian model which cannot fit
the noisy labels (or it would have trouble fitting if the Jacobian was approximately low-rank). Despite this, we
wish to prove that gradient descent satisfies desirable properties such as robustness and closeness to initialization.
Let us introduce the notation related to the residual. Set rτ = f(θτ) − y and let r0 = f(θ0) − y be the initial
residual. We keep track of the growth of the residual by partitioning the residual as rτ = r̄τ + ēτ where

ēτ = ΠS−(rτ) , r̄τ = ΠS+(rτ).
We claim that for all iterations τ ≥ 0, the following conditions hold.

ēτ =ē0 (12)

∥r̄τ∥2
`2
≤(1 − ηα2

2
)τ ∥r̄0∥2

`2
, (13)

1

4
α ∥θτ − θ0∥`2 + ∥r̄τ∥`2 ≤∥r̄0∥`2 ≤ ∥r0∥`2 . (14)

Assuming these conditions hold till some τ > 0, inductively, we focus on iteration τ + 1. First, note that these

conditions imply that for all τ ≥ i ≥ 0, θi ∈ D where D is the Euclidian ball around θ0 of radius
4∥r0∥`2

α
. This

directly follows from (14) induction hypothesis. Next, we claim that θτ+1 is still within the set D. This can be
seen as follows:

Claim 1 Under the induction hypothesis (12), θτ+1 ∈ D.

Proof Since range space of Jacobian is in S+ and η ≤ 1/β2, we begin by noting that

∥θτ+1 − θτ∥`2 = η∥J T (θτ) (f(θτ ) − y)∥`2 (15)

(a)= η∥J T (θτ) (ΠS+(f(θτ ) − y))∥`2 (16)

(b)= η∥J T (θτ)r̄τ∥`2 (17)

(c)≤ ηβ∥r̄τ∥`2 (18)

(d)≤ ∥r̄τ∥`2
β

(19)

(e)≤ ∥r̄τ∥`2
α

(20)

In the above, (a) follows from the fact that row range space of Jacobian is subset of S+ via Assumption 2. (b)
follows from the definition of r̄τ . (c) follows from the upper bound on the spectral norm of the Jacobian overD per Assumption 2, (d) from the fact that η ≤ 1

β2 , (e) from α ≤ β. The latter combined with the triangular

inequality and induction hypothesis (14) yields (after scaling (14) by 4/α)

∥θτ+1 − θ0∥`2 ≤ ∥θτ+1 − θτ∥`2 + ∥θ0 − θτ∥`2 ≤ ∥θτ − θ0∥`2 + ∥r̄τ∥`2
α

≤ 4∥r0∥`2
α

,

concluding the proof of θτ+1 ∈ D.

To proceed, we shall verify that (14) holds for τ + 1 as well. Note that, following Lemma 10.2, gradient descent
iterate can be written as

rτ+1 = (I −C(θτ))rτ .
Since both column and row space of C(θτ) is subset of S+, we have that

ēτ+1 = ΠS−((I −C(θτ))rτ) (21)= ΠS−(rτ) (22)= ēτ , (23)
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This shows the first statement of the induction. Next, over S+, we have

r̄τ+1 = ΠS+((I −C(θτ))rτ) (24)= ΠS+((I −C(θτ))r̄τ) +ΠS+((I −C(θτ))ēτ) (25)= ΠS+((I −C(θτ))r̄τ) (26)= (I −C(θτ))r̄τ (27)

where the second line uses the fact that ēτ ∈ S− and last line uses the fact that r̄τ ∈ S+. To proceed, we need to
prove that C(θτ) has desirable properties over S+, in particular, it contracts this space.

Claim 2 let PS+ ∈ Rn×n be the projection matrix to S+ i.e. it is a positive semi-definite matrix whose eigenvectors
over S+ is 1 and its complement is 0. Under the induction hypothesis and setup of the theorem, we have that5

β2PS+ ⪰ C(θτ) ⪰ 1

2
J (θτ)J (θτ)T ⪰ α2

2
PS+ . (28)

Proof The proof utilizes the upper bound on the learning rate. The argument is similar to the proof of Lemma
9.7 of Oymak and Soltanolkotabi (2018). Suppose Assumption 3 holds. Then, for any θ1,θ2 ∈ D we have

∥J (θ2,θ1) − J (θ1)∥ =∥∫ 1

0
(J (θ1 + t (θ2 − θ1)) − J (θ1))dt∥ ,

≤∫ 1

0
∥J (θ1 + t (θ2 − θ1)) − J (θ1)∥dt,

≤∫ 1

0
tL ∥θ2 − θ1∥`2 dt ≤ L2 ∥θ2 − θ1∥`2 . (29)

Thus, for η ≤ α
Lβ∥r0∥`2

,

∥J (θτ+1,θτ) − J (θτ)∥ ≤ L
2

∥θτ+1 − θτ∥`2 (30)

= ηL
2

∥J T (θτ) (f(θτ ) − y)∥`2 ≤ ηβL2 ∥r̄τ∥`2 (31)

(a)≤ ηβL

2
∥r̄0∥`2 (b)≤ α

2
. (32)

where for (a) we utilized the induction hypothesis (14) and (b) follows from the upper bound on η. Now that
(32) is established, using following lemma, we find

C(θτ) =J (θτ+1,θτ)J (θτ)T ⪰ (1/2)J (θτ)J (θτ)T .
The β2 upper bound directly follows from Assumption 2 by again noticing range space of Jacobian is subset ofS+.

Lemma 10.4 (Asymmetric PSD perturbation) Consider the matrices A,C ∈ Rn×p obeying ∥A−C∥ ≤ α/2.
Also suppose CCT ⪰ α2PS+ . Furthermore, assume range spaces of A,C lies in S+. Then,

ACT ⪰ CCT

2
⪰ α2

2
PS+ .

Proof For r ∈ S+ with unit Euclidian norm, we have

rTACTr = ∥CTr∥2
`2 + rT (A −C)CTr ≥ ∥CTr∥2

`2 − ∥CTr∥`2∥rT (A −C)∥`2= (∥CTr∥`2 − ∥rT (A −C)∥`2)∥CTr∥`2≥ (∥CTr∥`2 − α/2)∥CTr∥`2≥ ∥CTr∥2
`2/2.

5We say A ⪰B if A −B is a positive semi-definite matrix in the sense that for any real vector v, vT (A −B)v ≥ 0.
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Also, for any r, by range space assumption rTACTr = ΠS+(r)TACTΠS+(r) (same for CCT ). Combined with
above, this concludes the claim.

What remains is proving the final two statements of the induction (14). Note that, using the claim above and
recalling (27) and using the fact that ∥J (θτ+1,θτ)∥ ≤ β, the residual satisfies

∥r̄τ+1∥2
`2 = ∥(I − ηC(θτ))r̄τ∥2

`2 = ∥r̄τ∥2
`2 − 2ηr̄Tτ Cτ r̄τ + η2r̄Tτ C

T
τ Cτ r̄τ (33)

≤ ∥r̄τ∥2
`2 − ηr̄Tτ J (θτ)J (θτ)T r̄τ + η2β2r̄Tτ J (θτ)J (θτ)T r̄τ (34)

≤ ∥r̄τ∥2
`2 − (η − η2β2)∥J (θτ)T r̄τ∥2

`2 (35)

≤ ∥r̄τ∥2
`2 − η2 ∥J (θτ)T r̄τ∥2

`2 . (36)

where we used the fact that η ≤ 1
2β2 . Now, using the fact that J (θτ)J (θτ)T ⪰ α2PS+ , we have

∥r̄τ∥2
`2 − η2 ∥J (θτ)T r̄τ∥2

`2 ≤ (1 − ηα2

2
)∥r̄τ∥2

`2 ≤ (1 − ηα2

2
)τ+1∥r̄0∥2

`2 ,

which establishes the second statement of the induction (14). What remains is obtaining the last statement of
(14). To address this, completing squares, observe that

∥r̄τ+1∥`2 ≤ √∥r̄τ∥2
`2
− η

2
∥J (θτ)T r̄τ∥2

`2
≤ ∥r̄τ∥`2 − η4 ∥J (θτ)T r̄τ∥2

`2∥r̄τ∥`2 .

On the other hand, the distance to initial point satisfies

∥θτ+1 − θ0∥`2 ≤ ∥θτ+1 − θτ∥`2 + ∥θτ − θ0∥`2 ≤ ∥θτ − θ0∥`2 + η∥J (θτ)r̄τ∥`2 .
Combining the last two lines (by scaling the second line by 1

4
α) and using induction hypothesis (14), we find

that

1

4
α ∥θτ+1 − θ0∥`2 + ∥r̄τ+1∥`2 ≤ 1

4
α(∥θτ − θ0∥`2 + η∥J (θτ)r̄τ∥`2) + ∥r̄τ∥`2 − η4 ∥J (θτ)T r̄τ∥2

`2∥r̄τ∥`2 (37)

≤ [1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2] + η4 [α∥J (θτ)r̄τ∥`2 − ∥J (θτ)T r̄τ∥2

`2∥r̄τ∥`2 ] (38)

≤ [1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2] + η4 ∥J (θτ)r̄τ∥`2 [α − ∥J (θτ)T r̄τ∥`2∥r̄τ∥`2 ] (39)

≤ 1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2 (40)

≤ ∥r̄0∥`2 ≤ ∥r0∥`2 . (41)

This establishes the final line of the induction and concludes the proof of the upper bound on ∥θτ − θ0∥`2 . To
proceed, we shall bound the infinity norm of the residual. Using ΠS−(e) = ΠS−(r0) = ēτ , note that

∥f(θτ) − y − e∥`∞ = ∥rτ − e∥`∞ (42)≤ ∥r̄τ∥`∞ + ∥e − ēτ∥`∞ (43)= ∥r̄τ∥`∞ + ∥e −ΠS−(e)∥`∞ (44)= ∥r̄τ∥`∞ + ∥ΠS+(e)∥`∞ . (45)

What remains is controlling ∥r̄τ∥`∞ . For this term, we shall use the naive upper bound ∥r̄τ∥`2 . Using the rate of
convergence of the algorithm (14), we have that

∥r̄τ∥`2 ≤ (1 − ηα2

4
)τ∥r0∥`2 .
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We wish the right hand side to be at most ν > 0 where ν ≥ ∥ΠS+(e)∥`∞ . This implies that we need

(1 − ηα2

4
)τ∥r0∥`2 ≤ ν ⇐⇒ τ log(1 − ηα2

4
) ≤ log( ν∥r0∥`2 ) (46)

⇐⇒ τ log( 1

1 − ηα2

4

) ≥ log(∥r0∥`2
ν

) (47)

To conclude, note that since ηα2

4
≤ 1/8 (as η ≤ 1/2β2), we have

log( 1

1 − ηα2

4

) ≥ log(1 + ηα2

4
) ≥ ηα2

5
.

Consequently, if τ ≥ 5
ηα2 log( ∥r0∥`2

ν
), we find that ∥r̄τ∥`∞ ≤ ∥r̄τ∥`2 ≤ ν, which guarantees

∥rτ − e∥`∞ ≤ 2ν.

which is the advertised result. If e is s sparse and S+ is diffused, applying Lemma 9.1 we have

∥ΠS+(e)∥`∞ ≤ γ√s
n

∥e∥`2 .

10.1.2 Proof of Generic Lower Bound – Theorem 9.3

Proof Suppose θ ∈ D satisfies y = f(θ). Define Jτ = J ((1 − τ)θ + τθ0) and J = J (θ,θ0) = ∫ 1
0 Jτdτ . Since

Jacobian is derivative of f , we have that

f(θ) − f(θ0) = ∫ 1

0
Jτ(θ − θ0)dτ = J(θ − θ0).

Now, define the matrices J+ = ΠS+(J) and J− = ΠS−(J). Using Assumption 1, we bound the spectral norms via

∥J+∥ = sup
v∈S+,∥v∥`2≤1

∥JTv∥`2 ≤ β , ∥J−∥ = sup
v∈S−,∥v∥`2≤1

∥JTv∥`2 ≤ ε.
To proceed, projecting the residual on S+, we find for any θ with f(θ) = y

ΠS+(f(θ) − f(θ0)) = ΠS+(J)(θ − θ0) Ô⇒ ∥θ − θ0∥`2 ≥ ∥ΠS+(f(θ) − f(θ0))∥`2
β

≥ E+

β
.

The identical argument for S− yields ∥θ − θ0∥`2 ≥ E−
ε

. Together this implies

∥θ − θ0∥`2 ≥ max(E−

ε
,
E+

β
). (48)

If R is strictly smaller than right hand side, we reach a contradiction as θ /∈ D. If D = Rp, we still find (48).

This shows that if ε is small and E− is nonzero, gradient descent has to traverse a long distance to find a good
model. Intuitively, if the projection over the noise space indeed contains the label noise, we actually don’t want
to fit that. Algorithmically, our idea fits the residual over the signal space and not worries about fitting over the
noise space. Approximately speaking, this intuition corresponds to the `2 regularized problem

min
θ
L(θ) ∥θ − θ0∥`2 ≤ R.

If we set R = E+
β

, we can hope that solution will learn only the signal and does not overfit to the noise. The next
section builds on this intuition and formalizes our algorithmic guarantees.
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10.2 Proofs for Neural Networks

Throughout, σmin(⋅) denotes the smallest singular value of a given matrix. We first introduce helpful definitions
that will be used in our proofs.

Definition 10.5 (Support subspace) Let {xi}ni=1 be an input dataset generated according to Definition 1.1.
Also let {x̃i}ni=1 be the associated cluster centers, that is, x̃i = c` iff xi is from the `th cluster. We define
the support subspace S+ as a subspace of dimension K, dictated by the cluster membership as follows. Let
Λ` ⊂ {1, . . . , n} be the set of coordinates i such that x̃i = c`. Then, S+ is characterized by

S+ = {v ∈ Rn ∣ vi1 = vi2 for all i1, i2 ∈ Λ` and for all 1 ≤ ` ≤K}.
Definition 10.6 (Neural Net Jacobian) Given input samples (xi)ni=1, form the input matrix X =[x1 . . . xn]T ∈ Rn×d. The Jacobian of the learning problem (3), at a matrix W is denoted by J (W ,X) ∈ Rn×kd
and is given by J (W ,X)T = (diag(v)φ′(WXT )) ∗XT .

Here ∗ denotes the Khatri-Rao product.

The following theorem is borrowed from Oymak and Soltanolkotabi (2019) and characterizes three key prop-
erties of the neural network Jacobian. These are smoothness, spectral norm, and minimum singular value at
initialization which correspond to Lemmas 6.6, 6.7, and 6.8 in that paper.

Theorem 10.7 (Jacobian Properties at Cluster Center) Suppose X = [x1 . . . xn]T ∈ Rn×d be an input
dataset satisfying λ(X) > 0. Suppose ∣φ′∣, ∣φ′′∣ ≤ Γ. The Jacobian mapping with respect to the input-to-hidden
weights obey the following properties.

• Smoothness is bounded by

∥J (W̃ ,X) − J (W ,X)∥ ≤ Γ√
k
∥X∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ Rk×d.

• Top singular value is bounded by

∥J (W ,X)∥ ≤ Γ ∥X∥ .
• Let C > 0 be an absolute constant. As long as

k ≥ CΓ2logn ∥X∥2

λ(X)
At random Gaussian initialization W0 ∼ N(0,1)k×d, with probability at least 1 − 1/K100, we have

σmin (J (W0,X)) ≥ √
λ(X)/2.

In our case, the Jacobian is not well-conditioned. However, it is pretty well-structured as described previously.
To proceed, given a matrix X ∈ Rn×d and a subspace S ⊂ Rn, we define the minimum singular value of the
matrix over this subspace by σmin(X,S) which is defined as

σmin(X,S) = sup
∥v∥`2=1,UUT =PS

∥vTUTX∥`2 .
Here, PS ∈ Rn×n is the projection operator to the subspace. Hence, this definition essentially projects the matrix
on S and then takes the minimum singular value over that projected subspace. The following theorem states
the properties of the Jacobian at a clusterable dataset.

Theorem 10.8 (Jacobian Properties at Clusterable Dataset) Let input samples (xi)ni=1 be generated ac-
cording to (ε0, δ) clusterable dataset model of Definition 1.1 and define X = [x1 . . . xn]T . Let S+ be the support
space and (x̃i)ni=1 be the associated clean dataset as described by Definition 10.5. Set X̃ = [x̃1 . . . x̃n]T . Assume∣φ′∣, ∣φ′′∣ ≤ Γ and λ(C) > 0. The Jacobian mapping at X̃ with respect to the input-to-hidden weights obey the
following properties.
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• Smoothness is bounded by

∥J (W̃ , X̃) − J (W , X̃)∥ ≤ Γ

√
cupn

kK
∥C∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ Rk×d.

• Top singular value is bounded by

∥J (W , X̃)∥ ≤ √
cupn

K
Γ ∥C∥ .

• As long as

k ≥ CΓ2logK ∥C∥2

λ(C)
At random Gaussian initialization W0 ∼ N(0,1)k×d, with probability at least 1 − 1/K100, we have

σmin (J (W0, X̃),S+) ≥
√

clownλ(C)
2K

• The range space obeys range(J (W0, X̃)) ⊂ S+ where S+ is given by Definition 10.5.

Proof Let J (W ,C) be the Jacobian at the cluster center matrix. Applying Theorem 10.7, this matrix already
obeys the properties described in the conclusions of this theorem with desired probability (for the last conclusion).
We prove our theorem by relating the cluster center Jacobian to the clean dataset Jacobian matrix J (W , X̃).
Note that X̃ is obtained by duplicating the rows of the cluster center matrix C. This implies that J (W , X̃) is
obtained by duplicating the rows of the cluster center Jacobian. The critical observation is that, by construction
in Definition 1.1, each row is duplicated somewhere between clown/K and cupn/K.

To proceed, fix a vector v and let p̃ = J (W , X̃)v ∈ Rn and p = J (W ,C)v ∈ RK . Recall the definition of the
support sets Λ` from Definition 10.5. We have the identity

p̃i = p` for all i ∈ Λ`.

This implies p̃ ∈ S+ hence range(J (W , X̃)) ⊂ S+. Furthermore, the entries of p̃ repeats the entries of p
somewhere between clown/K and cupn/K. This implies that,√

cupn

K
∥p∥`2 ≥ ∥p̃∥`2 ≥ √

clown

K
∥p∥`2 ,

and establishes the upper and lower bounds on the singular values of J (W , X̃) over S+ in terms of the singular
values of J (W ,C). Finally, the smoothness can be established similarly. Given matrices W ,W̃ , the rows of
the difference ∥J (W̃ , X̃) − J (W , X̃)∥
is obtained by duplicating the rows of ∥J (W̃ ,C) − J (W ,C)∥ by at most cupn/K times. Hence the spectral

norm is scaled by at most
√
cupn/K.

Lemma 10.9 (Upper bound on initial misfit) Consider a one-hidden layer neural network model of the
form x ↦ vTφ (Wx) where the activation φ has bounded derivatives obeying ∣φ(0)∣, ∣φ′(z)∣ ≤ Γ. Suppose entries
of v ∈ Rk are half 1/√k and half −1/√k so that ∥v∥`2 = 1. Also assume we have n data points x1,x2, . . . ,xn ∈ Rd
with unit euclidean norm (∥xi∥`2 = 1) aggregated as rows of a matrix X ∈ Rn×d and the corresponding labels

given by y ∈ Rn generated accoring to (ρ, ε0 = 0, δ) noisy dataset (Definition 1.2). Then for W0 ∈ Rk×d with
i.i.d. N(0,1) entries

∥vTφ (W0X
T ) − y∥

`2
≤ O(Γ√

n logK),
holds with probability at least 1 −K−100.
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Proof This lemma is based on a fairly straightforward union bound. First, by construction ∥y∥`2 ≤ √
n. What

remains is bounding ∥vTφ (W0X
T )∥`2 . Since ε0 = 0 there are K unique rows. We will show that each of the

unique rows is bounded with probability 1−K−101 and union bounding will give the final result. Let w be a row
of W0 and x be a row of X. Since φ is Γ Lipschitz and ∣φ(0)∣ ≤ Γ, each entry of φ (Xw) is O(Γ)-subgaussian.
Hence vTφ(W0x) is weighted average of k i.i.d. subgaussians which are entries of φ(W0x). Additionally it is
zero mean since ∑ni=1 vi = 0. This means vTφ(W0x) is also O(Γ) subgaussian and obeys

P(∣vTφ(W0x)∣ ≥ cΓ√
logK) ≤K−101,

for some constant c > 0, concluding the proof.

10.2.1 Proof of Theorem 7.1

We first prove a lemma regarding the projection of label noise on the cluster induced subspace.

Lemma 10.10 Let {(xi, yi)}ni=1 be an (ρ, ε0 = 0, δ) clusterable noisy dataset as described in Definition 1.2. Let{ỹi}ni=1 be the corresponding noiseless labels. Let J (W ,C) be the Jacobian at the cluster center matrix which is
rank K and S+ be its column space. Then, the difference between noiseless and noisy labels satisfy the bound

∥ΠS+(y − ỹ)∥`∞ ≤ 2ρ.

Proof Let e = y − ỹ. Observe that by assumption, `th cluster has at most s` = ρn` errors. Let I` denote the
membership associated with cluster ` i.e. I` ⊂ {1, . . . , n} and i ∈ I` if and only if xi belongs to `th cluster. Let
1(`) ∈ Rn be the indicator function of the `th class where ith entry is 1 if i ∈ I` and 0 else for 1 ≤ i ≤ n. Then,
denoting the size of the `th cluster by n`, the projection to subspace S+ can be written as the P matrix where

P = K∑̀
=1

1

n`
1(`)1(`)T .

Let e` be the error pattern associated with `th cluster i.e. e` is equal to e over I` and zero outside. Since cluster
membership is non-overlapping, we have that

Pe = K∑̀
=1

1

n`
1(`)1(`)Te`.

Similarly since supports of 1(`) are non-overlapping, we have that

∥Pe∥`∞ = max
1≤`≤K

1

n`
1(`)1(`)Te`.

Now, using ∥e∥`∞ ≤ 2 (max distance between two labels), observe that

∥1(`)1(`)Te`∥`∞ ≤ 2∥1(`)∥`∞∥e`∥`1 = 2∥e`∥`1 .
Since number of errors within cluster ` is at most n`ρ, we find that

∥Pe∥`∞ = K∑̀
=1

∥ 1

n`
1(`)1(`)Te`∥`∞ ≤ ∥e`∥`1

n`
≤ 2ρ.

The final line yields the bound

∥PS+(y − ỹ)∥`∞ = ∥PS+(e)∥`∞ = ∥Pe∥`∞ ≤ 2ρ.

With this, we are ready to state the proof of Theorem 7.1.
Proof The proof is based on the meta Theorem 9.2, hence we need to verify its Assumptions 2 and 3 with
proper values and apply Lemma 10.10 to get ∥PS+(e)∥`∞ . We will also make significant use of Corollary 10.8.
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Using Corollary 10.8, Assumption 3 holds with L = Γ
√

cupn

kK
∥C∥ where L is the Lipschitz constant of Jacobian

spectrum. Denote rτ = f(Wτ) − y. Using Lemma 10.9 with probability 1 − K−100, we have that ∥r0∥`2 =∥y − f(W0)∥`2 ≤ Γ
√
c0n logK/128 for some c0 > 0. Corollary 10.8 guarantees a uniform bound for β, hence in

Assumption 2, we pick

β ≤ √
cupn

K
Γ ∥C∥ .

We shall also pick the minimum singular value over S+ to be

α = α0

2
where α0 =

√
clownλ(C)

2K
,

We wish to verify Assumption 2 over the radius of

R = 4∥f(W0) − y∥`2
α

≤ Γ
√
c0n logK/8

α
= Γ

¿ÁÁÀc0n logK/2
clownλ(C)

2K

= Γ

√
c0K logK

clowλ(C) ,
neighborhood of W0. What remains is ensuring that Jacobian over S+ is lower bounded by α. Our choice of k
guarantees that at the initialization, with probability 1 −K−100, we have

σmin(J (W0,X),S+) ≥ α0.

Suppose LR ≤ α = α0/2. Using triangle inequality on Jacobian spectrum, for any W ∈ D, using ∥W −W0∥F ≤ R,
we would have

σmin(J (W ,X),S+) ≥ σmin(J (W0,X),S+) −LR ≥ α0 − α = α.
Now, observe that

LR = Γ

√
cupn

kK
∥C∥Γ

¿ÁÁÀc0K log(K)
clowλ(C) = Γ2∥C∥√cupc0n logK

clowkλ(C) ≤ α0

2
=
√

clownλ(C)
8K

, (49)

as k satisfies

k ≥ O(Γ4∥C∥2 cupK log(K)
c2lowλ(C)2

) ≥ O(Γ4K log(K) ∥C∥2

λ(C)2
).

Finally, since LR = 4L∥r0∥`2/α ≤ α, the learning rate is

η ≤ 1

2β2
min(1, αβ

L ∥r0∥`2 ) =
1

2β2
= K

2cupnΓ2 ∥C∥2
.

Overall, the assumptions of Theorem 9.2 holds with stated α,β,L with probability 1 − 2K−100 (union bounding
initial residual and minimum singular value events). This implies for all τ > 0 the distance of current iterate to
initial obeys ∥Wτ −W0∥F ≤ R.
The final step is the properties of the label corruption. Using Lemma 10.10, we find that

∥ΠS+(ỹ − y)∥`∞ ≤ 2ρ.

Substituting the values corresponding to α,β,L yields that, for all gradient iterations with

5

ηα2
log(∥r0∥`2

2ρ
) ≤ 5

ηα2
log(Γ

√
c0n logK/32

2ρ
) = O( K

ηnλ(C) log(Γ
√
n logK

ρ
)) ≤ τ,

denoting the clean labels by ỹ and applying Theorem 9.2, we have that, the infinity norm of the residual obeys
(using ∥ΠS+(e)∥`∞ ≤ 2ρ) ∥f(W ) − ỹ∥`∞ ≤ 4ρ.

This implies that if ρ ≤ δ/8, the network will miss the correct label by at most δ/2, hence all labels (including
noisy ones) will be correctly classified.
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10.2.2 Proof of Theorem 2.3

Consider

f(W ,x) = vTφ (Wx)
and note that

∇xf(W ,x) =W Tdiag (φ′ (Wx))v
Thus

∂

∂x
f(W ,x)u =vTdiag (φ′ (Wx))Wu

= k∑̀
=1

v`φ
′ (⟨w`,x⟩)wT

` u

Thus

∇w` ( ∂

∂x
f(W ,x)u) = v` (φ′′(wT

` x)(wT
` u)x + φ′(wT

` x)u)
Thus, denoting vectorization of a matrix by vect(⋅)

vect(U)T ( ∂

∂vect(W ) ∂

∂x
f(W ,x))u = k∑̀

=1

v` (φ′′(wT
` x)(wT

` u)(uT` x) + φ′(wT
` x)(uT` u))

=uTW Tdiag (v)diag (φ′′(Wx))Ux + vTdiag (φ′ (Wx))Uu
Thus by the general mean value theorem there exists a point (W̃ , x̃) in the square (W0,x1), (W0,x2), (W ,x1)
and (W ,x2) such that

(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))= (x2 −x1)TW̃ Tdiag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃ + vTdiag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)
Using the above we have that

∣ (f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1)) ∣
(a)≤ ∣(x2 −x1)TW̃ Tdiag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃∣

+ ∣vTdiag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)∣
(b)≤ (∥v∥`∞ ∥x̃∥`2 ∥W̃ ∥ + ∥v∥`2)Γ ∥x2 −x1∥`2 ∥W −W0∥
(c)≤ ( 1√

k
∥x̃∥`2 ∥W̃ ∥ + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(d)≤ ( 1√
k
∥W̃ ∥ + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(e)≤ ( 1√
k
∥W0∥ + 1√

k
∥W̃ −W0∥ + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(f)≤ ( 1√
k
∥W0∥ + 1√

k
∥W̃ −W0∥F + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(g)≤ ⎛⎝ 1√
k
∥W̃ −W0∥F + 3 + 2

√
d

k

⎞⎠Γ ∥x2 −x1∥`2 ∥W −W0∥
(h)≤ CΓ ∥x2 −x1∥`2 ∥W −W0∥ (50)
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Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact that∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that v` = ± 1√
k

, (d) from ∥x2∥`2 = ∥x1∥`2 = 1 which implies∥x̃∥`2 ≤ 1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,

(g) from the fact that with probability at least 1 − 2e−(d+k), ∥W0∥ ≤ 2(√k + √
d), and (h) from the fact that∥W̃ −W0∥ ≤ ∥W −W0∥F ≤ c̃√k and k ≥ cd.

Next we note that for a Gaussian random vector g ∼ N(0,Id) we have

∥φ(gTx2) − φ(gTx1)∥ψ2 =∥φ(gTx2) − φ(gTx1)∥ψ2=∥φ′ (tgTx2 + (1 − t)gTx1)gT (x2 −x1)∥ψ2≤Γ∥gT (x2 −x1)∥ψ2≤cΓ ∥x2 −x1∥`2 . (51)

Also note that

f(W0,x2) − f(W0,x1) =vT (φ (W0x2) − φ (W0x1))
∼ k∑̀

=1

v` (φ(gT` x2) − φ(gT` x1))
where g1,g2, . . . ,gk are i.i.d. vectors with N(0,Id) distribution. Also for v obeying 1Tv = 0 this ran-
dom variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables
are subgaussian combined with (97) we conclude that f(W0,x2) − f(W0,x1) is also subGaussian obeying∥f(W0,x2) − f(W0,x1)∥ψ2 ≤ cΓ ∥v∥`2 ∥x2 −x1∥`2 . Thus

∣f(W0,x2) − f(W0,x1)∣ ≤ ctΓ ∥v∥`2 ∥x2 −x1∥`2 = ctΓ ∥x2 −x1∥`2 , (52)

with probability at least 1 − e− t22 .

Now combining (95) and (52) we have

δ ≤ ∣y2 − y2∣= ∣f(W ,x1) − f(W ,x2)∣= ∣vT (φ(Wx2) − φ(Wx1))∣≤ ∣(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))∣ + ∣vT (φ(W0x2) − φ(W0x1))∣≤CΓ ∥x2 −x1∥`2 ∥W −W0∥ + ctΓ ∥x2 −x1∥`2
≤CΓε0 (∥W −W0∥ + 1

1000
t)

Thus

∥W −W0∥ ≥ δ

CΓε0
− t

1000
,

with high probability.

10.3 Perturbation analysis for perfectly clustered data (Proof of Theorem 2.2)

Denote average neural net Jacobian at data X via

J (W1,W2,X) = ∫ 1

0
J (αW1 + (1 − α)W2,X)dα.

Lemma 10.11 (Perturbed Jacobian Distance) Let X = [x1 . . . xn]T be the input matrix obtained from
Definition 1.1. Let X̃ be the noiseless inputs where x̃i is the cluster center corresponding to xi. Given weight
matrices W1,W2,W̃1,W̃2, we have that

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥ ≤ Γ
√
n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F

2
√
k

+ ε0).
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Proof Given W ,W̃ , we write

∥J (W ,X) − J (W̃ , X̃)∥ ≤ ∥J (W ,X) − J (W̃ ,X)∥ + ∥J (W̃ ,X) − J (W̃ , X̃)∥.
We first bound

∥J (W ,X) − J (W̃ ,X)∥ = ∥diag(v)φ′(WXT ) ∗XT − diag(v)φ′(W̃XT ) ∗XT ∥ (53)

= 1√
k
∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥ (54)

To proceed, we use the results on the spectrum of Hadamard product of matrices due to Schur Schur (1911).
Given A ∈ Rk×d,B ∈ Rn×d matrices where B has unit length rows, we have

∥A ∗B∥ = √∥(A ∗B)T (A ∗B)∥ = √∥(ATA) ⊙ (BTB)∥ ≤ √∥ATA∥ = ∥A∥.
Substituting A = φ′(WXT ) − φ′(W̃XT ) and B =XT , we find

∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥ ≤ ∥φ′(WXT ) − φ′(W̃XT )∥ ≤ Γ∥(W̃ −W )XT ∥F ≤ Γ
√
n∥W̃ −W ∥F .

Secondly,

∥J (W̃ ,X) − J (W̃ , X̃)∥ = 1√
k
∥φ′(W̃XT ) ∗ (X − X̃)∥

where reusing Schur’s result and boundedness of ∣φ′∣ ≤ Γ

∥φ′(W̃XT ) ∗ (X − X̃)∥ ≤ Γ
√
k∥X − X̃∥ ≤ Γ

√
knε0.

Combining both estimates yields

∥J (W ,X) − J (W̃ , X̃)∥ ≤ Γ
√
n(∥W̃ −W ∥F√

k
+ ε0).

To get the result on ∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥, we integrate

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥ ≤ ∫ 1

0
Γ
√
n(∥α(W̃1 −W1) + (1 − α)(W̃1 −W1)∥F√

k
+ ε0)dα (55)

≤ Γ
√
n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F

2
√
k

+ ε0). (56)

Theorem 10.12 (Robustness of gradient path to perturbation) Generate samples (xi, yi)ni=1 according
to (ρ, ε0, δ) noisy dataset model and form the concatenated input/labels X ∈ Rd×n,y ∈ Rn. Let X̃ be the clean
input sample matrix obtained by mapping xi to its associated cluster center. Set learning rate η ≤ K

2cupnΓ2∥C∥2

and maximum iterations τ0 satisfying

ητ0 = C1
K

nλ(C) log(Γ
√
n logK

ρ
).

where C1 ≥ 1 is a constant of our choice. Suppose input noise level ε0 and number of hidden nodes obey

ε0 ≤ O( λ(C)
Γ2K log(Γ

√
n logK

ρ
)) and k ≥ O(Γ10K

2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)6).

Set W0
i.i.d.∼ N(0,1). Starting from W0 = W̃0 consider the gradient descent iterations over the losses

Wτ+1 =Wτ − η∇L(Wτ) where L(W ) = 1

2

n∑
i=1

(yi − f(W , x̃i))2 (57)

W̃τ+1 = W̃τ −∇L̃(W̃τ) where L̃(W̃ ) = 1

2

n∑
i=1

(yi − f(W̃ , x̃i))2 (58)
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Then, for all gradient descent iterations satisfying τ ≤ τ0, we have that

∥f(Wτ ,X) − f(W̃τ , X̃)∥`2 ≤ c0τηε0Γ3n3/2
√

logK,

and

∥Wτ − W̃τ∥F ≤ O(τηε0
Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

Proof Since W̃τ are the noiseless iterations, with probability 1 − 2K−100, the statements of Theorem 7.1 hold
on W̃τ . To proceed with proof, we first introduce short hand notations. We use

ri = f(Wi,X) − y, r̃i = f(W̃i, X̃i) − y (59)

Ji = J (Wi,X), Ji+1,i = J (Wi+1,Wi,X), J̃i = J (W̃i, X̃), J̃i+1,i = J (W̃i+1,W̃i, X̃) (60)

di = ∥Wi − W̃i∥F , pi = ∥ri − r̃i∥F , β = Γ∥C∥√cupn/K, L = Γ∥C∥√cupn/Kk. (61)

Here β is the upper bound on the Jacobian spectrum and L is the spectral norm Lipschitz constant as in Theorem
10.8. Applying Lemma 10.11, note that

∥J (Wτ ,X) − J (W̃τ , X̃)∥ ≤ L∥W̃ −W ∥F + Γ
√
nε0 ≤ Ldτ + Γ

√
nε0 (62)

∥J (Wτ+1,Wτ ,X) − J (W̃τ+1,W̃τ , X̃)∥ ≤ L(dτ + dτ+1)/2 + Γ
√
nε0. (63)

Following this and using that noiseless residual is non-increasing and satisfies ∥r̃τ∥`2 ≤ ∥r̃0∥`2 , note that parameter
satisfies

Wi+1 =Wi − ηJiri , W̃i+1 = W̃i − ηJ̃ Ti r̃i (64)

∥Wi+1 − W̃i+1∥F ≤ ∥Wi − W̃i∥F + η∥Ji − J̃i∥∥r̃i∥`2 + η∥Ji∥∥ri − r̃i∥`2 (65)

di+1 ≤ di + η((Ldi + Γ
√
nε0)∥r̃0∥`2 + βpi), (66)

and residual satisfies (using I ⪰ J̃i+1,iJ̃ Ti /β2 ⪰ 0)

ri+1 = ri − ηJi+1,iJ Ti ri Ô⇒ (67)

ri+1 − r̃i+1 = (ri − r̃i) − η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti )ri − ηJ̃i+1,iJ̃ Ti (ri − r̃i). (68)

ri+1 − r̃i+1 = (I − ηJ̃i+1,iJ̃ Ti )(ri − r̃i) − η(Ji+1,i − J̃i+1,i)J Ti ri − ηJ̃i+1,i(J Ti − J̃ Ti )ri. (69)

∥ri+1 − r̃i+1∥`2 ≤ ∥ri − r̃i∥`2 + ηβ∥ri∥`2(L(3dτ + dτ+1)/2 + 2Γ
√
nε0). (70)

∥ri+1 − r̃i+1∥`2 ≤ ∥ri − r̃i∥`2 + ηβ(∥r̃0∥`2 + pi)(L(3dτ + dτ+1)/2 + 2Γ
√
nε0). (71)

where we used ∥ri∥`2 ≤ pi + ∥r̃0∥`2 and ∥(I − ηJ̃i+1,iJ̃ Ti )v∥`2 ≤ ∥v∥`2 which follows from (36). This implies

pi+1 ≤ pi + ηβ(∥r̃0∥`2 + pi)(L(3dτ + dτ+1)/2 + 2Γ
√
nε0). (72)

Finalizing proof: Next, using Lemma 10.9, we have ∥r̃0∥`2 ≤ Θ ∶= C0Γ
√
n logK. We claim that if

ε0 ≤ O( 1

τ0ηΓ2n
) ≤ 1

8τ0ηβΓ
√
n

and L ≤ 2

5τ0ηΘ(1 + 8ητ0β2) ≤ 1

30(τ0ηβ)2Θ
, (73)

(where we used ητ0β
2 ≥ 1), for all t ≤ τ0, we have that

pt ≤ 8tηΓ
√
nε0Θβ ≤ Θ , dt ≤ 2tηΓ

√
nε0Θ(1 + 8ητ0β

2). (74)

The proof is by induction. Suppose it holds until t ≤ τ0 − 1. At t + 1, via (66) we have that

dt+1 − dt
η

≤ LdtΘ + Γ
√
nε0Θ + 8τ0ηβ

2Γ
√
nε0Θ

?≤ 2Γ
√
nε0Θ(1 + 8ητ0β

2).
Right hand side holds since L ≤ 1

2ητ0Θ
. This establishes the induction for dt+1.
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Next, we show the induction on pt. Observe that 3dt + dt+1 ≤ 10τ0ηΓ
√
nε0Θ(1 + 8ητ0β

2). Following (72) and
using pt ≤ Θ, we need

pt+1 − pt
η

≤ βΘ(L(3dτ + dτ+1) + 4Γ
√
nε0) ?≤ 8Γ

√
nε0Θβ ⇐⇒ (75)

L(3dτ + dτ+1) + 4Γ
√
nε0

?≤ 8Γ
√
nε0 ⇐⇒ (76)

L(3dτ + dτ+1) ?≤ 4Γ
√
nε0 ⇐⇒ (77)

10Lτ0η(1 + 8ητ0β
2)Θ ?≤ 4 ⇐⇒ (78)

L
?≤ 2

5τ0η(1 + 8ητ0β2)Θ . (79)

Concluding the induction since L satisfies the final line. Consequently, for all 0 ≤ t ≤ τ0, we have that

pt ≤ 8tηΓ
√
nε0Θβ = c0tηε0Γ3n3/2

√
logK.

Next, note that, condition on L is implied by

k ≥ 1000Γ2n(τ0ηβ)4Θ2 (80)

= O(Γ4n
K4

n4λ(C)4
log(Γ

√
n logK

ρ
)4(∥C∥Γ√

n/K)4(Γ√
n logK)2) (81)

= O(Γ10K
2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)4 log2(K)) (82)

which is implied by k ≥ O(Γ10K
2∥C∥4
λ(C)4 log(Γ

√
n logK

ρ
)6).

Finally, following (74), distance satisfies

dt ≤ 20tη2τ0Γ
√
nε0Θβ2 ≤ O(tηε0

Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

10.3.1 Completing the Proof of Theorem 2.2

The formal statement of Theorem 2.2 is provided below. Theorem 2.2 is obtained by the theorem below when
we ignore the log terms, and treating Γ, λ(C) as constants. We also plug in η = K

2cupnΓ2∥C∥2 .

Theorem 10.13 (Training neural nets with corrupted labels) Let {(xi, yi)}ni=1 be an (s, ε0, δ) cluster-
able noisy dataset as described in Definition 1.2. Let {ỹi}ni=1 be the corresponding noiseless labels. Suppose∣φ(0)∣, ∣φ′∣, ∣φ′′∣ ≤ Γ for some Γ ≥ 1, input noise and the number of hidden nodes satisfy

ε0 ≤ O( λ(C)
Γ2K log(Γ

√
n logK

ρ
)) and k ≥ O(Γ10K

2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)6).

where C ∈ RK×d is the matrix of cluster centers. Fix half of the entries of v to 1/√k and the other half to−1/√k and train only over W . Set learning rate η ≤ K
2cupnΓ2∥C∥2 and randomly initialize W0

i.i.d.∼ N(0,1). With

probability 1 − 3/K100 −K exp(−100d), after τ = O( K
ηnλ(C)) log(Γ

√
n logK

ρ
) iterations, we have that

• The per sample normalized `2 norm bound satisfies

∥f(Wτ ,X) − ỹ∥`2√
n

≤ 4ρ + cε0Γ3K
√

logK

λ(C) log(Γ
√
n logK

ρ
).
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• Suppose ρ ≤ δ/8. Denote the total number of prediction errors with respect to true labels (i.e. not satisfying
(6)) by err(W ). With same probability, err(Wτ) obeys

err(Wτ)
n

≤ cε0K

δ

Γ3
√

logK

λ(C) log(Γ
√
n logK

ρ
).

• Suppose ρ ≤ δ/8 and ε0 ≤ c′δmin( λ(C)2

Γ5K2 log(Γ
√
n logK

ρ )3
, 1

Γ
√
d
), then, Wτ assigns all inputs in the ε0 neighborhood

of cluster centers to the correct labels i.e. for any cluster center c` and x obeying ∥x − c`∥`2 ≤ ε0, x receives
the ground truth label of c`.

• Finally, for any iteration count 0 ≤ t ≤ τ the total distance to initialization is bounded as

∥Wt −W0∥F ≤ O(Γ√
K logK

λ(C) + tηε0
Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2). (83)

Proof Note that proposed number of iterations τ is set so that it is large enough for Theorem 7.1 to achieve
small error in the clean input model (ε0 = 0) and it is small enough so that Theorem 10.12 is applicable. In
light of Theorems 10.12 and 7.1 consider two gradient descent iterations starting from W0 where one uses clean
dataset (as if input vectors are perfectly cluster centers) X̃ and other uses the original dataset X. Denote the
prediction residual vectors of the noiseless and original problems at time τ with respect true ground truth labels
ỹ by r̃τ = f(W̃τ , X̃)− ỹ and rτ = f(Wτ ,X)− ỹ respectively. Applying Theorems 10.12 and 7.1, under the stated
conditions, we have that

∥r̃τ∥`∞ ≤ 4ρ and (84)

∥rτ − r̃τ∥`2 ≤ cε0
K

nλ(C) log(Γ
√
n logK

ρ
)Γ3n3/2

√
logK (85)

= cε0Γ3K
√
n logK

λ(C) log(Γ
√
n logK

ρ
) (86)

First statement: The latter two results imply the `2 error bounds on rτ = f(Wτ ,X) − ỹ.

Second statement: To assess the classification rate we count the number of entries of rτ = f(Wτ ,X) − ỹ that
is larger than the class margin δ/2 in absolute value. Suppose ρ ≤ δ/8. Let I be the set of entries obeying this.
For i ∈ I using ∥r̃τ∥`∞ ≤ 4ρ ≤ δ/4, we have

∣rτ,i∣ ≥ δ/2 Ô⇒ ∣rτ,i∣ + ∣rτ,i − r̄τ,i∣ ≥ δ/2 Ô⇒ ∣rτ,i − r̄τ,i∣ ≥ δ/4.
Consequently, we find that ∥rτ − r̄τ∥`1 ≥ ∣I∣δ/4.
Converting `2 upper bound on the left hand side to `1, we obtain

c
√
n
ε0Γ3K

√
n logK

λ(C) log(Γ
√
n logK

ρ
) ≥ ∣I∣δ/4.

Hence, the total number of errors is at most

∣I∣ ≤ c′ ε0nK

δ

Γ3
√

logK

λ(C) log(Γ
√
n logK

ρ
)

Third statement – Showing zero error: Pick an input x within ε0 neighborhood of one of the cluster centers
c ∈ (c`)K`=1. We will argue that f(Wτ ,x)−f(W̃τ ,c) is smaller than δ/4 when ε0 is small enough. We again write

∣f(Wτ ,x) − f(W̃τ ,c)∣ ≤ ∣f(Wτ ,x) − f(W̃τ ,x)∣ + ∣f(W̃τ ,x) − f(W̃τ ,c)∣
The first term can be bounded via

∣f(Wτ ,x) − f(W̃τ ,x)∣ = ∣vTφ(Wτx) − vTφ(W̃τx)∣ ≤ ∥v∥`2∥φ(Wτx) − φ(W̃τx)∥`2 (87)

≤ Γ∥Wτ − W̃τ∥F (88)

≤ O(ε0
Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3) (89)
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Next, we need to bound

∣f(W̃τ ,x) − f(W̃τ ,c)∣ ≤ ∣vTφ(W̃τx) − vTφ(W̃τc)∣ (90)

where ∥W̃τ −W0∥F ≤ O(Γ√
K logK
λ(C) ), ∥x − c∥`2 ≤ ε0 and W0

i.i.d.∼ N(0,I). Consequently, using by assumption

we have

k ≥ O(∥W̃ −W0∥2
F ) = O(Γ2K logK

λ(C) ),
and applying Theorem 12.1 (which is a variation of Theorem 2.3), with probability at 1 −K exp(−100d), for all
inputs x lying ε0 neighborhood of cluster centers, we find that

∣f(W̃τ ,x) − f(W̃τ ,c)∣ ≤ C ′Γε0(∥W̃τ −W0∥F +√
d) (91)

CΓε0(Γ
√

K logK

λ(C) +√
d). (92)

Combining the two bounds above we get

∣f(Wτ ,x) − f(W̃τ ,c)∣ ≤ ε0O( Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3 + Γ(Γ√

K logK

λ(C) +√
d)) (93)

≤ ε0O( Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3). (94)

Hence, if ε0 ≤ c′δmin( λ(C)2

Γ5K2 log(Γ
√
n logK

ρ )3
, 1

Γ
√
d
), we obtain that, for all x, the associated cluster c and true label

assigned to cluster ỹ = ỹ(c), we have that

∣f(Wτ ,x) − ỹ∣ < ∣f(W̃τ ,c) − f(Wτ ,x)∣ + ∣f(W̃τ ,c) − ỹ∣ ≤ 4ρ + δ
4
.

If ρ ≤ δ/8, we obtain ∣f(Wτ ,x) − ỹ∣ < δ/2
hence, Wτ outputs the correct decision for all samples.

Fourth statement – Distance: This follows from the triangle inequality

∥Wτ −W0∥F ≤ ∥Wτ − W̃τ∥F + ∥W̃τ −W0∥F
We have that right hand side terms are at most O(Γ√

K logK
λ(C) ) and O(tηε0

Γ4Kn
λ(C) log(Γ

√
n logK

ρ
)2) from Theorems

10.12 and 7.1 respectively. This implies (83).

11 Proof of Lemma 8.1

Create two matrices X ∈ Rs×d and X̃ ∈ Rs×d by concatenating the input samples. Note that the matrix X − X̃
has i.i.d. N(0,2ε2

0/d) entries. Thus, using standard results regarding the concentration of the spectral norm with
probability at least 1 − e−d/2, we have

∥X − X̃∥ ≤ √
2(√ s

d
+ 2) ε0 ≤ 5ε0.

Define the vectors y, ỹ ∈ Rs with entries given by yi and ỹi, respectively. Suppose W fits these labels perfectly.
Using the fact that ∥v∥`2 = 1, we can conclude that√

sδ ≤ ∥y − ỹ∥`2 = ∥f(W ,X) − f(W , X̃)∥`2 ,= ∥vT (φ(WX) − φ(WX̃))∥`2 ,≤ Γ∥v∥`2∥W (X − X̃)∥F ,≤ Γ∥X − X̃∥∥W ∥F ≤ 5Γε0∥W ∥F .
This implies the desired lower bound on ∥W ∥F .
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12 Uniform guarantee for minimum distance

Theorem 12.1 Assume ∣φ′∣ , ∣φ′′∣ ≤ Γ and k ≳ d. Suppose W0
i.i.d.∼ N(0,1). Let c1, . . . ,cK be cluster centers.

Then, with probability at least 1−2e−(k+d)−Ke−100d over W0, any matrix W satisfying ∥W −W0∥F ≲ √
k satisfies

the following. For all 1 ≤ i ≤K,

sup
∥x−ci∥`2 ,∥x̃−ci∥`2≤ε0

∣f(W ,x) − f(W , x̃)∣ ≤ CΓε0(∥W −W0∥ +√
d).

Proof Note that

∣f(W ,x) − f(W , x̃)∣ = ∣vT (φ (Wx) − φ (Wx̃))∣
≤ ∣vT (φ (Wx) − φ (Wx̃)) − vT (φ (W0x) − φ (W0x̃))∣ + ∣vT (φ (W0x) − φ (W0x̃))∣

To continue note that by the general mean value theorem there exists a point (W ,x) in the square(W0,x), (W0, x̃), (W ,x), and (W , x̃) such that

(f(W ,x) − f(W0,x)) − (f(W , x̃) − f(W0, x̃))
= (x − x̃)TW T

diag (v)diag (φ′′(Wx)) (W −W0)x + vTdiag (φ′ (Wx)) (W −W0)(x − x̃)
Using the above we have that

∣ (f(W ,x) − f(W0,x))− (f(W , x̃) − f(W0, x̃)) ∣ (95)

(a)≤ ∣(x − x̃)TW T
diag (v)diag (φ′′(Wx)) (W −W0)x∣

+ ∣vTdiag (φ′ (Wx)) (W −W0)(x − x̃)∣
(b)≤ (∥v∥`∞ ∥x∥`2 ∥W ∥ + ∥v∥`2)Γ ∥x − x̃∥`2 ∥W −W0∥
(c)≤ ( 1√

k
∥x∥`2 ∥W ∥ + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(d)≤ ( 1√
k
∥W ∥ + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(e)≤ ( 1√
k
∥W0∥ + 1√

k
∥W −W0∥ + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(f)≤ ( 1√
k
∥W0∥ + 1√

k
∥W −W0∥F + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(g)≤ ⎛⎝ 1√
k
∥W −W0∥F + 3 + 2

√
d

k

⎞⎠Γ ∥x − x̃∥`2 ∥W −W0∥
(h)≤ CΓ ∥x − x̃∥`2 ∥W −W0∥ (96)

Here, (a) follows from the triangle inequality, (b) from simple algebraic manipulations along with the fact
that ∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that v` = ± 1√

k
, (d) from ∥x∥`2 = ∥x̃∥`2 = 1 which implies∥x∥`2 ≤ 1, (e) from triangular inequality, (f) from the fact that Frobenius norm dominates the spectral norm,

(g) from the fact that with probability at least 1 − 2e−(d+k), ∥W0∥ ≤ 2(√k + √
d), and (h) from the fact that∥W −W0∥ ≤ ∥W −W0∥F ≤ c̃√k and k ≥ cd.

Next we note that for a Gaussian random vector g ∼ N(0,Id) we have

∥φ(gTx) − φ(gT x̃)∥ψ2 =∥φ(gTx) − φ(gT x̃)∥ψ2=∥φ′ (tgTx + (1 − t)gT x̃)gT (x − x̃)∥ψ2≤Γ∥gT (x − x̃)∥ψ2≤cΓ ∥x − x̃∥`2 . (97)
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Also note that

f(W0,x) − f(W0, x̃) =vT (φ (W0x) − φ (W0x̃))
∼ k∑̀

=1

v` (φ(gT` x) − φ(gT` x̃))
where g1,g2, . . . ,gk are i.i.d. vectors with N(0,Id) distribution. Also for v obeying 1Tv = 0 this random
variable has mean zero. Hence, using the fact that weighted sum of subGaussian random variables are subgaus-
sian combined with (97) we conclude that f(W0,x) − f(W0, x̃) is also subGaussian with Orlicz norm obeying∥f(W0,x) − f(W0, x̃)∥ψ2 ≤ cΓ ∥v∥`2 ∥x − x̃∥`2 . Now, suppose x, x̃ be within ε0 neighborhood of a cluster center
c. We write ∣f(W0, x̃) − f(W0,x)∣ ≤ ∣f(W0,c) − f(W0,x)∣ + ∣f(W0, x̃) − f(W0,c)∣
To proceed, since Xx = f(W0,x) is a Gaussian process, applying standard chaining bounds Talagrand (2006),
we find

sup
∥x−c∥`2≤ε0

∣f(W0,c) − f(W0,x)∣ ≤ c′Γε0

√
d (98)

with probability 1 − exp(−100d). Here ε0

√
d comes from the γ2 functional of the scaled ball around the cluster.

Applying a union bound over all clusters c1 to cK , we find that, with 1−exp(−d) probability, (98) holds uniformly
which implies that for all x, x̃ pairs of interest

sup
x,x̃ within cluster

∣f(W0, x̃) − f(W0,x)∣ ≤ 2c′Γε0

√
d.

Combining this with (96), we conclude with the advertised bound.
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13 Experiments on cross entropy loss

We also do simulations on cross entropy loss which has same configuration as 3 and 4. The same observation
happens when optimizing cross entropy loss.
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Figure 6: We depict the training accuracy of a LENET model trainined on 3000 samples from MNIST as a function of
relative distance from initialization. Here, the target loss is cross entropy, the x-axis keeps track of the distance between
the current and initial weights of all layers combined.
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Figure 7: (a)(b) Are histograms of the cross entropy loss of individual data points based on a model trained on 50,000
samples from CIFAR-10 with early stopping. The loss distribution of clean and corrupted data are separated but gracefully
overlap as corruption increases. (c) is histogram of singular values obtained by forming the Jacobian by taking partial
derivatives of class Airplane and Automobile on 10000 samples.
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