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Abstract

Suppose we are given a large matrix A =
(ai,j) that cannot be stored in memory but
is in a disk or is presented in a data stream.
However, we need to compute a matrix de-
composition of the entry-wisely transformed
matrix, f(A) := (f(ai,j)) for some function
f . Is it possible to do it in a space efficient
way? Many machine learning applications
indeed need to deal with such large trans-
formed matrices, for example word embed-
ding method in NLP needs to work with the
pointwise mutual information (PMI) matrix,
while the entrywise transformation makes
it difficult to apply known linear algebraic
tools. Existing approaches for this problem
either need to store the whole matrix and
perform the entry-wise transformation after-
wards, which is space consuming or infeasi-
ble, or need to redesign the learning method,
which is application specific and requires sub-
stantial remodeling.
In this paper, we first propose a space-
efficient sketching algorithm for computing
the product of a given small matrix with the
transformed matrix. It works for a general
family of transformations with provable small
error bounds and thus can be used as a prim-
itive in downstream learning tasks. We then
apply this primitive to a concrete application:
low-rank approximation. We show that our
approach obtains small error and is efficient
in both space and time. We complement our
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theoretical results with experiments on syn-
thetic and real data.

1 Introduction

Matrix datasets are ubiquitous in machine learning.
However, many matrix datasets are usually too large
to fit in the computer memory in large scale applica-
tions, e.g., image clustering [PPP06], natural language
processing [MSA+11], network analysis [MS04, GL16],
and recommendation systems [KBV09]. Many tech-
niques have been proposed to perform the learn-
ing tasks on these data in an efficient way; see,
e.g., [Mah11, Woo14, ZWSP08, GNHS11] and the ref-
erences therein. However, challenges arise when the
learning task is performed on an entrywise transfor-
mation of the matrix, which prevents applying many
linear algebraic techniques. Furthermore, due to large
sizes, these matrices are often constructed by entrywise
updates, i.e., the entries of the matrix are constructed
from a stream of updates where each update adds some
value on some entry. More specifically, there is a very
large underlying matrix A (that cannot be stored in
memory easily) whose entries are constructed by a
data stream where each item in the stream is of the
form (i, j,∆) with ∆ ∈ {±1} representing the update
Ai,j ← Ai,j + ∆. The downstream learning task (e.g.,
low rank approximation), however, needs to take input
as matrix M where Mi,j = f(Ai,j) for some transfor-
mation function f (e.g., f(x) = log(|x|+ 1)).

A concrete example is word embedding in natural lan-
guage processing (NLP). Word embedding methods
aim to embed each word to a vector space. It be-
comes a basic building block in many modern NLP
systems. Many of these systems achieve the state of
the art performance on various tasks via word embed-
ding [PSM14, MSC+13, WSC+16]. A basic routine in
word embedding is to explicitly or implicitly perform
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low rank approximation of an entry-wise transformed
matrix [LG14, LZM15]. For instance, the transforma-
tion is to apply a log likelihood function on each entry.
The matrix itself is the so-called co-occurrence count
matrix, which can be constructed by scanning the text
corpus, e.g., the entire Wikipedia database. This ma-
trix is usually of size millions by millions.

Similar examples include regressions on huge accumu-
lated datasets in economics [DVF13, Var14], where
different transformations on covariates are often used
to reduce biases. Other examples include visual fea-
ture extraction [BPL10], kernel methods [RR08], and
M -estimators [Zha97]. These large scale applications
make it impractical or hard to implement existing
methods, which keep the matrix in memory. Some
other approaches exploit the problem structure to get
around the huge space requirement. For instance,
some of them propose sequential models of the data,
and design online algorithms for computing the em-
beddings (e.g.,[MSC+13, BGJM16]). These methods,
however, are more task-specific and cannot be applied
to other tasks involving more general entrywise matrix
transformations.

In this paper, we show that learning based on trans-
formed large matrices is possible even when storing
such a matrix is not feasible. Our main contributions
are:

• For a general class of transformation function f ,
we provide an efficient one-pass matrix-product
sketch for computing the product of a given small
matrix B with the transformed matrix f(A) with
provable error bounds. This algorithm uses space
at most the size of the output. The method as-
sumes no statistical model about the updates and
can handle a general family of transformations. In
particular, these transformations include logarith-
mic functions and small degree polynomials. This
method can also be used as building blocks for
downstream tasks: any algorithm requires access
to the transformed matrix via a matrix product
can apply our algorithm to obtain space saving.

• We demonstrate the application of our algorithm
in a concrete task: low rank approximation. To
the best of our knowledge, our algorithm is the
first one that is able to compute low rank approx-
imation of large matrices under entrywise trans-
formations. We plug in our matrix product sketch
into known algorithms as black boxes. We pro-
vide theoretical analysis on the tradeoff between
the space and the accuracy of these algorithms.
We show that our algorithms are space efficient
and almost match the accuracy of using the full
matrix. These theoretical guarantees are comple-

mented by experiments for low rank approxima-
tion on synthetic and real data. The empirical
results show that our algorithm can reduce the
space usage by orders of magnitude while the er-
ror is almost the same as the optimum. We show
that our algorithms beat the baseline of using uni-
form sampling on columns of the transformed ma-
trix by a large margin. We also provide results on
linear regression in the appendix.

Road Map. We provide definitions and basic con-
cepts in Section 3. In Section 4, we introduce our
basic routine called the matrix product sketch. We use
our sketching algorithms to compute the low rank ap-
proximation of a transformed matrix in Section 5, and
the application on linear regression is in Appendix E.
In Section 6, we use numeric experiments to justify
our approach. The appendix provides a list of related
works, the complete proofs, details of the experiments,
and also additional theoretical and empirical results.

2 Related Work

There exists a large body of work on fast algorithms
for large scale matrices. Some are based on ran-
domized matrix algorithms and use techniques like
sampling and sketching; see [Mah11, Woo14] and the
reference therein. Some others are based on opti-
mization algorithms like Alternating Least Square and
Stochastic Gradient Descent and their variants; see
[ZWSP08, GNHS11] for some examples. However,
most existing approaches do not apply to the set-
tings considered in this paper. The closest work is
[WZ16], which considers low rank approximation of
the element-wise transformation of the sum of sev-
eral matrices located in different machines. This
distributed setting is different from our setting and
naively applying their algorithm will lead to a large
space cost. Furthermore, our sketching method can
be applied to learning tasks beyond low rank approx-
imation.

Our work is built on techniques from numerical lin-
ear algebra and streaming data analysis in the recent
decade. There are numerous research works along this
line. Here we list a few but far from exhaustive.

Low-rank approximation or matrix factorization of a
matrix is an important task in numerical linear al-
gebra. In this problem, we are given a n × d ma-
trix A and a parameter k, the goal is to find a
rank-k matrix Â so as to minimize the residual er-
ror ‖Â − A‖2

F , where the Frobenius norm is de-
fined as ‖A‖F = (

∑n
i=1
∑d
j=1 A

2
i,j)

1
2 . Note that an

optimal Â provides a good estimation to the lead-
ing eigenspace of the matrix A. Classical way of
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speeding up low-rank approximation via sketching re-
quires showing two properties for sketching matrix:
subspace embedding [Sar06, LWW20, WW19] and
approximate matrix product [NN13, KN14]. Low-
rank approximation algorithm via combining those
two properties has been presented in several papers
[CW13, MM13, SWZ19b]. The classical sketching idea
is easy to be made a streaming algorithm, since we usu-
ally use linear sketching matrix, which we don’t need
to explicitly write down during the stream. However
none of these methods are applicable to our setting,
which is much harder than the classical streaming low-
rank approximation problem. This is mainly because
the transformation f that acts on an the matrix A
completely destroyes the linear algebraic property of
matrix A; see Appendix D for some discussions. The
storage of A can also be indefeasibly large to be stored
and apply the above mentioned methods.

Streaming algorithms have gained great progress since
its first systematic study by [AMS99]. Classic stream-
ing problems ask how to estimate a function over a
vector, which is under streaming updates. For in-
stance, [AMS99] approximates ‖v‖p while observing
a sequence of updates to the coordinates of v. The
usual assumption is that v ∈ Rn and n is so large that
v cannot be stored in memory easily. Since [AMS99],
a line of research works (e.g. [Ind00, IW05, BYKS02,
BKSV14, KNW10]) gradually improve the algorithm
and obtain nearly optimal upper and lower bounds.
Very recently, [BO10b, BO10a, BVWY17] attempts
to handle a more general set of functions. [BVWY17]
gives a nearly optimal characterization of this prob-
lem. [BBC+17] studies a more general setting, i.e.,
functions that do not have a summation structure
f : Rn → R. They give optimal characterization
for streaming all symmetric norms. Given theses ad-
vances, none of them solves our problem directly since
a streaming estimation only gives a value of vector,
that is unrelated to the matrix formulation of the in-
put.

3 Preliminaries

Notation. [n] denotes the set {1, 2, · · · , n}. For a
vector x ∈ Rn, |x| ∈ Rn denotes a vector whose i-th
entry is |xi|. For a matrix A ∈ Rn×n, let ‖A‖ de-
note its spectral norm, σi(A) to denote its i-th largest
singular value, and [A]k denote its best rank-k approx-
imation. Also let det(A) denote its determinant when
A is square. For a function f , M = f(A) means en-
trywise transformation Mij = f(Aij). We also denote
Ai∗ as the i-th row of matrix A and A∗j as its j-th
column.

Problem Definition. The problem of interests is de-

fined as follows. Suppose we have a underlying large
matrix A = (Ai,j) ∈ Rn×n initialized as a zero ma-
trix.1 Now, we have observed a sequence of updates
of the form 〈(i1, j1,∆1), (i2, j2,∆2), . . . , (im, jm,∆m)〉
for some m = poly(n), it, jt ∈ [n] and ∆t ∈ {−1, 1}.
At the t-th update, we are updating the underlying
matrix by ait,jt

← ait,jt
+ ∆t. We assume that m is

bounded by poly(n). Note that the assumptions of
integer updates is without loss of generality. For in-
stance, if the updates is not an integer, we can round
them to a specified precision ε > 0 and then scale
them to integers. The polynomially bounded length is
also a usual and reasonable assumption. At the end of
the stream, one would like to perform some learning
task (such as low-rank approximation) on the matrix
M = f(A) for some fixed function f : R → R and
would like to do so using as small space as possible,
in particular, avoid storing the large matrix A. Some
examples of the transformation functions are

f(x) = log(|x|+ 1), or f(x) = |x|α, ∀α ≥ 0. (1)

Functions of this form are important in machine learn-
ing. For example, f(x) = log(|x| + 1) corresponds
to the log likelihood function and f(x) = |x|α corre-
sponds to a general family of statistic models or feature
expansion.

In this paper we would like to design a space efficient
method for approximating Z = f(A)B for a given
matrix B, where f(A) ∈ Rn×n and B ∈ Rn×k for
some integer n and k with k � n. We would like
to design algorithms that uses space Õ(nk) instead of
Õ(n2). This can then be used as a plug-in primitive
and turn learning algorithms into space efficient ones
if they only access f(A) by matrix product with small
B. More formally,
Problem 3.1 (approximate transformed matrix and
matrix product). Given a fixed matrix B and function
f : R → R, design an algorithm that makes a single
pass over an update stream of a matrix A, output an
approximated value of f(A)B with high probability. We
require the algorithm to use as small space as possible
(without counting the space of B).

We call our method the sketch for f -matrix product.
We then demonstrate its effectiveness in the appli-
cations of linear regression and low rank approxima-
tion on M = f(A). Linear regression is to minimize
‖Mx− b‖2

2, and low rank approximation is defined as
follows.
Problem 3.2 (low-rank approximation). Given in-
tegers k ≤ n, an n × n matrix M , two parameters

1Our method also applies to non-square A; we consider
square matrices for simplicity.
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ε, δ > 0, the goal is to output an orthonormal n × k
matrix L such that

‖LL>M −M‖2
F ≤ (1 + ε)‖M − [M ]k‖2

F + δ.

where [M ]k = arg minrank−k M ′ ‖M −M ′‖2
F .

4 Sketch for f-Matrix Product

Our goal in this section is to compute the matrix prod-
uct f(A)B whereB is given and A is under updating or
can only be read entry by entry. We observe that each
entry of Z = f(A)B can be written as a vector prod-
uct: Zi,j = 〈f(A)i∗, B∗j〉. Thus, we will first design
a primitive to compute each Zi,j using small space.
Running a primitive in parallel for each entry Zi,j re-
sults in our full algorithm for computing the matrix
product. In the following sections, we will first intro-
duce the vector sketch problem and present our vector
product primitives for different functions f . Lastly,
we will combine them to form a unified algorithm for
matrix product.

4.1 Sketch for f-Vector Product

Recall that for given vectors x, y ∈ Rn, the inner prod-
uct is defined as 〈x, y〉 =

∑n
i=1 xiyi. In our setting, we

are also given a function f : R → R and a vector
x ∈ Rn where the storage of x is free, but not directly
given y. The f -vector product is defined as 〈x, f(y)〉,
where f is applied to y coordinate-wisely. The up-
dates to y is a stream, i.e., we observe a sequence of
integer pairs (zt,∆t) for t = 1, 2, . . . ,m, where each
zt ∈ [n] and ∆t ∈ {−1, 1}. Thus, we initialize y as a
y(0) ← 0, a zero-vector, and at time t, the update to
y is described by y(t) ← y(t−1) + ∆zt

· ezt
where ezt

is the standard unit vector with only the zt-th coor-
dinate non-zero. Our goal is to approximate 〈x, f(y)〉
without storing y, where x is given to the algorithm
without storage cost. Formally, we define the following
problem.
Problem 4.1 (approximate transformed vector and
vector inner product). Given a fixed vector x and func-
tion f : R→ R, design an algorithm that makes a sin-
gle pass over an update stream of a vector y, output
an approximated value of 〈f(y), x〉 with high probabil-
ity. We require the algorithm to use as small space as
possible (excluding the space of x).

We note that a naive algorithm would be storing the
vector y as a whole. However such an algorithm is not
feasible when n is large or the demand of computing
such inner products is too high (e.g., in our matrix
applications for computing Z = f(A)B ∈ Rn×k, each
entry of Z is an inner product. If each inner prod-
uct requires space n, then final space can be O(n2k)

which is prohibitively high.). In Section 4.2 below, we
design an algorithm that accomplish this task for func-
tion f(y) = log(|y| + 1), which only uses Õ(1) bits of
memory. In Section B.3, we present a general frame-
work that works for a general family of functions f
with nearly optimal space complexity.

4.2 Sketch log(| · |+ 1)-Vector Product

Algorithm 1
1: data structure LogSum . Theorem 4.2
2: procedure Initialize(x)
3: γ ← ε−2 poly(logn/δ)
4: t← Θ(logn), pj ← 2−j · γ,∀j ∈ [t]
5: for j = 1→ t do
6: Sample a logn-wise independent hash func-

tion hj : [n] → {0, 1} such that ∀i ∈ [n] :
Pr[hj(i) = 1] = min(pj , 1).

7: Sample a K-set structure KSetj with
error parameter Θ(δ/t) and memory budget
ε−2 poly(logn/δ)

8: end for
9: end procedure

10: procedure Update(a) . a ∈ [n]
11: for j = 1→ t do
12: if hj(a) = 1 and xa 6= 0 then
13: KSetj .update(a)
14: end if
15: end for
16: end procedure
17: procedure Query()
18: Pick the largest j such that KSetj does not

return “Fail”
19: Let v be the output of KSetj , denote Sj =

supp(v)
20: return 2j

∑
i∈Sj

xi log(|vi|+ 1)
21: end procedure
22: end data structure

Recall that, when f(·) = log(| · | + 1), we are de-
signing an algorithm for computing the inner product
〈log(|y|+ 1), x〉, where x, y ∈ Rn are two vectors, x is
given to the algorithm for free and y is under updating.
Our full algorithm is Algorithm 1, which is composed
of 3 sub-procedures: procedure Initialize is called on
initialization with given vector x, procedure Update
is called when we go over the update stream of the
vector y, and procedure Query is called at the end
to report the answer. The detailed analysis of Algo-
rithm 1, can be found in Appendix B. We here sketch
the high level ideas for how it works. For ease of repre-
sentation, we consider x has no zero coordinates, since
otherwise we can simply ignore these coordinates and
change our universe [n] to supp(x) accordingly. Our
algorithm is originated from [BO10b] but it is much
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simplified in this paper. From a high level, our algo-
rithm can be viewed as an `0-sampler, namely, sample
uniformly at random from the support of an updating
vector y. Note that the support of y is changing over
time. Thus it is non-trivial to maintain a uniform sam-
ple while using only small space. We also note that it
is necessary to sample coordinates from the support
of y, since otherwise we can always construct worst-
case examples for algorithms that sample coordinates
uniformly from [n].

We design our algorithm thus by maintaining inde-
pendently Θ(logn) many sub-vectors of the vector y.
Each sub-vector is generated by sampling a set of coor-
dinates uniformly from [n] with geometrically decreas-
ing probabilities. For instance, in our algorithm, we
first generate Θ(logn) many hash functions, each de-
fines a set Sj ⊂ [n]. For each i ∈ [n], we demand that
i ∈ Sj with probability 2−j . Thus if the size of the
support of y is of order Θ(2j), then we are expected
to sample Θ(1) samples of y using the set Sj . We now
describe how to maintain these sampled coordinates in
memory. For convinience we assume γ = 1 in line 3 in
Algorithm 1.

For the case of insertion-only stream (once a coordi-
nate of y becomes larger than 0, it stays so), maintain-
ing the sub-vector ySj

is a trivial task since the number
of coordinates of ySj

is expected to be O(1). However,
for j′ ≤ j, the sub-vectors ySj′ s contain too many co-
ordinates. We handle this quite straightforwardly: if
any of them exceeds our memory budget, we just ig-
nore them. For the case of general stream, in which
coordinates can be 0 even they were non-zero at some
time-point. We will be using the K-set data structure
presented in [Gan07]. This data structure supports in-
sertion and deletion of data points and can maintain
the samples only if the number of final samples is un-
der the memory budget. The formal guarantee of the
K-set data structure presented in Theorem B.1.

Suppose now we have collected sufficiently many sam-
ples from the support of the vector y. Suppose the
set of samples is collected using set Sj . We can
have an empirical estimator for the inner product as
2j
∑
i∈Sj

xi log(|yi|+ 1). Notice that this estimator is
unbiased. Also since the variance of the estimator is
bounded by

∑

i

2jx2
i log2(|yi|+ 1)

= O(1) · ‖x‖2
∞ ·
∑

i

log2(|yi|+ 1) · log2 m,

where m is the length of the stream and is usually
assumed to be of oder poly(n), thus we only need
poly logn samples to obtain an accurate estimation.

We summarize the main guarantee in the following the-
orem, while the formal proof can be found in Section B.
Theorem 4.2 (approximate inner product of trans-
formed vector and vector). Suppose vector x ∈ Rn is
given without memory cost. There exists a streaming
algorithm (data structure LogSum in Algorithm 1)
that makes a single pass over the stream updates to
a vector y ∈ Rn and outputs Z ∈ R, such that, with
probability at least 1− δ,

|Z − 〈x, log(|y|+ 1)〉| ≤ ε · ‖x‖∞ ·
n∑

i=1
log(|yi|+ 1).

The algorithm uses space O(ε−2 poly(log(n/δ))) (ex-
cluding the space of x) has a poly(logn, 1/ε) query
time.
Remark 4.3. We also note that our algorithm nat-
urally works for f(y) := logc(|y| + 1) for any con-
stant c. To modify our algorithm, we only need to keep
slightly larger space and change the final estimation to
be 2j

∑
i∈Sj

xi logc(|vi| + 1). It also enjoys the same
relative error guarantee in Theorem 4.2.

4.3 From Vector Product Sketch to Matrix
Product Sketch

With the f -inner product sketch tools established, we
are now ready to present the result for sketching the
matrix product, Z = f(A)B. Notice that each entry
Zi,j := 〈f(Ai), Bj〉 is an inner product.

Thus our algorithm for the matrix sketch is simply
maintaining an f -inner product sketch for each Zi,j . In
our algorithm, we assume that matrix B is given to the
algorithm for free. Thus, if B ∈ Rn×k for some k �
n, we only need to keep up to Õ(nk) vector product
sketches, which cost in total Õ(nk) words of space. For
the ease of representation, we present our guarantee
for matrix product for f(z) := logc(|z| + 1) for some
c or for f(z) = zp for 0 ≤ p ≤ 2, and for matrix
B ∈ {−1, 0, 1}n×k. Our results can be generalized to
a more general set of functions and matrix B using
the results presented in Section B.3. The proof of the
following theorem is a straightforward application of
Theorem 4.2 and B.2.
Theorem 4.4 (approximate each coordinate of
the transformed matrix). Given a matrix B ∈
{−1, 0, 1}n×k, and a function f(x) := logc(|x| + 1)
for some c or f(x) := |x|p for some 0 ≤ p ≤ 2, then
there exists a one-pass streaming algorithm that makes
a single pass over the stream updates to an underlying
matrix A ∈ Rn and outputs a matrix Ẑ, such that,
with probability at least 1− δ, for all i, j,

|Ẑi,j − Zi,j | ≤ ε
n∑

j′=1
f(|Ai,j′ |).
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The algorithm uses space ε−2nk poly(log(n/δ)) and
has an nk poly(logn, 1/ε) query time.
Remark 4.5. We note that our sketch in the last the-
orem can be easily used to approximate the 2-norm of
each row of the matrix f(A). In this case, we simply
choose B ∈ Rn×1 as the all-1 vector and change f(·)
to be f2(·). For f(x) = poly log(|x|+1) or f(x) = |x|p
with 0 ≤ p ≤ 1, it can be easily verify that our out-
put is a (1 ± ε) approximation to f2(A) · 1, hence the
approximation of 2-norm squared of each row of f(A).

5 Application to Low Rank
Approximation

This section considers the concrete application of rank-
k approximation for M where Mi,j = log(|Ai,j | + 1),
i.e., finding k orthonormal vectors L such that ‖M −
LL>M‖F is minimized. Our algorithm for rank-k ap-
proximation is presented in Algorithm 2. Low rank
approximation for other functions f follows the same
algorithm and similar analysis.

There exists a large body of work for low rank ap-
proximation (see, e.g., [HMT11, DMIMW12, Woo14,
CW13, MM13, NN13, CW15, RSW16, SWZ17,
CGK+17, SWZ18, BW18, KPRW19, SWZ19a,
SWZ19b, SWZ19c, Son19, BBB+19, DJS+19,
BCW19, IVWW19, BWZ19] and references therein)
but most of them are designed for the case without
transformation and thus cannot be directly applied.
As mentioned in previous sections, if an algorithm
only accesses the transformed matrix via a matrix
product, plugging in our sketching method leads
to a suitable algorithm. We design an algorithm
that applies generalized leverage score sampling
approach [DMIMW12, BLS+16] for low-rank approx-
imation. Leverage score sampling is a non-oblivious
sketching technique that is widely used in numerical
linear algebra and has been successfully applied to
speed up different problems such as linear regression
[CW13, PSW17, AKK+17, SWZ19b, DSWY19],
row sampling [SS11, LMP13], spectral approx-
imation [CLM+15], low rank approximation
[BW14, SWZ17, SWZ19b], cutting plane meth-
ods [Vai89, LSW15, JLSW20], linear programming
[BLSS20], computing John Ellipsoid [CCLY19].
From the perspective of graph problems, leverage
score is closely related to random spanning tree
[Sch18, KS18], graph sparsification and Laplacian
system solver [ST04, SS11, BSS12]. Readers may
refer to Appendix C.1 for more detailed discussion on
leverage score sampling.

On a high level, we would like to sample matrix M ∈
Rn×n according to its leverage scores. It turns out it
is sufficient to use the leverage scores of SM where S

is a sketching matrix. We apply Algorithm 1 to do
so and obtain the sampled set P (Step 1). We then
apply the technique of adaptive sampling to refine the
sampling and obtain Y (Step 2) so that we have better
control over the rank, and finally compute the solution
using Y by taking projection and computing singular
vectors (Step 3). Detailed description and analysis of
Algorithm 2 can be found in Appendix C. Overall we
have the following guarantee.
Theorem 5.1 (low-rank approximation). For any pa-
rameter ε ∈ (0, 1) and integer k ≥ 1, there is an algo-
rithm (procedure LowRankApprox in Algorithm 2)
that runs in Õ(n)·k3 ·poly(1/ε) time, takes Õ(n)·k3/ε2

spaces, and outputs a matrix L ∈ Rn×k such that

‖LL>M −M‖2
F ≤ 10 · ‖M − [M ]k‖2

F

+O

(
ε2

k3 log5 k

)
· ‖M‖2

1,2,

holds with probability at least 9/10, where ‖M‖1,2 =
(
∑
j ‖M∗,j‖2

1)1/2.

For a large n and fixed ε, our algorithm uses much
less space than storing the full matrix. Note that our
algorithm still needs to make several passes over the
stream of updates. Whether there exists a one-pass
algorithm is still an open problem, and is left for future
work.

6 Experiments

To demonstrate the advantage of our proposed
method, we complement the theoretical analysis with
empirical study on synthetic and real data. We con-
sider the low rank approximation task with f(x) =
log(|x| + 1). We adjust the constant factors in the
amount of space used by our method and compare the
errors of the obtained solutions. In the appendix, we
describe more experimental details. We also provide
additional experiments in the appendix to show that
the method also works for f(x) =

√
|x|.

We furthre demonstrate the robustness of the param-
eter selections in the algorithm.

Setup. Given a data stream in the form of (it, jt, δt),
we use the algorithm in Section 5 to compute the top
k = 10 singular vectors L, and then compare the er-
ror of this solution to the error of the optimal solution
(i.e., the true top k singular vectors). Let A denote
the accumulated matrix, M = f(A) denote the trans-
formed one, and U denote the top k singular vectors
of M . Then the evaluation criterion is

error-ratio(L) = ‖M − LL>M‖F /‖M − UU>M‖F .
Clearly, the error ratio is at least 1, and a value closer
to 1 means a better solution.
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Algorithm 2 Low rank approximation of M = log(|A|+ 1)
1: procedure LowRankApprox(A, k, ε) . Theorem 5.1
2: s← O(k log k)
3: d1 ← O(k log2 k)
4: d2 ← O(k/ε)
5: η ← O(ε

√
d1 + ε2d1)

6: . Step 1 : Sampling according to generalized leverage scores of M
7: Let S be the CountSketch (SparesJL) matrix of size s× n . Appendix A.1
8: Let S+ and S− be its positive and negative parts of S.
9: R← [S+;S−]

10: Ẽ ← LogSum(RM) . ‖Ẽi‖2
2 = (1± ε)‖(RM)i‖2,∀i

11: Sample a set P of d1 columns of M according to the leverage score of Ẽ. . Definition C.2
12: . Step 2 : Adaptive sampling
13: [Qp, ·]← QRFactorization(P ) . Qp is the basis vectors for P
14: Γ̃← LogSum(Q>pM) . ‖Γ̃i‖2

2 = (1± ε)‖(Q>pM)i‖2
2,∀i

15: z̃ ← LogSum(M) . z̃i = (1± ε)‖Mi‖2
2,∀i

16: s̃i ← z̃i − ‖Γ̃i‖2
2

17: Sample a set Ỹ of d2 columns from M according to pi = max(s̃i, ηz̃i)
18: Y ← Ỹ ∪ P
19: . Step 3 : Computing approximation solutions
20: [Qy, ·]← QRFactorization(Y ) . Qy is the basis vectors for Y
21: Π̃← LogSum(Q>yM) . ‖Π̃i‖2

2 = (1± ε2)‖(Q>yM)i‖2
2,∀i

22: Compute the top k singular vectors W̃ of Π̃
23: L← QyW̃
24: return L
25: end procedure
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Figure 1: Error ratios on the synthetic data (top row) and the real data (bottom row). The x-axis is the ratio between
the amount of space used by the algorithms and the total amount of space occupied by the data matrix. The y-axis is
the ratio between the error of the solutions output by the algorithms and the optimal error.
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Besides demonstrating the effectiveness, we also exam
the tradeoff between the solution quality and the space
used. Recall that there are constant parameters in
the sketching methods controlling the amount of space
used. We vary its value, and set the parameters in
other steps of our algorithm so that the amount of
space used is dominated by that of the sketch. We
then plot how the error ratios change with the amount
of space used. The plotted results are averages of 5
runs; the variances are too small to plot. Finally, we
also report the results of a baseline method: uniformly
at random sample a subset T of columns from A, and
then compute the top k singular vectors of f(T ). The
space occupied by the columns sampled is similar to
the space required by our algorithm for fair compari-
son. We choose uniform sampling as baseline because
to the best of the authors’ knowledge, our algorithm is
the first one to deal with low-rank approximation on
transformed matrix in the stream setting, and we are
not aware of any other non-trivial algorithm working
in this setting.

6.1 Synthetic Data

Data Generation. The data sets LogData are
generated as follows. First generate a matrix M of
n× n where the entries are i.i.d. Gaussians. To break
the symmetry of the columns, we scale the norm of
the i-th column to 4/i. Finally, we generate matrix A
with Aij = exp(Mij) − 1. Each entry Aij is divided
into equally into 5 updates (i, j, Aij/5), and all the
updates arrive in a arbitrary order. The size n can be
10000, 30000, and 50000.

Parameter Setting. In our algorithm for low rank
approximation, an FJLT matrix S is used [Ach03,
AC06]. For the sketching subroutine, instead of spec-
ifying the desired ε, we directly set the size of the
data structure (line 19 in LogSum), so as to exam
the tradeoff between space and accuracy. We set
mc = ms = ma and set their value so that the space
used is at most that used by the sketch method.

Results. Figure 1 top row shows the results on the
synthetic data. In general, the error ratio of our
method is much better than that of the uniform sam-
pling baseline: ours is close to 1 while that of uniform
sampling is about 4. It also shows that our method
can greatly reduce the amount of space needed, e.g.,
by orders of magnitude, but still preserve a good solu-
tion. This advantage is more significant on larger data
sets. For example, when n = 50000, to obtain 5% er-
ror over the optimum solution, we only needs space
corresponding to 5% of the size of the matrix.

6.2 Real Data

We experiment our method on the real world data from
NLP applications, which are the motivating examples
for our approach. Our method with f(x) = log(|x|+1)
is used. The parameters are set in a similar way as for
the synthetic data.

Data Collection. The data set is the entire
Wikipedia corpus [Wik12] consisting of about 3 bil-
lion tokens. Details can be found in the appendix and
only a brief description is provided here. The matrix
to be factorized is M with Mij = pj log(NijN

NiNj
+ 1)

where Nij is the number of times words i and j co-
occur in a window of size 10, Ni is the number of times
word i appears, N is the total number of words in the
corpus, and pj is a weighting factor depending on Nj
(putting larger weights on more frequent words). Note
that Ni’s and N can be computed easily, so essentially
the only dynamically update part is logNij . The data
stream is generated by considering each window of size
10 along the sentences in the corpus and collecting the
co-occurrence counts of the word pairs in that window.
We consider the matrix for the most frequent n words,
where n = 10000, 30000, and 50000.

Results. Figure 1 bottom row shows the results on
the real data. The observations are similar to those on
the synthetic data: the errors of our method are much
smaller than the baseline, and are close to the opti-
mum. These results again demonstrate the accuracy
and space efficiency of our methods.

7 Conclusions

We considered the setting where a large matrix is up-
dated by a data stream and the learning tasks is per-
formed on an element-wise transformation of the ma-
trix. We proposed a method for computing the prod-
uct of its element-wise transformation with another
given matrix. For a large family of transformations,
our method only needs a single pass over the data and
provable guarantees on the error. Our method uses
much smaller space than directly storing the matrix.
Our approach can be used as a building block for many
learning tasks. We provided a concrete application for
low-rank approximation with theoretical analysis and
empirical verification, showing the effectiveness of this
approach.
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