
Sketching Transformed Matrices with Applications to Natural
Language Processing

Yingyu Liang Zhao Song Mengdi Wang
University of Wisconsin-Madison IAS Princeton University

Lin F. Yang Xin Yang
UCLA University of Washington

Abstract

Suppose we are given a large matrix A =
(ai,j) that cannot be stored in memory but
is in a disk or is presented in a data stream.
However, we need to compute a matrix de-
composition of the entry-wisely transformed
matrix, f(A) := (f(ai,j)) for some function
f . Is it possible to do it in a space efficient
way? Many machine learning applications
indeed need to deal with such large trans-
formed matrices, for example word embed-
ding method in NLP needs to work with the
pointwise mutual information (PMI) matrix,
while the entrywise transformation makes
it difficult to apply known linear algebraic
tools. Existing approaches for this problem
either need to store the whole matrix and
perform the entry-wise transformation after-
wards, which is space consuming or infeasi-
ble, or need to redesign the learning method,
which is application specific and requires sub-
stantial remodeling.
In this paper, we first propose a space-
efficient sketching algorithm for computing
the product of a given small matrix with the
transformed matrix. It works for a general
family of transformations with provable small
error bounds and thus can be used as a prim-
itive in downstream learning tasks. We then
apply this primitive to a concrete application:
low-rank approximation. We show that our
approach obtains small error and is efficient
in both space and time. We complement our

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

theoretical results with experiments on syn-
thetic and real data.

1 Introduction

Matrix datasets are ubiquitous in machine learning.
However, many matrix datasets are usually too large
to fit in the computer memory in large scale applica-
tions, e.g., image clustering [PPP06], natural language
processing [MSA+11], network analysis [MS04, GL16],
and recommendation systems [KBV09]. Many tech-
niques have been proposed to perform the learn-
ing tasks on these data in an efficient way; see,
e.g., [Mah11, Woo14, ZWSP08, GNHS11] and the ref-
erences therein. However, challenges arise when the
learning task is performed on an entrywise transfor-
mation of the matrix, which prevents applying many
linear algebraic techniques. Furthermore, due to large
sizes, these matrices are often constructed by entrywise
updates, i.e., the entries of the matrix are constructed
from a stream of updates where each update adds some
value on some entry. More specifically, there is a very
large underlying matrix A (that cannot be stored in
memory easily) whose entries are constructed by a
data stream where each item in the stream is of the
form (i, j,∆) with ∆ ∈ {±1} representing the update
Ai,j ← Ai,j + ∆. The downstream learning task (e.g.,
low rank approximation), however, needs to take input
as matrix M where Mi,j = f(Ai,j) for some transfor-
mation function f (e.g., f(x) = log(|x|+ 1)).

A concrete example is word embedding in natural lan-
guage processing (NLP). Word embedding methods
aim to embed each word to a vector space. It be-
comes a basic building block in many modern NLP
systems. Many of these systems achieve the state of
the art performance on various tasks via word embed-
ding [PSM14, MSC+13, WSC+16]. A basic routine in
word embedding is to explicitly or implicitly perform

Sketching Transformed Matrices with Applications to Natural Language Processing

low rank approximation of an entry-wise transformed
matrix [LG14, LZM15]. For instance, the transforma-
tion is to apply a log likelihood function on each entry.
The matrix itself is the so-called co-occurrence count
matrix, which can be constructed by scanning the text
corpus, e.g., the entire Wikipedia database. This ma-
trix is usually of size millions by millions.

Similar examples include regressions on huge accumu-
lated datasets in economics [DVF13, Var14], where
different transformations on covariates are often used
to reduce biases. Other examples include visual fea-
ture extraction [BPL10], kernel methods [RR08], and
M -estimators [Zha97]. These large scale applications
make it impractical or hard to implement existing
methods, which keep the matrix in memory. Some
other approaches exploit the problem structure to get
around the huge space requirement. For instance,
some of them propose sequential models of the data,
and design online algorithms for computing the em-
beddings (e.g.,[MSC+13, BGJM16]). These methods,
however, are more task-specific and cannot be applied
to other tasks involving more general entrywise matrix
transformations.

In this paper, we show that learning based on trans-
formed large matrices is possible even when storing
such a matrix is not feasible. Our main contributions
are:

• For a general class of transformation function f ,
we provide an efficient one-pass matrix-product
sketch for computing the product of a given small
matrix B with the transformed matrix f(A) with
provable error bounds. This algorithm uses space
at most the size of the output. The method as-
sumes no statistical model about the updates and
can handle a general family of transformations. In
particular, these transformations include logarith-
mic functions and small degree polynomials. This
method can also be used as building blocks for
downstream tasks: any algorithm requires access
to the transformed matrix via a matrix product
can apply our algorithm to obtain space saving.

• We demonstrate the application of our algorithm
in a concrete task: low rank approximation. To
the best of our knowledge, our algorithm is the
first one that is able to compute low rank approx-
imation of large matrices under entrywise trans-
formations. We plug in our matrix product sketch
into known algorithms as black boxes. We pro-
vide theoretical analysis on the tradeoff between
the space and the accuracy of these algorithms.
We show that our algorithms are space efficient
and almost match the accuracy of using the full
matrix. These theoretical guarantees are comple-

mented by experiments for low rank approxima-
tion on synthetic and real data. The empirical
results show that our algorithm can reduce the
space usage by orders of magnitude while the er-
ror is almost the same as the optimum. We show
that our algorithms beat the baseline of using uni-
form sampling on columns of the transformed ma-
trix by a large margin. We also provide results on
linear regression in the appendix.

Road Map. We provide definitions and basic con-
cepts in Section 3. In Section 4, we introduce our
basic routine called the matrix product sketch. We use
our sketching algorithms to compute the low rank ap-
proximation of a transformed matrix in Section 5, and
the application on linear regression is in Appendix E.
In Section 6, we use numeric experiments to justify
our approach. The appendix provides a list of related
works, the complete proofs, details of the experiments,
and also additional theoretical and empirical results.

2 Related Work

There exists a large body of work on fast algorithms
for large scale matrices. Some are based on ran-
domized matrix algorithms and use techniques like
sampling and sketching; see [Mah11, Woo14] and the
reference therein. Some others are based on opti-
mization algorithms like Alternating Least Square and
Stochastic Gradient Descent and their variants; see
[ZWSP08, GNHS11] for some examples. However,
most existing approaches do not apply to the set-
tings considered in this paper. The closest work is
[WZ16], which considers low rank approximation of
the element-wise transformation of the sum of sev-
eral matrices located in different machines. This
distributed setting is different from our setting and
naively applying their algorithm will lead to a large
space cost. Furthermore, our sketching method can
be applied to learning tasks beyond low rank approx-
imation.

Our work is built on techniques from numerical lin-
ear algebra and streaming data analysis in the recent
decade. There are numerous research works along this
line. Here we list a few but far from exhaustive.

Low-rank approximation or matrix factorization of a
matrix is an important task in numerical linear al-
gebra. In this problem, we are given a n × d ma-
trix A and a parameter k, the goal is to find a
rank-k matrix Â so as to minimize the residual er-
ror ‖Â − A‖2

F , where the Frobenius norm is de-
fined as ‖A‖F = (

∑n
i=1
∑d
j=1 A

2
i,j)

1
2 . Note that an

optimal Â provides a good estimation to the lead-
ing eigenspace of the matrix A. Classical way of

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

speeding up low-rank approximation via sketching re-
quires showing two properties for sketching matrix:
subspace embedding [Sar06, LWW20, WW19] and
approximate matrix product [NN13, KN14]. Low-
rank approximation algorithm via combining those
two properties has been presented in several papers
[CW13, MM13, SWZ19b]. The classical sketching idea
is easy to be made a streaming algorithm, since we usu-
ally use linear sketching matrix, which we don’t need
to explicitly write down during the stream. However
none of these methods are applicable to our setting,
which is much harder than the classical streaming low-
rank approximation problem. This is mainly because
the transformation f that acts on an the matrix A
completely destroyes the linear algebraic property of
matrix A; see Appendix D for some discussions. The
storage of A can also be indefeasibly large to be stored
and apply the above mentioned methods.

Streaming algorithms have gained great progress since
its first systematic study by [AMS99]. Classic stream-
ing problems ask how to estimate a function over a
vector, which is under streaming updates. For in-
stance, [AMS99] approximates ‖v‖p while observing
a sequence of updates to the coordinates of v. The
usual assumption is that v ∈ Rn and n is so large that
v cannot be stored in memory easily. Since [AMS99],
a line of research works (e.g. [Ind00, IW05, BYKS02,
BKSV14, KNW10]) gradually improve the algorithm
and obtain nearly optimal upper and lower bounds.
Very recently, [BO10b, BO10a, BVWY17] attempts
to handle a more general set of functions. [BVWY17]
gives a nearly optimal characterization of this prob-
lem. [BBC+17] studies a more general setting, i.e.,
functions that do not have a summation structure
f : Rn → R. They give optimal characterization
for streaming all symmetric norms. Given theses ad-
vances, none of them solves our problem directly since
a streaming estimation only gives a value of vector,
that is unrelated to the matrix formulation of the in-
put.

3 Preliminaries

Notation. [n] denotes the set {1, 2, · · · , n}. For a
vector x ∈ Rn, |x| ∈ Rn denotes a vector whose i-th
entry is |xi|. For a matrix A ∈ Rn×n, let ‖A‖ de-
note its spectral norm, σi(A) to denote its i-th largest
singular value, and [A]k denote its best rank-k approx-
imation. Also let det(A) denote its determinant when
A is square. For a function f , M = f(A) means en-
trywise transformation Mij = f(Aij). We also denote
Ai∗ as the i-th row of matrix A and A∗j as its j-th
column.

Problem Definition. The problem of interests is de-

fined as follows. Suppose we have a underlying large
matrix A = (Ai,j) ∈ Rn×n initialized as a zero ma-
trix.1 Now, we have observed a sequence of updates
of the form 〈(i1, j1,∆1), (i2, j2,∆2), . . . , (im, jm,∆m)〉
for some m = poly(n), it, jt ∈ [n] and ∆t ∈ {−1, 1}.
At the t-th update, we are updating the underlying
matrix by ait,jt

← ait,jt
+ ∆t. We assume that m is

bounded by poly(n). Note that the assumptions of
integer updates is without loss of generality. For in-
stance, if the updates is not an integer, we can round
them to a specified precision ε > 0 and then scale
them to integers. The polynomially bounded length is
also a usual and reasonable assumption. At the end of
the stream, one would like to perform some learning
task (such as low-rank approximation) on the matrix
M = f(A) for some fixed function f : R → R and
would like to do so using as small space as possible,
in particular, avoid storing the large matrix A. Some
examples of the transformation functions are

f(x) = log(|x|+ 1), or f(x) = |x|α, ∀α ≥ 0. (1)

Functions of this form are important in machine learn-
ing. For example, f(x) = log(|x| + 1) corresponds
to the log likelihood function and f(x) = |x|α corre-
sponds to a general family of statistic models or feature
expansion.

In this paper we would like to design a space efficient
method for approximating Z = f(A)B for a given
matrix B, where f(A) ∈ Rn×n and B ∈ Rn×k for
some integer n and k with k � n. We would like
to design algorithms that uses space Õ(nk) instead of
Õ(n2). This can then be used as a plug-in primitive
and turn learning algorithms into space efficient ones
if they only access f(A) by matrix product with small
B. More formally,
Problem 3.1 (approximate transformed matrix and
matrix product). Given a fixed matrix B and function
f : R → R, design an algorithm that makes a single
pass over an update stream of a matrix A, output an
approximated value of f(A)B with high probability. We
require the algorithm to use as small space as possible
(without counting the space of B).

We call our method the sketch for f -matrix product.
We then demonstrate its effectiveness in the appli-
cations of linear regression and low rank approxima-
tion on M = f(A). Linear regression is to minimize
‖Mx− b‖2

2, and low rank approximation is defined as
follows.
Problem 3.2 (low-rank approximation). Given in-
tegers k ≤ n, an n × n matrix M , two parameters

1Our method also applies to non-square A; we consider
square matrices for simplicity.

Sketching Transformed Matrices with Applications to Natural Language Processing

ε, δ > 0, the goal is to output an orthonormal n × k
matrix L such that

‖LL>M −M‖2
F ≤ (1 + ε)‖M − [M]k‖2

F + δ.

where [M]k = arg minrank−k M ′ ‖M −M ′‖2
F .

4 Sketch for f-Matrix Product

Our goal in this section is to compute the matrix prod-
uct f(A)B whereB is given and A is under updating or
can only be read entry by entry. We observe that each
entry of Z = f(A)B can be written as a vector prod-
uct: Zi,j = 〈f(A)i∗, B∗j〉. Thus, we will first design
a primitive to compute each Zi,j using small space.
Running a primitive in parallel for each entry Zi,j re-
sults in our full algorithm for computing the matrix
product. In the following sections, we will first intro-
duce the vector sketch problem and present our vector
product primitives for different functions f . Lastly,
we will combine them to form a unified algorithm for
matrix product.

4.1 Sketch for f-Vector Product

Recall that for given vectors x, y ∈ Rn, the inner prod-
uct is defined as 〈x, y〉 =

∑n
i=1 xiyi. In our setting, we

are also given a function f : R → R and a vector
x ∈ Rn where the storage of x is free, but not directly
given y. The f -vector product is defined as 〈x, f(y)〉,
where f is applied to y coordinate-wisely. The up-
dates to y is a stream, i.e., we observe a sequence of
integer pairs (zt,∆t) for t = 1, 2, . . . ,m, where each
zt ∈ [n] and ∆t ∈ {−1, 1}. Thus, we initialize y as a
y(0) ← 0, a zero-vector, and at time t, the update to
y is described by y(t) ← y(t−1) + ∆zt

· ezt
where ezt

is the standard unit vector with only the zt-th coor-
dinate non-zero. Our goal is to approximate 〈x, f(y)〉
without storing y, where x is given to the algorithm
without storage cost. Formally, we define the following
problem.
Problem 4.1 (approximate transformed vector and
vector inner product). Given a fixed vector x and func-
tion f : R→ R, design an algorithm that makes a sin-
gle pass over an update stream of a vector y, output
an approximated value of 〈f(y), x〉 with high probabil-
ity. We require the algorithm to use as small space as
possible (excluding the space of x).

We note that a naive algorithm would be storing the
vector y as a whole. However such an algorithm is not
feasible when n is large or the demand of computing
such inner products is too high (e.g., in our matrix
applications for computing Z = f(A)B ∈ Rn×k, each
entry of Z is an inner product. If each inner prod-
uct requires space n, then final space can be O(n2k)

which is prohibitively high.). In Section 4.2 below, we
design an algorithm that accomplish this task for func-
tion f(y) = log(|y| + 1), which only uses Õ(1) bits of
memory. In Section B.3, we present a general frame-
work that works for a general family of functions f
with nearly optimal space complexity.

4.2 Sketch log(| · |+ 1)-Vector Product

Algorithm 1
1: data structure LogSum . Theorem 4.2
2: procedure Initialize(x)
3: γ ← ε−2 poly(logn/δ)
4: t← Θ(logn), pj ← 2−j · γ,∀j ∈ [t]
5: for j = 1→ t do
6: Sample a logn-wise independent hash func-

tion hj : [n] → {0, 1} such that ∀i ∈ [n] :
Pr[hj(i) = 1] = min(pj , 1).

7: Sample a K-set structure KSetj with
error parameter Θ(δ/t) and memory budget
ε−2 poly(logn/δ)

8: end for
9: end procedure

10: procedure Update(a) . a ∈ [n]
11: for j = 1→ t do
12: if hj(a) = 1 and xa 6= 0 then
13: KSetj .update(a)
14: end if
15: end for
16: end procedure
17: procedure Query()
18: Pick the largest j such that KSetj does not

return “Fail”
19: Let v be the output of KSetj , denote Sj =

supp(v)
20: return 2j

∑
i∈Sj

xi log(|vi|+ 1)
21: end procedure
22: end data structure

Recall that, when f(·) = log(| · | + 1), we are de-
signing an algorithm for computing the inner product
〈log(|y|+ 1), x〉, where x, y ∈ Rn are two vectors, x is
given to the algorithm for free and y is under updating.
Our full algorithm is Algorithm 1, which is composed
of 3 sub-procedures: procedure Initialize is called on
initialization with given vector x, procedure Update
is called when we go over the update stream of the
vector y, and procedure Query is called at the end
to report the answer. The detailed analysis of Algo-
rithm 1, can be found in Appendix B. We here sketch
the high level ideas for how it works. For ease of repre-
sentation, we consider x has no zero coordinates, since
otherwise we can simply ignore these coordinates and
change our universe [n] to supp(x) accordingly. Our
algorithm is originated from [BO10b] but it is much

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

simplified in this paper. From a high level, our algo-
rithm can be viewed as an `0-sampler, namely, sample
uniformly at random from the support of an updating
vector y. Note that the support of y is changing over
time. Thus it is non-trivial to maintain a uniform sam-
ple while using only small space. We also note that it
is necessary to sample coordinates from the support
of y, since otherwise we can always construct worst-
case examples for algorithms that sample coordinates
uniformly from [n].

We design our algorithm thus by maintaining inde-
pendently Θ(logn) many sub-vectors of the vector y.
Each sub-vector is generated by sampling a set of coor-
dinates uniformly from [n] with geometrically decreas-
ing probabilities. For instance, in our algorithm, we
first generate Θ(logn) many hash functions, each de-
fines a set Sj ⊂ [n]. For each i ∈ [n], we demand that
i ∈ Sj with probability 2−j . Thus if the size of the
support of y is of order Θ(2j), then we are expected
to sample Θ(1) samples of y using the set Sj . We now
describe how to maintain these sampled coordinates in
memory. For convinience we assume γ = 1 in line 3 in
Algorithm 1.

For the case of insertion-only stream (once a coordi-
nate of y becomes larger than 0, it stays so), maintain-
ing the sub-vector ySj

is a trivial task since the number
of coordinates of ySj

is expected to be O(1). However,
for j′ ≤ j, the sub-vectors ySj′ s contain too many co-
ordinates. We handle this quite straightforwardly: if
any of them exceeds our memory budget, we just ig-
nore them. For the case of general stream, in which
coordinates can be 0 even they were non-zero at some
time-point. We will be using the K-set data structure
presented in [Gan07]. This data structure supports in-
sertion and deletion of data points and can maintain
the samples only if the number of final samples is un-
der the memory budget. The formal guarantee of the
K-set data structure presented in Theorem B.1.

Suppose now we have collected sufficiently many sam-
ples from the support of the vector y. Suppose the
set of samples is collected using set Sj . We can
have an empirical estimator for the inner product as
2j
∑
i∈Sj

xi log(|yi|+ 1). Notice that this estimator is
unbiased. Also since the variance of the estimator is
bounded by

∑

i

2jx2
i log2(|yi|+ 1)

= O(1) · ‖x‖2
∞ ·
∑

i

log2(|yi|+ 1) · log2 m,

where m is the length of the stream and is usually
assumed to be of oder poly(n), thus we only need
poly logn samples to obtain an accurate estimation.

We summarize the main guarantee in the following the-
orem, while the formal proof can be found in Section B.
Theorem 4.2 (approximate inner product of trans-
formed vector and vector). Suppose vector x ∈ Rn is
given without memory cost. There exists a streaming
algorithm (data structure LogSum in Algorithm 1)
that makes a single pass over the stream updates to
a vector y ∈ Rn and outputs Z ∈ R, such that, with
probability at least 1− δ,

|Z − 〈x, log(|y|+ 1)〉| ≤ ε · ‖x‖∞ ·
n∑

i=1
log(|yi|+ 1).

The algorithm uses space O(ε−2 poly(log(n/δ))) (ex-
cluding the space of x) has a poly(logn, 1/ε) query
time.
Remark 4.3. We also note that our algorithm nat-
urally works for f(y) := logc(|y| + 1) for any con-
stant c. To modify our algorithm, we only need to keep
slightly larger space and change the final estimation to
be 2j

∑
i∈Sj

xi logc(|vi| + 1). It also enjoys the same
relative error guarantee in Theorem 4.2.

4.3 From Vector Product Sketch to Matrix
Product Sketch

With the f -inner product sketch tools established, we
are now ready to present the result for sketching the
matrix product, Z = f(A)B. Notice that each entry
Zi,j := 〈f(Ai), Bj〉 is an inner product.

Thus our algorithm for the matrix sketch is simply
maintaining an f -inner product sketch for each Zi,j . In
our algorithm, we assume that matrix B is given to the
algorithm for free. Thus, if B ∈ Rn×k for some k �
n, we only need to keep up to Õ(nk) vector product
sketches, which cost in total Õ(nk) words of space. For
the ease of representation, we present our guarantee
for matrix product for f(z) := logc(|z| + 1) for some
c or for f(z) = zp for 0 ≤ p ≤ 2, and for matrix
B ∈ {−1, 0, 1}n×k. Our results can be generalized to
a more general set of functions and matrix B using
the results presented in Section B.3. The proof of the
following theorem is a straightforward application of
Theorem 4.2 and B.2.
Theorem 4.4 (approximate each coordinate of
the transformed matrix). Given a matrix B ∈
{−1, 0, 1}n×k, and a function f(x) := logc(|x| + 1)
for some c or f(x) := |x|p for some 0 ≤ p ≤ 2, then
there exists a one-pass streaming algorithm that makes
a single pass over the stream updates to an underlying
matrix A ∈ Rn and outputs a matrix Ẑ, such that,
with probability at least 1− δ, for all i, j,

|Ẑi,j − Zi,j | ≤ ε
n∑

j′=1
f(|Ai,j′ |).

Sketching Transformed Matrices with Applications to Natural Language Processing

The algorithm uses space ε−2nk poly(log(n/δ)) and
has an nk poly(logn, 1/ε) query time.
Remark 4.5. We note that our sketch in the last the-
orem can be easily used to approximate the 2-norm of
each row of the matrix f(A). In this case, we simply
choose B ∈ Rn×1 as the all-1 vector and change f(·)
to be f2(·). For f(x) = poly log(|x|+1) or f(x) = |x|p
with 0 ≤ p ≤ 1, it can be easily verify that our out-
put is a (1 ± ε) approximation to f2(A) · 1, hence the
approximation of 2-norm squared of each row of f(A).

5 Application to Low Rank
Approximation

This section considers the concrete application of rank-
k approximation for M where Mi,j = log(|Ai,j | + 1),
i.e., finding k orthonormal vectors L such that ‖M −
LL>M‖F is minimized. Our algorithm for rank-k ap-
proximation is presented in Algorithm 2. Low rank
approximation for other functions f follows the same
algorithm and similar analysis.

There exists a large body of work for low rank ap-
proximation (see, e.g., [HMT11, DMIMW12, Woo14,
CW13, MM13, NN13, CW15, RSW16, SWZ17,
CGK+17, SWZ18, BW18, KPRW19, SWZ19a,
SWZ19b, SWZ19c, Son19, BBB+19, DJS+19,
BCW19, IVWW19, BWZ19] and references therein)
but most of them are designed for the case without
transformation and thus cannot be directly applied.
As mentioned in previous sections, if an algorithm
only accesses the transformed matrix via a matrix
product, plugging in our sketching method leads
to a suitable algorithm. We design an algorithm
that applies generalized leverage score sampling
approach [DMIMW12, BLS+16] for low-rank approx-
imation. Leverage score sampling is a non-oblivious
sketching technique that is widely used in numerical
linear algebra and has been successfully applied to
speed up different problems such as linear regression
[CW13, PSW17, AKK+17, SWZ19b, DSWY19],
row sampling [SS11, LMP13], spectral approx-
imation [CLM+15], low rank approximation
[BW14, SWZ17, SWZ19b], cutting plane meth-
ods [Vai89, LSW15, JLSW20], linear programming
[BLSS20], computing John Ellipsoid [CCLY19].
From the perspective of graph problems, leverage
score is closely related to random spanning tree
[Sch18, KS18], graph sparsification and Laplacian
system solver [ST04, SS11, BSS12]. Readers may
refer to Appendix C.1 for more detailed discussion on
leverage score sampling.

On a high level, we would like to sample matrix M ∈
Rn×n according to its leverage scores. It turns out it
is sufficient to use the leverage scores of SM where S

is a sketching matrix. We apply Algorithm 1 to do
so and obtain the sampled set P (Step 1). We then
apply the technique of adaptive sampling to refine the
sampling and obtain Y (Step 2) so that we have better
control over the rank, and finally compute the solution
using Y by taking projection and computing singular
vectors (Step 3). Detailed description and analysis of
Algorithm 2 can be found in Appendix C. Overall we
have the following guarantee.
Theorem 5.1 (low-rank approximation). For any pa-
rameter ε ∈ (0, 1) and integer k ≥ 1, there is an algo-
rithm (procedure LowRankApprox in Algorithm 2)
that runs in Õ(n)·k3 ·poly(1/ε) time, takes Õ(n)·k3/ε2

spaces, and outputs a matrix L ∈ Rn×k such that

‖LL>M −M‖2
F ≤ 10 · ‖M − [M]k‖2

F

+O

(
ε2

k3 log5 k

)
· ‖M‖2

1,2,

holds with probability at least 9/10, where ‖M‖1,2 =
(
∑
j ‖M∗,j‖2

1)1/2.

For a large n and fixed ε, our algorithm uses much
less space than storing the full matrix. Note that our
algorithm still needs to make several passes over the
stream of updates. Whether there exists a one-pass
algorithm is still an open problem, and is left for future
work.

6 Experiments

To demonstrate the advantage of our proposed
method, we complement the theoretical analysis with
empirical study on synthetic and real data. We con-
sider the low rank approximation task with f(x) =
log(|x| + 1). We adjust the constant factors in the
amount of space used by our method and compare the
errors of the obtained solutions. In the appendix, we
describe more experimental details. We also provide
additional experiments in the appendix to show that
the method also works for f(x) =

√
|x|.

We furthre demonstrate the robustness of the param-
eter selections in the algorithm.

Setup. Given a data stream in the form of (it, jt, δt),
we use the algorithm in Section 5 to compute the top
k = 10 singular vectors L, and then compare the er-
ror of this solution to the error of the optimal solution
(i.e., the true top k singular vectors). Let A denote
the accumulated matrix, M = f(A) denote the trans-
formed one, and U denote the top k singular vectors
of M . Then the evaluation criterion is

error-ratio(L) = ‖M − LL>M‖F /‖M − UU>M‖F .
Clearly, the error ratio is at least 1, and a value closer
to 1 means a better solution.

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

Algorithm 2 Low rank approximation of M = log(|A|+ 1)
1: procedure LowRankApprox(A, k, ε) . Theorem 5.1
2: s← O(k log k)
3: d1 ← O(k log2 k)
4: d2 ← O(k/ε)
5: η ← O(ε

√
d1 + ε2d1)

6: . Step 1 : Sampling according to generalized leverage scores of M
7: Let S be the CountSketch (SparesJL) matrix of size s× n . Appendix A.1
8: Let S+ and S− be its positive and negative parts of S.
9: R← [S+;S−]

10: Ẽ ← LogSum(RM) . ‖Ẽi‖2
2 = (1± ε)‖(RM)i‖2,∀i

11: Sample a set P of d1 columns of M according to the leverage score of Ẽ. . Definition C.2
12: . Step 2 : Adaptive sampling
13: [Qp, ·]← QRFactorization(P) . Qp is the basis vectors for P
14: Γ̃← LogSum(Q>pM) . ‖Γ̃i‖2

2 = (1± ε)‖(Q>pM)i‖2
2,∀i

15: z̃ ← LogSum(M) . z̃i = (1± ε)‖Mi‖2
2,∀i

16: s̃i ← z̃i − ‖Γ̃i‖2
2

17: Sample a set Ỹ of d2 columns from M according to pi = max(s̃i, ηz̃i)
18: Y ← Ỹ ∪ P
19: . Step 3 : Computing approximation solutions
20: [Qy, ·]← QRFactorization(Y) . Qy is the basis vectors for Y
21: Π̃← LogSum(Q>yM) . ‖Π̃i‖2

2 = (1± ε2)‖(Q>yM)i‖2
2,∀i

22: Compute the top k singular vectors W̃ of Π̃
23: L← QyW̃
24: return L
25: end procedure

0 0.05 0.1 0.15 0.2

Space used / total space of the matrix

1

2

3

4

5

E
rr

o
r

ra
ti
o

Uniform sampling

Ours

(a) LogData, n = 104

0 0.05 0.1 0.15 0.2

Space used / total space of the matrix

1

2

3

4

5

(b) LogData, n = 3 · 104

0 0.02 0.04 0.06 0.08 0.1 0.12

Space used / total space of the matrix

1

2

3

4

5

(c) LogData, n = 5 · 104

0 0.05 0.1 0.15 0.2

Space used / total space of the matrix

1

2

3

4

5

E
rr

o
r

ra
ti
o

Uniform sampling

Ours

(d) Real data, n = 104

0 0.05 0.1 0.15 0.2

Space used / total space of the matrix

1

2

3

4

5

(e) Real data, n = 3 · 104

0 0.02 0.04 0.06 0.08 0.1 0.12

Space used / total space of the matrix

1

2

3

4

5

(f) Real data, n = 5 · 104

Figure 1: Error ratios on the synthetic data (top row) and the real data (bottom row). The x-axis is the ratio between
the amount of space used by the algorithms and the total amount of space occupied by the data matrix. The y-axis is
the ratio between the error of the solutions output by the algorithms and the optimal error.

Sketching Transformed Matrices with Applications to Natural Language Processing

Besides demonstrating the effectiveness, we also exam
the tradeoff between the solution quality and the space
used. Recall that there are constant parameters in
the sketching methods controlling the amount of space
used. We vary its value, and set the parameters in
other steps of our algorithm so that the amount of
space used is dominated by that of the sketch. We
then plot how the error ratios change with the amount
of space used. The plotted results are averages of 5
runs; the variances are too small to plot. Finally, we
also report the results of a baseline method: uniformly
at random sample a subset T of columns from A, and
then compute the top k singular vectors of f(T). The
space occupied by the columns sampled is similar to
the space required by our algorithm for fair compari-
son. We choose uniform sampling as baseline because
to the best of the authors’ knowledge, our algorithm is
the first one to deal with low-rank approximation on
transformed matrix in the stream setting, and we are
not aware of any other non-trivial algorithm working
in this setting.

6.1 Synthetic Data

Data Generation. The data sets LogData are
generated as follows. First generate a matrix M of
n× n where the entries are i.i.d. Gaussians. To break
the symmetry of the columns, we scale the norm of
the i-th column to 4/i. Finally, we generate matrix A
with Aij = exp(Mij) − 1. Each entry Aij is divided
into equally into 5 updates (i, j, Aij/5), and all the
updates arrive in a arbitrary order. The size n can be
10000, 30000, and 50000.

Parameter Setting. In our algorithm for low rank
approximation, an FJLT matrix S is used [Ach03,
AC06]. For the sketching subroutine, instead of spec-
ifying the desired ε, we directly set the size of the
data structure (line 19 in LogSum), so as to exam
the tradeoff between space and accuracy. We set
mc = ms = ma and set their value so that the space
used is at most that used by the sketch method.

Results. Figure 1 top row shows the results on the
synthetic data. In general, the error ratio of our
method is much better than that of the uniform sam-
pling baseline: ours is close to 1 while that of uniform
sampling is about 4. It also shows that our method
can greatly reduce the amount of space needed, e.g.,
by orders of magnitude, but still preserve a good solu-
tion. This advantage is more significant on larger data
sets. For example, when n = 50000, to obtain 5% er-
ror over the optimum solution, we only needs space
corresponding to 5% of the size of the matrix.

6.2 Real Data

We experiment our method on the real world data from
NLP applications, which are the motivating examples
for our approach. Our method with f(x) = log(|x|+1)
is used. The parameters are set in a similar way as for
the synthetic data.

Data Collection. The data set is the entire
Wikipedia corpus [Wik12] consisting of about 3 bil-
lion tokens. Details can be found in the appendix and
only a brief description is provided here. The matrix
to be factorized is M with Mij = pj log(NijN

NiNj
+ 1)

where Nij is the number of times words i and j co-
occur in a window of size 10, Ni is the number of times
word i appears, N is the total number of words in the
corpus, and pj is a weighting factor depending on Nj
(putting larger weights on more frequent words). Note
that Ni’s and N can be computed easily, so essentially
the only dynamically update part is logNij . The data
stream is generated by considering each window of size
10 along the sentences in the corpus and collecting the
co-occurrence counts of the word pairs in that window.
We consider the matrix for the most frequent n words,
where n = 10000, 30000, and 50000.

Results. Figure 1 bottom row shows the results on
the real data. The observations are similar to those on
the synthetic data: the errors of our method are much
smaller than the baseline, and are close to the opti-
mum. These results again demonstrate the accuracy
and space efficiency of our methods.

7 Conclusions

We considered the setting where a large matrix is up-
dated by a data stream and the learning tasks is per-
formed on an element-wise transformation of the ma-
trix. We proposed a method for computing the prod-
uct of its element-wise transformation with another
given matrix. For a large family of transformations,
our method only needs a single pass over the data and
provable guarantees on the error. Our method uses
much smaller space than directly storing the matrix.
Our approach can be used as a building block for many
learning tasks. We provided a concrete application for
low-rank approximation with theoretical analysis and
empirical verification, showing the effectiveness of this
approach.

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

References

[AC06] Nir Ailon and Bernard Chazelle. Ap-
proximate nearest neighbors and the
fast johnson-lindenstrauss transform. In
Proceedings of the thirty-eighth annual
ACM symposium on Theory of comput-
ing (STOC), pages 557–563. ACM, 2006.

[Ach03] Dimitris Achlioptas. Database-
friendly random projections: Johnson-
lindenstrauss with binary coins. Journal
of computer and System Sciences,
66(4):671–687, 2003.

[AKK+17] Naman Agarwal, Sham Kakade, Rahul
Kidambi, Yin Tat Lee, Praneeth Ne-
trapalli, and Aaron Sidford. Lever-
age score sampling for faster acceler-
ated regression and erm. arXiv preprint
arXiv:1711.08426, 2017.

[ALS+18] Alexandr Andoni, Chengyu Lin, Ying
Sheng, Peilin Zhong, and Ruiqi Zhong.
Subspace embedding and linear regres-
sion with orlicz norm. In ICML. arXiv
preprint arXiv:1806.06430, 2018.

[AMS99] Noga Alon, Yossi Matias, and Mario
Szegedy. The space complexity of
approximating the frequency moments.
Journal of Computer and system sci-
ences, 58(1):137–147, 1999.

[And17] Alexandr Andoni. High frequency mo-
ments via max-stability. In Acoustics,
Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on,
pages 6364–6368. IEEE, 2017.

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl
Bringmann, Pavel Kolev, Euiwoong Lee,
and David P Woodruff. A ptas for `p-low
rank approximation. In Proceedings of
the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages
747–766. SIAM, 2019.

[BBC+17] Jaroslaw Blasiok, Vladimir Braver-
man, Stephen R Chestnut, Robert
Krauthgamer, and Lin F Yang. Stream-
ing symmetric norms via measure con-
centration. In Proceedings of the
49th Annual Symposium on the Theory
of Computing(STOC). ACM, https://
arxiv.org/pdf/1511.01111, 2017.

[BCW19] Ainesh Bakshi, Nadiia Chepurko, and
David P Woodruff. Robust and sam-
ple optimal algorithms for psd low-
rank approximation. arXiv preprint
arXiv:1912.04177, 2019.

[BCWY16] Vladimir Braverman, Stephen R Chest-
nut, David P Woodruff, and Lin F Yang.
Streaming space complexity of nearly all
functions of one variable on frequency
vectors. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Sys-
tems (PODS), pages 261–276. ACM,
2016.

[BGJM16] Piotr Bojanowski, Edouard Grave,
Armand Joulin, and Tomas Mikolov.
Enriching word vectors with sub-
word information. arXiv preprint
arXiv:1607.04606, 2016.

[BKSV14] Vladimir Braverman, Jonathan Katz-
man, Charles Seidell, and Gregory Vor-
sanger. An optimal algorithm for large
frequency moments using o (nˆ(1-2/k))
bits. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 28.
Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014.

[BLS+16] Maria Florina Balcan, Yingyu Liang,
Le Song, David Woodruff, and Bo Xie.
Communication efficient distributed ker-
nel principal component analysis. In
Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, 2016.

[BLSS20] Jan van den Brand, Yin Tat Lee,
Aaron Sidford, and Zhao Song. Solv-
ing tall dense linear programs in nearly
linear time. In 52nd Annual ACM
SIGACT Symposium on Theory of Com-
puting (STOC). https://arxiv.org/
pdf/2002.02304.pdf, 2020.

[BO10a] Vladimir Braverman and Rafail Os-
trovsky. Recursive sketching for fre-
quency moments. arXiv preprint
arXiv:1011.2571, 2010.

[BO10b] Vladimir Braverman and Rafail Ostro-
vsky. Zero-one frequency laws. In Pro-
ceedings of the forty-second ACM sympo-
sium on Theory of computing (STOC),
pages 281–290. ACM, 2010.

Sketching Transformed Matrices with Applications to Natural Language Processing

[BPL10] Y-Lan Boureau, Jean Ponce, and Yann
LeCun. A theoretical analysis of feature
pooling in visual recognition. In Proceed-
ings of the 27th international conference
on machine learning (ICML-10), pages
111–118, 2010.

[BSS12] Joshua Batson, Daniel A Spielman, and
Nikhil Srivastava. Twice-ramanujan
sparsifiers. In SIAM Journal on Com-
puting, volume 41(6), pages 1704–
1721. https://arxiv.org/pdf/0808.
0163, 2012.

[BVWY17] Vladimir Braverman, Emanuele Viola,
David P. Woodruff, and Lin F. Yang.
Revisiting frequency moment estimation
in random order streams. In Manuscript,
2017.

[BW14] Christos Boutsidis and David P
Woodruff. Optimal cur matrix
decompositions. In Proceedings
of the 46th Annual ACM Sym-
posium on Theory of Computing
(STOC), pages 353–362. ACM,
https://arxiv.org/pdf/1405.7910,
2014.

[BW18] Ainesh Bakshi and David Woodruff.
Sublinear time low-rank approximation
of distance matrices. In Advances in
Neural Information Processing Systems,
pages 3782–3792, 2018.

[BWZ19] Frank Ban, David Woodruff, and
Richard Zhang. Regularized weighted
low rank approximation. In Advances in
Neural Information Processing Systems,
pages 4061–4071, 2019.

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and
D Sivakumar. Reductions in stream-
ing algorithms, with an application
to counting triangles in graphs. In
Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete al-
gorithms, pages 623–632. Society for
Industrial and Applied Mathematics,
2002.

[CCLY19] Michael B Cohen, Ben Cousins, Yin Tat
Lee, and Xin Yang. A near-optimal algo-
rithm for approximating the John ellip-
soid. In Annual Conference on Learning
Theory (COLT). https://arxiv.org/
pdf/1905.11580.pdf, 2019.

[CEM+15] Michael B Cohen, Sam Elder, Cameron
Musco, Christopher Musco, and
Madalina Persu. Dimensionality re-
duction for k-means clustering and low
rank approximation. In Proceedings
of the Forty-Seventh Annual ACM on
Symposium on Theory of Comput-
ing (STOC), pages 163–172. ACM,
https://arxiv.org/pdf/1410.6801,
2015.

[CGK+17] Flavio Chierichetti, Sreenivas Gollapudi,
Ravi Kumar, Silvio Lattanzi, Rina Pan-
igrahy, and David P Woodruff. Algo-
rithms for `p low rank approximation. In
ICML. arXiv preprint arXiv:1705.06730,
2017.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron
Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sam-
pling for matrix approximation. In Pro-
ceedings of the 2015 Conference on Inno-
vations in Theoretical Computer Science
(ITCS), pages 181–190. ACM, https:
//arxiv.org/pdf/1408.5099, 2015.

[CW13] Kenneth L. Clarkson and David P.
Woodruff. Low rank approxima-
tion and regression in input sparsity
time. In Symposium on Theory of
Computing Conference (STOC), pages
81–90. https://arxiv.org/pdf/1207.
6365, 2013.

[CW15] Kenneth L Clarkson and David P
Woodruff. Input sparsity and hard-
ness for robust subspace approximation.
In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science
(FOCS), pages 310–329. IEEE, https:
//arxiv.org/pdf/1510.06073, 2015.

[CWW19] Kenneth L. Clarkson, Ruosong Wang,
and David P Woodruff. Dimensionality
reduction for tukey regression. In ICML.
arXiv preprint arXiv:1904.05543, 2019.

[DJS+19] Huaian Diao, Rajesh Jayaram, Zhao
Song, Wen Sun, and David P. Woodruff.
Optimal sketching for kronecker product
regression and low rank approximation.
In NeurIPS, 2019.

[DMIMW12] Petros Drineas, Malik Magdon-Ismail,
Michael Mahoney, and David Woodruff.
Fast approximation of matrix coherence
and statistical leverage. The Journal of

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

Machine Learning Research, 13(1):3475–
3506, 2012.

[DRVW06] Amit Deshpande, Luis Rademacher,
Santosh Vempala, and Grant Wang. Ma-
trix approximation and projective clus-
tering via volume sampling. In Pro-
ceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm,
pages 1117–1126. Society for Industrial
and Applied Mathematics, 2006.

[DSSW18] Huaian Diao, Zhao Song, Wen Sun, and
David P. Woodruff. Sketching for kro-
necker product regression and p-splines.
In AISTATS, 2018.

[DSWY19] Huaian Diao, Zhao Song, David P.
Woodruff, and Xin Yang. Total least
squares regression in input sparsity time.
In NeurIPS, 2019.

[DV06] Amit Deshpande and Santosh Vempala.
Adaptive sampling and fast low-rank
matrix approximation. In Approxima-
tion, Randomization, and Combinato-
rial Optimization. Algorithms and Tech-
niques, pages 292–303. Springer, 2006.

[DVF13] Debbie J Dupuis and Maria-Pia
Victoria-Feser. Robust vif regression
with application to variable selection in
large data sets. The Annals of Applied
Statistics, 7(1):319–341, 2013.

[FT07] Shmuel Friedland and Anatoli Torokhti.
Generalized rank-constrained matrix ap-
proximations. SIAM Journal on Matrix
Analysis and Applications, 29(2):656–
659, 2007.

[Gan07] Sumit Ganguly. Counting distinct items
over update streams. Theoretical Com-
puter Science, 378(3):211–222, 2007.

[GL16] Aditya Grover and Jure Leskovec.
node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd
ACM SIGKDD international conference
on Knowledge discovery and data min-
ing, pages 855–864. ACM, 2016.

[GNHS11] Rainer Gemulla, Erik Nijkamp, Peter J
Haas, and Yannis Sismanis. Large-scale
matrix factorization with distributed
stochastic gradient descent. In Proceed-
ings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discov-
ery and data mining, pages 69–77. ACM,
2011.

[HMT11] Nathan Halko, Per-Gunnar Martinsson,
and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic al-
gorithms for constructing approximate
matrix decompositions. SIAM review,
53(2):217–288, 2011.

[Ind00] Piotr Indyk. Stable distributions, pseu-
dorandom generators, embeddings and
data stream computation. In Proceed-
ings. 41st Annual Symposium on Foun-
dations of Computer Science (FOCS),
pages 189–197. IEEE, 2000.

[IVWW19] Piotr Indyk, Ali Vakilian, Tal Wagner,
and David Woodruff. Sample-optimal
low-rank approximation of distance ma-
trices. arXiv preprint arXiv:1906.00339,
2019.

[IW05] Piotr Indyk and David Woodruff. Op-
timal approximations of the frequency
moments of data streams. In Pro-
ceedings of the thirty-seventh annual
ACM symposium on Theory of comput-
ing (STOC), pages 202–208. ACM, 2005.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song,
and Sam Chiu-wai Wong. An improved
cutting plane method for convex opti-
mization, convex-concave games and its
applications. In STOC, 2020.

[KBV09] Y Koren, R Bell, and C Volinsky. Ma-
trix factorization techniques for recom-
mender systems. Computer (IEEE) 42
(8): 30-37., 2009.

[KN14] Daniel M Kane and Jelani Nel-
son. Sparser johnson-lindenstrauss
transforms. In Journal of the ACM
(JACM), volume 61(1), page 4.
https://arxiv.org/pdf/1012.1577,
2014.

[KNW10] Daniel M Kane, Jelani Nelson, and
David P Woodruff. On the exact space
complexity of sketching and streaming
small norms. In Proceedings of the
twenty-first annual ACM-SIAM sympo-
sium on Discrete Algorithms (SODA),
pages 1161–1178. Society for Industrial
and Applied Mathematics, 2010.

[KPRW19] Ravi Kumar, Rina Panigrahy, Ali
Rahimi, and David Woodruff. Faster al-
gorithms for binary matrix factorization.
In International Conference on Machine
Learning, pages 3551–3559, 2019.

Sketching Transformed Matrices with Applications to Natural Language Processing

[KS18] Rasmus Kyng and Zhao Song. A matrix
chernoff bound for strongly rayleigh dis-
tributions and spectral sparsifiers from
a few random spanning trees. In
FOCS. https://arxiv.org/pdf/1810.
08345, 2018.

[Lat05] Rafa l Lata la. Some estimates of
norms of random matrices. Proceedings
of the American Mathematical Society,
133(5):1273–1282, 2005.

[LG14] Omer Levy and Yoav Goldberg. Neu-
ral word embedding as implicit matrix
factorization. In Advances in neural in-
formation processing systems, 2014.

[LHW17] Xingguo Li, Jarvis Haupt, and David
Woodruff. Near optimal sketching of
low-rank tensor regression. In Advances
in Neural Information Processing Sys-
tems, pages 3466–3476, 2017.

[LMP13] Mu Li, Gary L. Miller, and Richard
Peng. Iterative row sampling. In 54th
Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013,
26-29 October, 2013, Berkeley, CA,
USA, pages 127–136. https://arxiv.
org/pdf/1211.2713, 2013.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam
Chiu-wai Wong. A faster cutting plane
method and its implications for combi-
natorial and convex optimization. In
56th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS),
pages 1049–1065. https://arxiv.org/
pdf/1508.04874.pdf, 2015.

[LWW20] Yi Li, Ruosong Wang, and David P.
Woodruff. Tight bounds for the sub-
space sketch problem with applications.
In SODA, 2020.

[LZM15] Shaohua Li, Jun Zhu, and Chunyan
Miao. A generative word embedding
model and its low rank positive semidef-
inite solution. In Proceedings of the
2015 Conference on Empirical Methods
in Natural Language Processing, pages
1599–1609, Lisbon, Portugal, Septem-
ber 2015. Association for Computational
Linguistics.

[Mah11] Michael Mahoney. Randomized algo-
rithms for matrices and data. Founda-
tions and Trends R© in Machine Learn-
ing, 3(2):123–224, 2011.

[MM13] Xiangrui Meng and Michael W Ma-
honey. Low-distortion subspace embed-
dings in input-sparsity time and applica-
tions to robust linear regression. In Pro-
ceedings of the forty-fifth annual ACM
symposium on Theory of computing
(STOC), pages 91–100. ACM, https:
//arxiv.org/pdf/1210.3135, 2013.

[MS04] Yun Mao and Lawrence K Saul. Model-
ing distances in large-scale networks by
matrix factorization. In Proceedings of
the 4th ACM SIGCOMM conference on
Internet measurement, pages 278–287.
ACM, 2004.

[MSA+11] Jean-Baptiste Michel, Yuan Kui Shen,
Aviva Presser Aiden, Adrian Veres,
Matthew K Gray, Joseph P Pick-
ett, Dale Hoiberg, Dan Clancy, Peter
Norvig, Jon Orwant, et al. Quantitative
analysis of culture using millions of digi-
tized books. science, 331(6014):176–182,
2011.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and
phrases and their compositionality. In
Advances in Neural Information Pro-
cessing Systems, 2013.

[MZ10] Lingsheng Meng and Bing Zheng. The
optimal perturbation bounds of the
moore–penrose inverse under the frobe-
nius norm. Linear Algebra and its Ap-
plications, 432(4):956–963, 2010.

[NN13] Jelani Nelson and Huy L Nguyên. Os-
nap: Faster numerical linear algebra al-
gorithms via sparser subspace embed-
dings. In 2013 IEEE 54th Annual
Symposium on Foundations of Com-
puter Science (FOCS), pages 117–126.
IEEE, https://arxiv.org/pdf/1211.
1002, 2013.

[PPP06] V Paul Pauca, Jon Piper, and Robert J
Plemmons. Nonnegative matrix factor-
ization for spectral data analysis. Linear
algebra and its applications, 416(1):29–
47, 2006.

[PSM14] Jeffrey Pennington, Richard Socher, and
Christopher D Manning. Glove: Global
vectors for word representation. Proceed-
ings of the Empiricial Methods in Natu-
ral Language Processing, 2014.

Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

[PSW17] Eric Price, Zhao Song, and David P.
Woodruff. Fast regression with an `∞
guarantee. In International Colloquium
on Automata, Languages, and Program-
ming (ICALP), 2017.

[RR08] Ali Rahimi and Benjamin Recht. Ran-
dom features for large-scale kernel ma-
chines. In Advances in neural infor-
mation processing systems, pages 1177–
1184, 2008.

[RSW16] Ilya Razenshteyn, Zhao Song, and
David P Woodruff. Weighted low rank
approximations with provable guaran-
tees. In Proceedings of the 48th Annual
Symposium on the Theory of Computing
(STOC), 2016.

[Sar06] Tamás Sarlós. Improved approximation
algorithms for large matrices via random
projections. In 47th Annual IEEE Sym-
posium on Foundations of Computer
Science (FOCS) , 21-24 October 2006,
Berkeley, California, USA, Proceedings,
pages 143–152, 2006.

[Sch18] Aaron Schild. An almost-linear time al-
gorithm for uniform random spanning
tree generation. In Proceedings of the
50th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2018.

[Son19] Zhao Song. Matrix Theory : Optimiza-
tion, Concentration and Algorithms.
PhD thesis, The University of Texas at
Austin, 2019.

[SS11] Daniel A Spielman and Nikhil Srivas-
tava. Graph sparsification by effective
resistances. SIAM Journal on Comput-
ing, 40(6):1913–1926, 2011.

[ST04] Daniel A. Spielman and Shang-Hua
Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsifi-
cation, and solving linear systems. In
Proceedings of the Thirty-sixth Annual
ACM Symposium on Theory of Comput-
ing (STOC), pages 81–90. ACM, 2004.

[SWZ17] Zhao Song, David P Woodruff, and
Peilin Zhong. Low rank approximation
with entrywise `1-norm error. In Pro-
ceedings of the 49th Annual Symposium
on the Theory of Computing (STOC).
ACM, https://arxiv.org/pdf/1611.
00898, 2017.

[SWZ18] Zhao Song, David P Woodruff, and
Peilin Zhong. Towards a zero-one law
for entrywise low rank approximation.
arXiv preprint arXiv:1811.01442, 2018.

[SWZ19a] Zhao Song, David P Woodruff, and
Peilin Zhong. Average case column sub-
set selection for entrywise `1-norm loss.
In NeurIPS, 2019.

[SWZ19b] Zhao Song, David P Woodruff, and
Peilin Zhong. Relative error tensor low
rank approximation. In SODA. arXiv
preprint arXiv:1704.08246, 2019.

[SWZ19c] Zhao Song, David P Woodruff, and
Peilin Zhong. Towards a zero-one law
for column subset selection. In NeurIPS,
2019.

[Vai89] Pravin M Vaidya. A new algorithm for
minimizing convex functions over con-
vex sets. In 30th Annual IEEE Sympo-
sium on Foundations of Computer Sci-
ence (FOCS), pages 338–343, 1989.

[Var14] Hal R Varian. Big data: New tricks for
econometrics. Journal of Economic Per-
spectives, 28(2):3–28, 2014.

[Ver10] Roman Vershynin. Introduction to the
non-asymptotic analysis of random ma-
trices. arXiv preprint arXiv:1011.3027,
2010.

[Wed73] Per-Åke Wedin. Perturbation theory for
pseudo-inverses. BIT Numerical Mathe-
matics, 13(2):217–232, 1973.

[Wik12] Wikimedia. English Wikipedia
dump. http://dumps.
wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.
xml.bz2, 2012. Accessed Mar-2015.

[Woo14] David P. Woodruff. Sketching as a tool
for numerical linear algebra. Founda-
tions and Trends in Theoretical Com-
puter Science, 10(1-2):1–157, 2014.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng
Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine transla-
tion system: Bridging the gap between
human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

Sketching Transformed Matrices with Applications to Natural Language Processing

[WW19] Ruosong Wang and David P. Woodruff.
Tight bounds for `p oblivious subspace
embeddings. In Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9,
2019, pages 1825–1843, 2019.

[WZ16] David P Woodruff and Peilin Zhong.
Distributed low rank approximation of
implicit functions of a matrix. In Data
Engineering (ICDE), 2016 IEEE 32nd
International Conference on, pages 847–
858. IEEE, 2016.

[Zha97] Zhengyou Zhang. Parameter estimation
techniques: A tutorial with application
to conic fitting. Image and vision Com-
puting, 15(1):59–76, 1997.

[ZWSP08] Yunhong Zhou, Dennis Wilkinson,
Robert Schreiber, and Rong Pan.
Large-scale parallel collaborative filter-
ing for the netflix prize. In International
Conference on Algorithmic Applica-
tions in Management, pages 337–348.
Springer, 2008.

