A Appendix

We now provide additional details for our results in Section 2 of the paper.

Lemma 1. Let A,~B be full column rank matrices of size n x d, with log(n) = d°M). Let S be an
SRHT with' m = O((d + log(1/6))/€?) rows. For any matrix B of size n x d we have

IX[l2 = I(SA)'SBll2 < |ATB]l> + 6H2_1II2(\/(1 +d/k)(IBI3 + [ BI[/k)),

with probability 1 — 1/poly(d).

Proof. From Equation 5 in the body and the triangle inequality, we have

(SA)TSB=ve'(d T%)UTSTSB (1)
k=0

I(SA)TSB2 < |ATB|2 + [|(SA)'SB — ATB|; )
< |ATB| + V=T _THUTSTSB - VETUTB; 3)

k=0
<[ATBs + =7 2 Y IUTSTSB — UM B2 )

k=0

_ €
< [[ATBll2 + 137 27— 6\/(1 +d/E)(| B3 + 11BII%:/k) (5)
where we used equation 8 in the body in the last step. O

A.1 AD

Let us manually derive the AD for the least squares regression problem.

LLS(A,b) = LS(AT A, ATb)

= LS(M,m)
(M,m) = (AT A, ATp)
B=AT
(B1,B3) = (B, B)
C = BA
d = Bsyb
Ay =AM + AM™
A, =bmT
AZAM-i-Am
=AM + AMT + o™
b= Am
(M, m) = JT(LS)(M, m)(y)

This gives us the final reverse mode AD:
A= —AATA) gyT) - AygT(ATA) T+ byt (ATA) T ©)
b=A(ATA) 1y (7

'For a function f, we use the notation O(f) to denote f - polylog(f).



A.2 Approximation bounds
Let us derive some additional bounds which were missing in the main paper:

[Ayg™ M~ — Aypy" Mgt p < |[Ayg" M~ — Aypy" M| p + (| Aypy T (M — M) | # ©
< U - (UTSTSU) YU b r + eIIAyDHIIﬂII\IE*IIIQIIE*Hg

< e(llbllz + Bllallzl=1 2~ 2157 F) (10)

Table 1: Cheat sheet to derive AD.

Original Forward Transform Reverse Transform
z=a+b i=a+b (@,b) = (,2)
z=ab Z=ab+ ab (@,b) = (2b,az)
(Zh 22) = (a> a) (’213 22) = (da a) ‘_17: Z1 +722
Y =AXB Y = AYB ) X_: ATY BT
y=LS(M,m)  §=JLS(M,m)(y,M,m) (M,m)=7"LS(M,m)(y,7)
= LS(M, 10 — My) = (—my", LS(M™, y))
Table 2: Forward mode AD Transformations.
Type Primal Forward Transform
Regular y = LLS(A4,b) y = JLLS(A,b)(y, A, b)
=LS(ATA, ATb 4+ ATh — (ATA+ AT A)y)
“Diff + Sketch”  yp = LLS(A4,b,S) §p = J LLS(A,b)(yp, A, b, S)
= LS(ATSTSA, AT + ATh — (ATA + AT A)yp)
“Sketch + Diff” yg = LLS(A4,b,5) ys =JLLS(A4,b)(ys, A, i), S)
=LS(ATSTSA, ATSTSh+ ATSTSH
— (ATSTSA+ ATSTSA)ys)
Table 3: Reverse mode AD Transformations.
Type Primal Reverse Transform
Regular y = LLS(4,b) (A,b) = JTLLS(A,b)(y,7)
= (—ATgy" — Ayg" M by M, AT )
“Diff + Sketch” yp = LLS(A, b, S) (A,b) = JT LLS(A,b)(y,7)
= (—AMg'gyp" — Aypy" Mg + by Mg, AT y)
“Sketch + Diff” yg = LLSg(A,b,S) (Ag,bs) = T LLSs(A,b,S)(ys, )

= (—STA gysT — STSAysyT M + STSby M, ST AL )




A.3 “Sketch and Differentiate”

Lemma 2. The reverse mode approximation error for the term b when we approximate it by sketch-
ing matrix S can be bounded with probability 1 — § as follows: ||b—bg||2 < [|S7|2/|7ll2(e + (1 +
)l — ST S]l2).

Proof. Let us use Lemma 1 and sub-multiplicativity to obtain the following:
I = bsll2 = [|AM ™"y — STSAMs™ " ys]|2
= |AM 'y — AMz'5 + AMg'g — STSAMG g2
< |AM ™Y = AMg 2|lgllz + 1T = STS|2)| AMg 12172
< el ST l2llgllz + 11 = ST S|l AMg |21l
<57 allgll2(e + (1 + )| T = STS]l2) (1)

where we used a lemma from the main paper. So, the error can be large (|| — ST S||2).

Lemma 3. The reverse mode approximation error for the term A when we approximate it using the
sketching matrix S can be bounded with probability 1 — 0.

Proof.
|A— As|lp = |-2AMTgy" + bg" M~ — (—28TSAMs T gsys™ + ST SbysT M) | »
< ||2AM 'gyT — 2STSAMG gys || F + byt Mt — STSbyT M) | P (12)
[AM gy™ — STSAMG gys™||r < [[AM " 'gy" — AMg gy  ||r + |AMg  gy™ — STSAMG  gys™ || r
< el rllllyl + [[AMg gy " — STSAMS  gys™ || p (13)
O

A.4 “Differentiate and Sketch”

Lemma 4. The reverse mode approximation error for the term b when we sketch only the computa-
tionally expensive terms by S, with probability at least 1 — 6, satisfies: ||b — bs|l2 < €| S71|2]|7]2-

Proof. Let us use the sketching properties and sub-multiplicativity to obtain the following:
16— bsll2 = [[AM ™"y — AMs™ " ys]|a
~ U = UTSTSU)S VT,
S U217 2/17l2
< ell= 21712 (14)
O
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Lemma 5. The reverse mode approximation error for the term A when we sketch only the com-
putationally expensive terms by S, with probability 1 — 1/poly(d), satisfies: ||A — Agll2 <

elgll2(1= 2 llyll2 + 1; 1272 ]l Ay — bll2]|AT]|2).

Proof. The approximation error can be split into 3 terms such that ||[A — Ag|| < Q + Q2 + Q3
where:

Q1 = ||bg" M~ — bys " Mgt p
< ellbg" || FII= 2= p



Let us bound Q- as follows:
Q2 = |[AM gy — AMG gys™||p =AM ™! — Mgh)gy" + AMg gy" — AMg'gys™ ||
<AM ™ = MGHgyt e+ [AMG 5y — ys) " || r
< el allgy e + 1AM 2ll5(y — ys) Tl ¢
< ell= " allgll2llyllz + [AMg l2[1gl2]l (v — ys) 2
< ellgl2(IS H2llyllz + 1AMG 2] Ay — blla||AT|2)
< elgll2(I=" 2llyllz + (1 + OIS 2]l Ay — bH2||AT(||125))

where we used the following result Price et al. (2017):
ly = ysll2 < el Ay — blla[| AT (16)
and the last term Q3 can be bounded as:

Qs = [[Ayg"™ M — AysgT M| = |[AygT (M — MgY) + AygT MG — AysyT Mg

(17)
< el Ayg 'l + 1A(y —ys)y Mg
< el Ayg" | + el Allll Ay — o] [l7" Mg | (18)
Note that all three terms Q1, Q2, Q3 are O(e). O

B Experiments

We plot the performance of the two proposed approaches for obtaining forward and reverse mode
AD in the case of linear regression. We generate a linear regression problem by choosing the entries
of matrix A and vector b from i.i.d. N (0, 1) (Normal distribution with mean 0 and variance 1). The
differences from the two approaches, “sketch+differentiate” and “differentiate+sketch” are shown
in Figure 1.
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Figure 1: Numerical observation that differentiation and sketching do not commute, and that
differentiation-then-sketch is more accurate. We show the forward mode along with its approxi-
mation corresponding to the three sketching matrices of Gaussian, Count-sketch and Subsampled
Randomized Hadamard Transform (SRHT), on a randomly generated least squares problem of size
100000 x 100, along with a random perturbation. Reverse mode is shown for a subsample of 100
randomly chosen values for the variable b, where we used sign as the cost function.
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