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More Powerful Selective Kernel Tests for Feature Selection
Supplementary

A TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR)

Let I− be the indices of features such that the null holds, i.e., for MMD, we have I− := {i : MMD(P (i), Q(i)) = 0}
(and for HSIC, we have I− := {i : HSIC(P (i), Q) = 0}). Similarly, let I+ be the indices of features such
that the alternative holds, i.e., for MMD, we have I+ := {i : MMD(P (i), Q(i)) > 0} (and for HSIC, we have
I+ := {i : HSIC(P (i), Q) > 0}). Then, for a set of selected features Sk we define FPR and TPR as follows,

FPR = E
[
|Sk ∩ I− ∩R|
|Sk ∩ I−|

]
, TPR = E

[
|Sk ∩ I+ ∩R|
|Sk ∩ I+|

]
,

where R is the set of indices that the algorithm rejections and note that R ⊆ Sk.

B EMPIRICAL DISTRIBUTIONS OF M̂MDInc(X,Y ) and ĤSICInc(Z)

In this section, we simulate the empirical distribution of the incomplete estimator for both M̂MDInc(X,Y ) and
ĤSICInc(Z).

B.1 Empirical distribution of M̂MDInc(X,Y )

Case P = Q: For MMD, we let X ∼ N (0, 1) and Y ∼ N (0, 1) which means M̂MDu(X,Y ) is degenerate whereas
we show that M̂MDInc(X,Y ) follows a normal distribution (see Figure 4). When the r is small, the empirical
distribution of the incomplete estimators follows a normal distribution butas r gets bigger we expect it to behave
like its complete estimator counterpart.
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Figure 4: The empirical distribution M̂MDInc(X,Y ) for r ∈ {1, 10, 100}. 5000 samples were used.

Case P ̸= Q: We show the empirical distribution of the incomplete estimator for MMD when P = N (0, 1) and
Q = N (µ, 1) and µ ∈ {0, 2, 3}. Under the alternative, for our choice in r, the distribution under the alternative
is expected to have higher variance than the null distribution.

B.2 Empirical distribution of ĤSICInc(Z)

For HSIC, let Z := (X,Y ) where X and Y is follows a standard normal and is sampled independently of each
other. We show that in this case ĤSICInc(Z) is also normal (see Figure 6).

C MULTISCALE BOOSTRAP ALGORITHM FOR HSIC

In this section, we present algorithms for MultiHSIC for incomplete HSIC (Section C.1) and for block HSIC
(Section C.2). Algorithm 3 describes the procedure for calculating p-values using multiscale bootstrap.
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Figure 5: The empirical distribution M̂MDInc(Z) for r ∈ {1, 10, 100}. 5000 samples were used.
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Figure 6: The empirical distribution ĤSICInc(X,Y ) for r ∈ {1, 10, 100}. 5000 samples were used.

C.1 Incomplete HSIC

The parameters T (Z) and Σ for the incomplete estimator are estimated with the same method as for the
incomplete MMD (see Section 3). The algorithm is described in Algorithm 3.

Algorithm 3 MultiHSIC(Zn, k,M): Selective p-values for the null hypothesis H0,i : HSIC(Px(i)y) = 0 | i ∈
Sk is selected.

1: T̂ (Z), Σ̂←EstimateParam(Zn)
2: Sk ← the indexes of k largest values of {ĤSIC(Z

(i)
n )}i∈I

3: for i ∈ Sk do
4: for n′ ∈M do
5: γ2n′ ← n

n′

6: Sample {y∗
i }Bi=1

i.i.d.∼ N (T̂ (Z), γ2n′Σ̂)

7: BPγ2
n′
(S)←

∑B
i=1 1

(i)
S (y∗

i )/B

8: end for
9: Fit a linear model φS(γ

2) such that φS(γ
2) = γΦ̄−1(BPγ2(S)).

10: β̂
(i)
0 ← σ̂−1

i

√
lnĤSICInc(Z

(i)
n )

11: pi ← Φ̄(β̂
(i)
0 )/Φ̄(β̂

(i)
0 + φS(0))

12: end for
13: return {pi}ki=0 and Sk

The following theorem justifies our use of the multivariate normal model,
Theorem 1. Assume that limn,l→∞ n−1l = λ and assume that limn,l→∞ n−2l = 0 and 0 < λ < ∞ then,

l
1
2

(
ĤSICInc(Z

(1))
...

ĤSICInc(Z
(d))

−
HSIC(Px(1)y)

...
HSIC(Px(d)y)

)
is asymptotically normal.
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The proof can be found in Appendix D.

C.2 Block HSIC

Block estimator as the incomplete estimator: The block estimator ĤSICBlo (Zhang et al., 2018) is an
example of an incomplete estimator for HSIC with a fixed design matrix. To see this note that for a given
blocksize B, we have a total of n

B blocks. For each block, the complete U-statistic estimator is calculated, i.e.,
for block t

η̂(t) =
(B − 4)!

B!

∑
(i,j,q,r)∈i

[(t−1)B+1,tB]
4

h(i, j, q, r),

where i
[u,i]
4 is the set of 4-tuple with each index, between u and i, appearing exactly once. There are a total of

n
B blocks that are averaged to produce ĤSICBlo, i.e., we have

ĤSICBlo =
B

n

n
B∑

t=1

η̂(t).

Thus, we have shown that ĤSICBlo can be rewritten as ĤSICInc where we have D = ∪
n
B
t=1i

[(t−1)B+1,tB]
4 . Note

that |DBlo| = (B−1)!
(B−4)!n.

Algorithm: The extension to multiscale bootstrap to include the block estimator is simple. It only requires
changes in the parameters of the resampling distribution for varying n′, as a well as how the signed distance β̂(i)

0

for feature i is calculated.

Let T̂ (Z) :=
√

n
B [ĤSICBlo(Z

(1)
n ), . . . , ĤSICBlo(Z

(d)
n )]⊤ and T (Z) be its population counterpart, namely, T (Z) =√

n
B [HSIC(Px(1)y), . . . ,HSIC(Px(d)y)]

⊤. Note that T̂ (Z) can be equivalently written as
∑n/B

i=1 η̂(i) where η̂(i) =

[η̂(1)(i), . . . , η̂(d)(i)]⊤, and η̂(j)(i) is the complete U-statistic estimator for HSIC applied to the i-th block of Z(j).
Then in the limit n→∞, B →∞, and n

B →∞ (Zhang et al., 2018), we have under the null hypothesis

T̂ (Z)− T (Z) ∼ N (0, Σ),

where Σ is the covariance matrix with its elements as Σij = Cov
(
η(i),η(j)

)
. We estimate Σ with the sample

covariance Σ̂, i.e., we have Σ̂ := B
n

∑n/B
i=1 [η̂(i) − η][η̂(i) − η]⊤. Then for varying n′, instead of resampling

n′ samples from Z, we produce samples directly from N (T̂ (Z), n
n′ Σ̂) as before. The sign distance β̂

(i)
0 is

σ̂−1
i

√
n
B ĤSICBlo(Z

(i)
n ) where σ̂−1

i is the i-th diagonal element of Σ̂.
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Figure 7: Logistic experiment. B increases for
ĤSICB . We use a Gaussian kernel with its band-
width either set to be 1 or chosen with the median
heuristic. We use n = 1000.

Empirical Results: In this experiment, we use the
same setup as Figure 3 for the Logit problem and the
results are shown in Figure 7. Our aim is to investi-
gate the behaviour of our test when B the block size
increases. In Zaremba et al. (2013, Section 5), they in-
vestigated the behaviour of the block estimator under
finite samples and found that there can have severe bias
under the null hypothesis.

In our results, we observed that there was a large devia-
tion for the nominal size α and an increase in the TPR.
We speculate that this is due to the positive bias in finite
samples of the skewness of the block estimator. These
experiments show that the effect is more pronounced for
MultiHSIC (than PolyHSIC) which may be because of
our choice in parameterising the bootstrap samples as a
normal distribution. We note that the effect of FPR go-
ing below the nominal α is not just for very large values
of B but even for the recommended heuristic B =

√
n. It would be interesting to investigate this problem and

correct for it in future works.
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D PROOFS

In this section, we provide proofs for our statements in Section 4. Before we begin, recall that

h(i, j, q, r) =
1

4!

(i,j,q,r)∑
(s,t,u,v)

Kst[Lst +Luv − 2Lsu]

is the order-4 U-statistic kernel for HSIC. We define the conditional expectation of the U-statistic kernel

h4 = h(i, j, q, r),

h3 = E[h(i, j, q, r) | i, j, q ],
h2 = E[h(i, j, q, r) | i, j ]
h1 = E[h(i, j, q, r) | i ].

Let c be the smallest integer such that hc ̸= HSIC. When P ⊥⊥ Q, we have h1 = 0 and HSIC = h1 so c > 1.
However when P ⊥̸⊥ Q, h1 ̸= HSIC so c = 1. Similarly, we show that ĤSICInc is asymptotically normal under
mild assumptions.

Theorem 2 (Asymptotic Distribution of ĤSICInc). Let c be the smallest integer such that hc ̸= HSIC (hc
defined in Appendix D) and let limn,l→∞ n−cl = λ (0 ≤ λ ≤ ∞) and let D be constructed by selecting l subsets
with replacement from in4 then,

1. If λ = 0 then, l 12 (ĤSICInc(z)−HSIC(Pxy)
d→ N (0, σ2),

2. If 0 < λ <∞ then, l 12 (ĤSICInc(z)−HSIC(Pxy))
d→ λ

1
2V + T ,

3. If λ =∞ then, n c
2 (ĤSICInc(z)−HSIC(Pxy))

d→ V ,

where V is a random variable with the limit distribution of nc/2(ĤSICu(z) − HSIC) and T ∼ N (0, σ2) where
σ2 = Var[h(i, j, q, r)].

Proof. See Janson (1984, Corollary 1) and Lee (2019, Theorem 1, Section 4.3.3)

Corollary 1 (Asymptotic Distribution of ĤSICInc). Assume that limn,l→∞ n−2l = 0 and 0 < limn,l→∞ n−1l =
λ <∞,

• If X ⊥⊥ Y , then l
1
2 ĤSICInc(z)

d→ N (0, σ2),

• If X ⊥̸⊥ Y , then l
1
2 (ĤSICInc(z)−HSIC(Pxy))

d→ N (0, λσ2
u + σ2),

where σ2 = Var[h(i, j, q, r)] and σ2
u is the variance of the complete U-statistic counterpart, see Song et al. (2012,

Theorem 5).

Proof. When P ⊥⊥ Q, then c ≥ 2 then the result immediately follows from Theorem 2 for the case λ = 0.

For P ⊥̸⊥ Q, then c = 1 thus, under our assumptions, we obtain our result from Theorem 2.

Theorem 1. Assume that limn,l→∞ n−1l = λ and assume that limn,l→∞ n−2l = 0 and 0 < λ < ∞ then,

l
1
2

(
ĤSICInc(Z

(1))
...

ĤSICInc(Z
(d))

−
HSIC(Px(1)y)

...
HSIC(Px(d)y)

)
is asymptotically normal.
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Proof. This proof is identical to the proof of Yamada et al. (2019, Theorem 5). From Cramér-Wold theorem, it
is sufficient to prove that for every η ∈ Rd,

η⊤


ĤSICInc(Z

(1))
...

ĤSICInc(Z
(d))

 d→ η⊤V

where V is some normal distribution. Under our assumptions, for all i ĤSICInc(Z
(i)) follows a normal distribu-

tion. Following from the continuous mapping theorem, for all η ∈ Rd we have as desired.

E Additional Experiments

In this section, we provide additional experiments with HSIC. The first is a benchmarking experiment similar to
the one performed in Section 5.2. The second uses the Divorce dataset (Yöntem et al., 2019) where people were
given a questionnaire about their marriage and asked to rate each statement about their marriage from 0 to 4
depending on the truthfulness.

E.1 Benchmark

The goal is to rediscover the original features with statistical significance. As seen in the Table 3, the results
indicate that MultiSel achieves higher power (as with the MMD).

MultiSel-HSIC PolySel-HSIC
Dataset TPR FPR TPR FPR
Pulsar (n = 100) 0.705 0.023 0.625 0.025
Heart (n = 138) 0.469 0.029 0.410 0.030
Wine (n = 200) 0.800 0.042 0.730 0.058

Table 3: The TPR and FPR for the benchmarking experiment using ĤSICInc. The results are averaged over
100 trials, with α = 0.05.

E.2 Divorce Dataset

We report the calculated p-values of each statistical test of dependency between a selected statement and the
outcome of divorce. In the experiment, we chose r = 15, k = 15 (out of 54) and n = 150 with the results
summaries in Table 4. We found that MultiSel declared 6 more statements as significantly (than PolySel) with
a significance level at α = 0.05, including statements such as “I feel aggressive when I argue with my wife.” and
“My wife and most of our goals are common.”. We do not know the ground truth but the 6 statements seem
plausible. The results suggest that MultiSel has higher detection rate.
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p-values
MultiSel-HSIC PolySel-HSIC

My argument with my wife is not calm. <0.01 <0.01
Fights often occur suddenly. <0.01 0.41
I can insult my spouse during our discussions. <0.01 0.09
When fighting with my spouse, I usually use expressions
such as you always or you never. <0.01 0.17

We’re compatible with my wife about what love should be. <0.01 0.43
My wife and most of our goals are common. <0.01 0.25
I feel aggressive when I argue with my wife. <0.01 0.22
We’re starting a fight before I know what’s going on. <0.01 <0.01
I can use negative statements about my wife’s personality
during our discussions. <0.01 0.05

I hate my wife’s way of bringing it up. <0.01 <0.01
I enjoy our holidays with my wife. 0.12 0.27
When we fight, I remind her of my wife’s inadequate issues. 0.13 0.04
When I argue with my wife, it will eventually work for me
to contact him. 0.16 0.14

I know my wife’s hopes and wishes. 0.77 0.56
I can use offensive expressions during our discussions. 0.94 0.89

Table 4: The resultant p-values from one trial of the divorce dataset using HSICInc.


