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A Supplementary materials

A.1 Compression error

The property of the compression operator indicates that the compression error is linearly proportional to the
norm of the variable being compressed:

E‖Q(x)− x‖2 ≤ C‖x‖2.

We visualize the norm of the variables being compressed, i.e., the gradient residual (the worker side) and model
residual (the master side) for DORE as well as error compensated gradient (the worker side) and averaged
gradient (the master side) for DoubleSqueeze. As showed in Figure 6, the gradient and model residual of DORE
decrease exponentially and the compression errors vanish. However, for DoubleSqueeze, their norms only decrease
to some certain value and the compression error doesn’t vanish. It explains why algorithms without residual
compression cannot converge linearly to the O(σ) neighborhood of the optimal solution in the strongly convex
case.
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Figure 6: The norm of variable being compressed in the linear regression experiment.

A.2 Communication Efficiency

To make an explicit comparison of communication efficiency, we report the training loss convergence with respect
to communication bits in Figure 7, 8 and 9 for the experiments on synthetic data, MNIST and CIFAR10 dataset
respectively. These results are independent of the system architectures and network bandwidth. It suggests that
the proposed DORE reduce the communication cost significantly while maintaining good convergence speed.

Furthermore, we also test the running time of ResNet18 trained on CIFAR10 dataset under two different net-
work bandwidth configurations, i.e. 1Gbps and 200Mbps, as showed in Figure 10 and 11. Due to its superior
communication efficiency, the proposed DORE runs faster in both configurations. Moreover, when the network
bandwidth reduces from 1Gbps to 200Mbps, the running time of DORE only increases slightly, which indicates
that DORE is more robust to network bandwidth change and can work more efficiently under limited bandwidth.
These results clearly suggest the advantages of the proposed algorithm.

All the experiments in this section are under the exactly same setting as described in Section 5. The running time
is tested in a High Performance Computing Cluster with NVIDIA Tesla K80 GPUs and the computing nodes
are connected by Gigabit Ethernet interfaces and we use mpi4py as the communication backend. All algorithms
in this paper are implemented with PyTorch.



A Double Residual Compression Algorithm for Efficient Distributed Learning

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Communication cost (bits) 1e8

10
9

10
7

10
5

10
3

10
1

10
1

10
3

||
x
k

x
*
||
2

Figure 7: Linear regression on synthetic data.
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Figure 8: LeNet trained on MNIST dataset.
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Figure 9: Resnet18 trained on CIFAR10 dataset.
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Figure 10: Resnet18 trained on CIFAR10 dataset with
1Gbps network bandwidth.
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Figure 11: Resnet18 trained on CIFAR10 dataset with
200Mbps network bandwidth.
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A.3 Parameter sensitivity

Continuing the MNIST experiment in Section 5, we further conduct parameter analysis on DORE. The basic
setting for block size, learning rate, α, β and η are 256, 0.1, 0.1, 1, 1, respectively. We change each parameter
individually. Figures 12, 13, 14, and 15 demonstrate that DORE performs consistently well under different
parameter settings.
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Figure 12: Training under different compression block sizes.
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Figure 13: Training under different α
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Figure 14: Training under different β
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Figure 15: Training under different η
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A.4 DORE in the smooth case

Algorithm 2 DORE with R(x) = 0

1: Input: Stepsize α, β, γ, η, initialize h0 = h0
i = 0d, x̂0

i = x̂0, ∀i ∈ {1, . . . , n}.
2: for k = 1, 2, · · · ,K − 1 do

3: For each worker {i = 1, 2, · · · , n}:
4: Sample gki such that E[gki |x̂ki ] = ∇fi(x̂ki )
5: Gradient residual: ∆k

i = gki − hki
6: Compression: ∆̂k

i = Q(∆k
i )

7: hk+1
i = hki + α∆̂k

i

8: { ĝki = hki + ∆̂k
i }

9: Sent ∆̂k
i to the master

10: Receive q̂k from the master
11: x̂k+1

i = x̂ki + βq̂k

12: For the master:

13: Receive ∆̂k
i s from workers

14: ∆̂k = 1/n
∑n
i ∆̂k

i

15: ĝk = hk + ∆̂k {= 1/n
∑n
i ĝki }

16: hk+1 = hk + α∆̂k

17: qk = −γĝk + ηek

18: Compression: q̂k = Q(qk)
19: ek+1 = qk − q̂k

20: Broadcast q̂k to workers

21: end for
22: Output: any x̂Ki

A.5 Proof of Theorem 1

We first provide two lemmas. We define EQ, Ek, and E be the expectation taken over the quantization, the kth
iteration based on x̂k, and the overall expectation, respectively.

Lemma 1. For every i, we can estimate the first two moments of hk+1
i as

EQhk+1
i =(1− α)hki + αgki , (15)

EQ‖hk+1
i − si‖2 ≤(1− α)‖hki − si‖2 + α‖gki − si‖2 + α[(Cq + 1)α− 1]‖∆k

i ‖2. (16)

Proof. The first equality follows from lines 5-7 of Algorithm 1 and Assumption 1. For the second equation, we
have the following variance decomposition

E‖X‖2 = ‖EX‖2 + E‖X − EX‖2 (17)

for any random vector X. By taking X = hk+1
i − si, we get

EQ‖hk+1
i − si‖2 = ‖(1− α)(hki − si) + α(gki − si)‖2 + α2EQ‖∆̂k

i −∆k
i ‖2. (18)

Using the basic equality

‖λa + (1− λ)b‖2 + λ(1− λ)‖a− b‖2 = λ‖a‖2 + (1− λ)‖b‖2 (19)

for all a,b ∈ Rd and λ ∈ [0, 1], as well as Assumption 1, we have

EQ‖hk+1
i − si‖2 ≤ (1− α)‖hki − si‖2 + α‖gki − si‖2 − α(1− α)‖∆k

i ‖2 + α2Cq‖∆k
i ‖2, (20)

which is the inequality (16).

Next, from the variance decomposition (17), we also derive Lemma 2.

Lemma 2. The following inequality holds

E[‖ĝk − h∗‖2] ≤ E‖∇f(x̂k)− h∗‖2 +
Cq
n2

n∑
i=1

E‖∆k
i ‖2 +

σ2

n
, (21)

where h∗ = ∇f(x∗) = 1
n

∑n
i=1 h∗i and σ2 = 1

n

∑n
i=1 σ

2
i .
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Proof. By taking the expectation over the quantization of g, we have

E‖ĝk − h∗‖2 = E‖gk − h∗‖2 + E‖ĝk − gk‖2

≤ E‖gk − h∗‖2 +
Cq
n2

n∑
i=1

E‖∆k
i ‖2, (22)

where the inequality is from Assumption 1.

For ‖gk − h∗‖, we take the expectation over the sampling of gradients and derive

E‖gk − h∗‖2 = E‖∇f(x̂k)− h∗‖2 + E‖gk −∇f(x̂k)‖2

≤ E‖∇f(x̂k)− h∗‖2 +
σ2

n
(23)

by Assumption 2.

Combining (22) with (23) gives (21).

Proof of Theorem 1. We consider xk+1 − x∗ first. Since x∗ is the solution of (1), it satisfies

x∗ = proxγR(x∗ − γh∗). (24)

Hence

E‖xk+1 − x∗‖2 =E‖proxγR(x̂k − γĝk)− proxγR(x∗ − γh∗)‖2

≤E‖x̂k − x∗ − γ(ĝk − h∗)‖2

=E‖x̂k − x∗‖2 − 2γE〈x̂k − x∗, ĝk − h∗〉+ γ2E‖ĝk − h∗‖2

=E‖x̂k − x∗‖2 − 2γE〈x̂k − x∗,∇f(x̂k)− h∗〉+ γ2E‖ĝk − h∗‖2, (25)

where the inequality comes from the non-expansiveness of the proximal operator and the last equality is derived
by taking the expectation of the stochastic gradient ĝk. Combining (21) and (25), we have

E‖xk+1 − x∗‖2 ≤E‖x̂k − x∗‖2 − 2γE〈x̂k − x∗,∇f(x̂k)− h∗〉

+
γ2

n

n∑
i=1

E‖∇fi(x̂k)− h∗i ‖2 +
Cqγ

2

n2

n∑
i=1

E‖∆k
i ‖2 +

γ2

n
σ2. (26)

Then we consider E‖x̂k+1 − x∗‖2. According to Algorithm 1, we have:

EQ[x̂k+1 − x∗] = x̂k + βqk − x∗

= (1− β)(x̂k − x∗) + β(xk+1 − x∗ + ηek) (27)

where the expectation is taken on the quantization of qk.

By variance decomposition (17) and the basic equality (19),

E‖x̂k+1 − x∗‖2

≤(1− β)E‖x̂k − x∗‖2 + βE‖xk+1 + ηek − x∗‖2 − β(1− β)E‖qk‖2 + β2Cmq E‖qk‖2

≤(1− β)E‖x̂k − x∗‖2 + (1 + η2ε)βE‖xk+1 − x∗‖2 − β(1− (Cmq + 1)β)E‖qk‖2 + (η2 +
1

ε
)βCmq E‖qk−1‖2, (28)

where ε is generated from Cauchy inequality of inner product. For convenience, we let ε = 1
η .

Choose a β such that 0 < β ≤ 1
1+Cmq

. Then we have

β(1− (Cmq + 1)β)E‖qk‖2 + E‖x̂k+1 − x∗‖2

≤(1− β)E‖x̂k − x∗‖2 + (1 + η)βE‖xk+1 − x∗‖2 + (η2 + η)βCmq E‖qk−1‖2. (29)
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Letting si = h∗i in (16), we have

(1 + η)cβγ2

n

n∑
i=1

E‖hk+1
i − h∗i ‖2

≤ (1 + η)(1− α)cβγ2

n

n∑
i=1

‖hki − h∗i ‖2 +
(1 + η)αcβγ2

n

n∑
i=1

‖gki − h∗i ‖2

+
(1 + η)α[(Cq + 1)α− 1]cβγ2

n

n∑
i=1

‖∆k
i ‖2. (30)

Then we let Rk = β(1− (Cmq + 1)β)E‖qk‖2 and define Vk = Rk−1 +E‖x̂k−x∗‖2 + (1+η)cβγ2

n

∑n
i=1 E‖hki −h∗i ‖2.

Thus, we obtain

Vk+1 ≤(η2 + η)βCmq E‖qk−1‖2 + (1 + ηβ)E‖x̂k − x∗‖2 − 2(1 + η)βγE〈x̂k − x∗,∇f(x̂k)− h∗〉

+
(1 + η)(1− α)cβγ2

n

n∑
i=1

E‖hki − h∗i ‖2 +
(1 + η)βγ2

n2

[
nc(Cq + 1)α2 − ncα+ Cq

] n∑
i=1

E‖∆k
i ‖2

+
(1 + η)(1 + cα)

n
βγ2

n∑
i=1

E‖∇fi(x̂k)− h∗i ‖2 +
(1 + η)(1 + ncα)

n
βγ2σ2. (31)

The E‖∆k
i ‖2-term can be ignored if nc(Cq + 1)α2 − ncα + Cq ≤ 0, which can be guaranteed by c ≥ 4Cq(Cq+1)

n
and

α ∈

1−
√

1− 4Cq(Cq+1)
nc

2(Cq + 1)
,

1 +
√

1− 4Cq(Cq+1)
nc

2(Cq + 1)

 .

Given that each fi is L-Lipschitz differentiable and µ-strongly convex, we have

E〈∇f(x̂k)− h∗, x̂k − x∗〉 ≥ µL

µ+ L
E‖x̂k − x∗‖2 +

1

µ+ L

1

n

n∑
i=1

E‖∇fi(x̂k)− h∗i ‖2. (32)

Hence

Vk+1 ≤ρ1Rk−1 + (1 + ηβ)E‖x̂k − x∗‖2 − 2(1 + η)βγE〈x̂k − x∗,∇f(x̂k)− h∗〉

+
(1 + η)(1− α)cβγ2

n

n∑
i=1

E‖hki − h∗i ‖2 +
(1 + η)(1 + cα)

n
βγ2

n∑
i=1

E‖∇fi(x̂k)− h∗i ‖2 +
(1 + η)(1 + ncα)

n
βγ2σ2

≤ρ1Rk−1 +
[
1 + ηβ − 2(1 + η)βγµL

µ+ L

]
E‖x̂k − x∗‖2 +

(1 + η)(1− α)cβγ2

n

n∑
i=1

E‖hki − h∗i ‖2

+
[
(1 + η)(1 + cα)βγ2 − 2(1 + η)βγ

µ+ L

] 1

n

n∑
i=1

E‖∇fi(x̂k)− h∗i ‖2 +
(1 + η)(1 + ncα)

n
βγ2σ2

≤ρ1Rk−1 + ρ2E‖x̂k − x∗‖2 +
(1 + η)(1− α)cβγ2

n

n∑
i=1

E‖hki − h∗i ‖2 +
(1 + η)(1 + ncα)

n
βγ2σ2 (33)

where

ρ1 =
(η2 + η)Cmq

1− (Cmq + 1)β
,

ρ2 =1 + ηβ − 2(1 + η)βγµL

µ+ L
.
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Here we let γ ≤ 2
(1+cα)(µ+L) such that (1 + η)(1 + cα)βγ2 − 2(1+η)βγ

µ+L ≤ 0 and the last inequality holds. In order

to get max(ρ1, ρ2, 1− α) < 1, we have the following conditions

0 ≤ (η2 + η)Cmq ≤1− (Cmq + 1)β,

η <
2(1 + η)γµL

µ+ L
.

Therefore, the condition for γ is
η(µ+ L)

2(1 + η)µL
≤ γ ≤ 2

(1 + cα)(µ+ L)
,

which implies an additional condition for η. Therefore, the condition for η is

η ∈

0,min

−Cmq +
√

(Cmq )2 + 4(1− (Cmq + 1)β)

2Cmq
,

4µL

(µ+ L)2(1 + cα)− 4µL

 .

where η ≤ 4µL
(µ+L)2(1+cα)−4µL is to ensure η(µ+L)

2(1+η)µL ≤
2

(1+cα)(µ+L) such that we don’t get an empty set for γ.

If we define ρ = max{ρ1, ρ2, 1− α}, we obtain

Vk+1 ≤ ρVk +
(1 + η)(1 + ncα)

n
βγ2σ2 (34)

and the proof is completed by applying (34) recurrently.

A.6 Proof of Theorem 2

Proof. In Algorithm 2, we can show

E‖x̂k+1 − x̂k‖2 = β2E‖q̂k‖2 = β2E‖Eq̂k‖2 + β2E‖q̂k − Eq̂k‖2

= β2E‖qk‖2 + β2E‖q̂k − qk‖2

≤ (1 + Cmq )β2E‖qk‖2.
(35)

and
E‖qk‖2 = E‖ − γĝk + ηek‖2 ≤ 2γ2E‖ĝk‖2 + 2η2E‖ek‖2 ≤ 2γ2E‖ĝk‖2 + 2Cmq η

2E‖qk−1‖2. (36)

Using (35)(36) and the Lipschitz continuity of ∇f(x), we have

Ef(x̂k+1) + (Cmq + 1)Lβ2E‖qk‖2

≤Ef(x̂k) + E〈∇f(x̂k), x̂k+1 − x̂k〉+
L

2
E‖x̂k+1 − x̂k‖2 + (Cmq + 1)Lβ2E‖qk‖2

=Ef(x̂k) + βE〈∇f(x̂k),−γĝk + ηek〉+
(1 + Cmq )Lβ2

2
E‖qk‖2 + (Cmq + 1)Lβ2E‖qk‖2

=Ef(x̂k) + βE〈∇f(x̂k),−γ∇f(x̂k) + ηek〉+
3(Cmq + 1)Lβ2

2
E‖qk‖2

≤Ef(x̂k)− βγE‖∇f(x̂k)‖2 +
βη

2
E‖∇f(x̂k)‖2 +

βη

2
E‖ek‖2

+ 3(Cmq + 1)Lβ2
[
γ2E‖ĝk‖2 + Cmq η

2E‖qk−1‖2
]

≤Ef(x̂k)−
[
βγ − βη

2
− 3(Cmq + 1)Lβ2γ2

]
E‖∇f(x̂k)‖2

+
3Cq(C

m
q + 1)Lβ2γ2

n2

n∑
i=1

E‖∆k
i ‖2 +

3(Cmq + 1)Lβ2γ2

n
σ2

+
[βηCmq

2
+ (3Cmq + 1)Cmq Lβ

2η2
]
E‖qk−1‖2, (37)
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where the last inequality is from (21) with h∗ = 0.

Letting si = 0 in (16), we have

EQ‖hk+1
i ‖2 ≤(1− α)‖hki ‖2 + α‖gki ‖2 + α[(Cq + 1)α− 1]‖∆k

i ‖2. (38)

Due to the assumption that each worker samples the gradient from the full dataset, we have

Egki = E∇f(x̂k), E‖gki ‖2 ≤ E‖∇f(x̂k)‖2 + σ2
i . (39)

Define Λk = (Cmq +1)Lβ2‖qk−1‖2+f(x̂k)−f∗+3c(Cmq +1)Lβ2γ2 1
n

∑n
i=1 E‖hki ‖2, and from (37), (38), and (39),

we have

EΛk+1 ≤Ef(x̂k)− f∗ + 3(1− α)c(Cmq + 1)Lβ2γ2
1

n

n∑
i=1

E‖hki ‖2

−
[
βγ − βη

2
− 3(1 + cα)(Cmq + 1)Lβ2γ2

]
E‖∇f(x̂k)‖2

+
(Cmq + 1)Lβ2γ2

n2

[
3nc(Cq + 1)α2 − 3ncα+ 3Cq

] n∑
i=1

E‖∆k
i ‖2

+ 3(1 + ncα)
(Cmq + 1)Lβ2γ2σ2

n

+
[βηCmq

2
+ 3(Cmq + 1)Cmq Lβ

2η2
]
E‖qk−1‖2. (40)

If we let c =
4Cq(Cq+1)

n , then the condition of α in (5) gives 3nc(Cq + 1)α2 − 3ncα+ 3Cq ≤ 0 and

EΛk+1 ≤Ef(x̂k)− f∗ + 3(1− α)c(Cmq + 1)Lβ2γ2
1

n

n∑
i=1

E‖hki ‖2

−
[
βγ − βη

2
− 3(1 + cα)(Cmq + 1)Lβ2γ2

]
E‖∇f(x̂k)‖2

+ 3(1 + ncα)
(Cmq + 1)Lβ2γ2σ2

n

+ [
βηCmq

2
+ 3(Cmq + 1)Cmq Lβ

2η2]E‖qk−1‖2. (41)

Let η = γ and βγ ≤ 1
6(1+cα)(Cmq +1)L , we have

βγ − βη

2
− 3(1 + cα)(Cmq + 1)Lβ2γ2 =

βγ

2
− 3(1 + cα)(Cmq + 1)Lβ2γ2 ≥ 0.

Take γ ≤ min
{−1+√

1+
48L2β2(Cmq +1)2

Cmq

12Lβ(Cmq +1) , 1
6Lβ(1+cα)(Cmq +1)

}
will guarantee

[βηCmq
2

+ 3(Cmq + 1)Cmq Lβ
2η2
]
≤ (Cmq + 1)Lβ2.

Hence we obtain

EΛk+1 ≤ EΛk −
[βγ

2
− 3(1 + cα)(Cmq + 1)Lβ2γ2

]
E‖∇f(x̂k)‖2 + 3(1 + ncα)

(Cmq + 1)Lβ2γ2σ2

n
. (42)

Taking the telescoping sum and plugging the initial conditions, we derive (12).
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A.7 Proof of Corollary 2

Proof. With α = 1
2(Cq+1) and c =

4Cq(Cq+1)
n , 1 + ncα = 1 + 2Cq is a constant. We set β = 1

Cmq +1 and

γ = min
{−1+√

1+ 48L2

Cmq

12L , 1

12L(1+cα)(1+
√
K/n)

}
. In general, Cmq is bounded which makes the first bound negligible,

i.e., γ = 1

12L(1+cα)(1+
√
K/n)

when K is large enough. Therefore, we have

β

2
− 3(1 + cα)(Cmq + 1)Lβ2γ =

1− 6(1 + cα)Lγ

2(Cmq + 1)
≤ 1

4(Cmq + 1)
. (43)

From Theorem 2, we derive

1

K

K∑
k=1

E‖∇f(x̂k)‖2

≤
4(Cmq + 1)(EΛ1 − EΛK+1)

γK
+

12(1 + ncα)Lσ2γ

n

≤48L(Cmq + 1)(1 + cα)(EΛ1 − EΛK+1)(
1

K
+

1√
nK

) +
(1 + ncα)σ2

(1 + cα)

1√
nK

, (44)

which completes the proof.


