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A Supplementary materials

A.1 Compression error

The property of the compression operator indicates that the compression error is linearly proportional to the
norm of the variable being compressed:

E|Q(x) —x|* < Clx|.

We visualize the norm of the variables being compressed, i.e., the gradient residual (the worker side) and model
residual (the master side) for DORE as well as error compensated gradient (the worker side) and averaged
gradient (the master side) for DoubleSqueeze. As showed in Figure 6, the gradient and model residual of DORE
decrease exponentially and the compression errors vanish. However, for DoubleSqueeze, their norms only decrease
to some certain value and the compression error doesn’t vanish. It explains why algorithms without residual
compression cannot converge linearly to the O(o) neighborhood of the optimal solution in the strongly convex
case.
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Figure 6: The norm of variable being compressed in the linear regression experiment.

A.2 Communication Efficiency

To make an explicit comparison of communication efficiency, we report the training loss convergence with respect
to communication bits in Figure 7, 8 and 9 for the experiments on synthetic data, MNIST and CIFAR10 dataset
respectively. These results are independent of the system architectures and network bandwidth. It suggests that
the proposed DORE reduce the communication cost significantly while maintaining good convergence speed.

Furthermore, we also test the running time of ResNet18 trained on CIFAR10 dataset under two different net-
work bandwidth configurations, i.e. 1Gbps and 200Mbps, as showed in Figure 10 and 11. Due to its superior
communication efficiency, the proposed DORE runs faster in both configurations. Moreover, when the network
bandwidth reduces from 1Gbps to 200Mbps, the running time of DORE only increases slightly, which indicates
that DORE is more robust to network bandwidth change and can work more efficiently under limited bandwidth.
These results clearly suggest the advantages of the proposed algorithm.

All the experiments in this section are under the exactly same setting as described in Section 5. The running time
is tested in a High Performance Computing Cluster with NVIDIA Tesla K80 GPUs and the computing nodes
are connected by Gigabit Ethernet interfaces and we use mpidpy as the communication backend. All algorithms
in this paper are implemented with PyTorch.
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Figure 7: Linear regression on synthetic data. Figure 8: LeNet trained on MNIST dataset.
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Figure 9: Resnetl8 trained on CIFAR10 dataset.
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Figure 10: Resnet18 trained on CIFAR10 dataset with Figure 11: Resnet18 trained on CIFAR10 dataset with
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A.3 Parameter sensitivity

Continuing the MNIST experiment in Section 5, we further conduct parameter analysis on DORE. The basic
setting for block size, learning rate, o, 8 and n are 256, 0.1, 0.1, 1, 1, respectively. We change each parameter
individually. Figures 12, 13, 14, and 15 demonstrate that DORE performs consistently well under different
parameter settings.
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Figure 12: Training under different compression block sizes.
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A.4 DORE in the smooth case

Algorithm 2 DORE with R(x) =0

1: Input: Stepsize a, 3,7,, initialize h® = h{ = 04, %9 = %0, vi € {1,...,n}.
2: for k=1,2,--- , K —1do

3:  For each worker {i =1,2,--- ,n}: 12:  For the master:
4:  Sample gF such that E[gF|x}] = V f;(xF) 13:  Receive AFs from workers
5. Gradient residual: A¥ =gk — h¥ 14: AP =1/ Al
6: C](:mpression: AAf = Q(Ah) 15:  gF =hF+ Ak :{: 1/ndy gk}
7. hFt' = hF + aAF 16:  h*t1 = h* + aAF
8 {& =hi+A}} 17 q* = —yg" +net
9:  Sent A to the master 18:  Compression: §* = Q(q")
10:  Receive §* from the master 19: et =qF - g~
11: 5(2““ =xF + g~ 20:  Broadcast g* to workers
21: end for

22: Output: any %X

A.5 Proof of Theorem 1

We first provide two lemmas. We define Eg, E, and E be the expectation taken over the quantization, the kth
iteration based on %x*, and the overall expectation, respectively.

Lemma 1. For every i, we can estimate the first two moments of hf“ as
Eqhf ™ =(1 — a)h + ag?, (15)
Eq|hi™*! —sil” <(1 —a)|[bf — s + allg? — sill* + a[(Cy + Do — 1] AF|*. (16)

Proof. The first equality follows from lines 5-7 of Algorithm 1 and Assumption 1. For the second equation, we
have the following variance decomposition

E|IX|? = [|[EX]]* + E[IX - EX|* (17)
for any random vector X. By taking X = hf“ —s;, we get
Eqlhi ™ —si|* = (1 — a)(hf —s,) + algf —s)|* + ’Eql|Af — Af|*. (18)
Using the basic equality
IAa+ (1= 2)b|* + A1 = A)lla—b]* = Aal|* + (1 = X)|[b||? (19)
for all a,b € R? and X € [0, 1], as well as Assumption 1, we have
Eq|hi™ —si|® < (1 —a)|bf s + allg? — sill* — a(l — @)|AT|* + aCyl| AT, (20)

which is the inequality (16). O

Next, from the variance decomposition (17), we also derive Lemma 2.

Lemma 2. The following inequality holds
~k |2 ok |2 an k2, O
Efllg" —h*[]"] < E[Vf(x") —h"| +§ZEHAi I+ (21)
i=1

where h* = Vf(x*) = 13" hf and o2 = 13" o2
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Proof. By taking the expectation over the quantization of g, we have
El|lg* — n*|* = Ellg" - h*[* + El|lg" — g*||?

ez, Cox
<Ellgh - 0| + L S E|ALP, (22)
i=1

where the inequality is from Assumption 1.
For ||gF — h*||, we take the expectation over the sampling of gradients and derive
Ellg" — || = E[|Vf(x*) = h*|* + E[g" — VF(x")[
2
<E[VFE) ~ b+ = (23)

by Assumption 2.
Combining (22) with (23) gives (21). O

Proof of Theorem 1. We consider x**1 — x* first. Since x* is the solution of (1), it satisfies
x" = prox, p(x" —yh"). (24)
Hence
E[[x""! —x*|[* =E[prox, z(x* — 18") — prox, p(x* — vh")|
<E[|%" - x* — y(g" - h")||?
E[I* — x7[2 - 2/B(&* — x7, g — ) +12E]jg" — b
=E[%" — x*|? = 29E(x" — x*, Vf(X") = h*) + y°E[|g" — n*||?, (25)

where the inequality comes from the non-expansiveness of the proximal operator and the last equality is derived
by taking the expectation of the stochastic gradient g*. Combining (21) and (25), we have

E|x** — x*||2 <E[%*F — x*||? — 29E(x" — x*, Vf(¥*) — h*)

7 ok 2 CqVQ - k2 7
‘*‘;ZEHVfi(X ) —hi] +?ZE||A1H T (26)
i=1 i=1

Then we consider E||x**! — x*||2. According to Algorithm 1, we have:
Eq[&*H! — x*] = %% + Bq" — x*
= (1 - B)(E" —x") + B —x* + ne”) (27)
where the expectation is taken on the quantization of g*.
By variance decomposition (17) and the basic equality (19),
B[l — x|
<(1 - BE[X* — x*||* + BE[x"*! + e’ —x*|? — B(1 — B)Eld"|* + 5°C{ Ella”®
<(1 = BE[&" — x*|* + (1 + n?e) BEIx* ! —x*[ = B(1 — (C7* + DBE|a"|* + (n* + %)BCTEHQ’“*HQ, (28)

where € is generated from Cauchy inequality of inner product. For convenience, we let € = %

Choose a 8 such that 0 < 8 < ﬁ Then we have
q

B~ (C + DBE|a"|* + Ex" — x*||?
<(1 = PE[XE — x| + (1 + n)BE[x*1 — x> + (* + ) BCTEllg* ||, (29)
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Letting s; = h} in (16), we have

1 P
DTS R+ — w2

i=1

L+n)(1 — a)cfy? & . 1+ n)achy’ ¢ *
e S 7 T

=1 i=1

+ (1+ n)a[(cq + Da — 1]0672 i HAfH2 (30)

n

Then we let RF = 8(1— (C" 4+ 1)8)E||q*||? and define V¥ = RF~1 4 E[|&F —x*||2 4 0" 530 gpk _pz)|2,
Thus, we obtain

VEHE < + m)BOTE[Q P + (1 + nB)E[X* — x||* — 2(1 + ) ByEE" - x*, VF(%*) - h*)

(L+mA = a)eBy Sk pepz . (L+Hm)BY 2 A2
+ - ZEnm — b |2 4 =1 [ne(C, + a —nca+cq}§mi ||

1+ 1+ca N 1+7)(1+ nca

The E||A¥||2-term can be ignored if nc(C, + 1)a? — nca + C, < 0, which can be guaranteed by ¢ > w

and
/  404(Cq+1) /1 _ 4C4(Cy+1)
nc 1 + nc

2(Cy+1) ’ 2(Cy+1)

Given that each f; is L-Lipschitz differentiable and u-strongly convex, we have

L S * *
Ex" —x ||2+7*Z IV fi(x*) = hi|%. (32)

E(Vf(%") —h*, %" —x*) > oy

Hence

VI <o RFT 4 (14 nB)E[x" — x7|2 = 2(1 + ) ByEE" - x*, VF(%*) — h*)

i (1+’7)(1n_ Q)C572iEHh?_hrH2+ (1+?7 1+ca 2ZEHsz ERIE (1+77)(Tll+nca)67202
i=1
<pRF1 4 [1 B — 2(1 +Z_)§7ML}EH§<’C x|+ (1+n)( n*Oé )by ;]Eﬂhf —n?
+ [0 @+ caype - 22D ZEHW gy L) g o
<pRF1 4 poB||&F — x*||? + ( +n)(1 n_ a)chy? ZEth ERTE (1 ‘*‘77)(71 + nca) By20? (33)
i=1
where
(n* +n)Cy

P (e B

2(1 +n)Byul

P2 nB it L
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Here we let v < m such that (1 +7)(1 + ca)By? — H")BV < 0 and the last inequality holds. In order

to get max(pi, p2,1 —a) < 1, we have the following condltlons

0< (*+n)C <1—(CI" +1)8,
L2 +mypl
pw+L
Therefore, the condition for ~ is

n(p+L)
2(1+n)pl — 7S (1+ca)(u+ L)’

which implies an additional condition for 5. Therefore, the condition for 7 is

—Cm + \/(Cg”)2 +4(1 - (Cr +1)p) 4pl
n € |0, min ’
Sty (i DL+ ) — L
4pL U(M+L)

where 1 <

T is to ensure such that we don’t get an empty set for .

GFDE(I+ea)—in HIAL S e D)

If we define p = max{p1, p2, 1 — a}, we obtain

(1T+n)(1 + nea)

VL < pVFE 4 By30? (34)

and the proof is completed by applying (34) recurrently. O

A.6 Proof of Theorem 2
Proof. In Algorithm 2, we can show
E||x" - x*|* = 5°E|l¢"||* = B°EIEQ"|* + F”El4" - Eq*|?

= B°Ella"|> + 5°Ell4" — o*||? (35)
< (1+C)B%Elq"|.

and

Ela*|* = E[| - ~&" +ne®||* < 29°E|g"|* + 27°El|e”||* < 2°Ell&"||* + 2C7"°Ella" 1. (36)
Using (35)(36) and the Lipschitz continuity of V f(x), we have
Ef(x*) +(Cf" + 1) LAE| "
<Ef(x") + E(Vf(x"), 2" - %F) + ]EII T — M2 4 (O + 1)LB%E|| g2

(1+Cp)Lp .
S| + () + 1) LAE] o

3(Cm + 1) LB
2

<EJ(&5) ~ BNV + DRIV |2 + DBt

=Ef(X*) + BE(Vf(X"), —v&" + ne") +

=Ef(x") + BE(V f(X"), —yV f(X*) + ne*) + Ellq"|?

+3(C7" + LB [VEI&H | + O nEllat 7]

<Ef(5) — [y~ TL - 30 + DL IV AP

, 3¢ (cm+1 Lﬂ? 2 (C’m+1)Lﬁ2 7

ZEHA’“II2

+(3Cy + O LA | Ella" 2, (37)

/B 7n
+ [
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where the last inequality is from (21) with h* = 0.
Letting s; = 0 in (16), we have

Eq|hi™!|* <(1 - a)|Ihf|* + allgf | + al(Cy + Da — 1] AF%. (38)

Due to the assumption that each worker samples the gradient from the full dataset, we have

Egl = EV/("), Elgl|> < BV +o7. (39)

Define A* = (C7" + 1) LA?|| @12+ f(%*) = f* +3¢(Cq" + 1) LAy 321, E[|hF||?, and from (37), (38), and (39),

we have

1 n
EAR! <EF(X") = f* +3(1 - a)e(Cy" + 1)L~ > E[[hf|?
=1

By = 230+ o) + )18 BI TSP
Lt 1) By

— 3ne(Cy + 1)a? — 3nca + 3Cq:| ZEHAW

i=1
(C(;n + 1)Lﬁ2’)’20'2

n

+3(C + DO LB n? |E|lg 2. (40)

+ 3(1 + nea)

pnCy"
2

gl

4C4(Cq+1)
n

If we let ¢ = , then the condition of a in (5) gives 3nc(Cy + 1)a? — 3nca + 3C,; < 0 and

1 n
EAM <Ef(X") = f*+3(1 - )e(Cy" + 1)LA%?~ > E|[bf|]?

i=1

B .
— 87— 5 =301+ ca) (O + 1) LB B[V F(55))*
C™ +1)LA%*y20?
+3(1+nca)( 1 Zlﬁ’y
pnCy m my a2, 2 k—1))2
+ [ (e + 0O LA PR (41)
Let n=- and /B"}/ S W, we have
Bn 2,2 _ ﬁV m 2,2
ﬂw———3(1+ca)( + 1)Ly —3(1+ca)(Cq +1)LB"y" > 0.
i1 TR ) .
Take v < mln{ T9LA(Cr T 1) , 6L6(1+ca)(C;ﬂ+1)} will guarantee
| S+ 3(C +1)C; LE%?] < (G + 1)L,
Hence we obtain
C™ +1)LB%y20?
EAFT < EAF — [% —3(1 4 ca)(C)" + 1)L6272}E||Vf(5ck)||2 +3(1+ nca)< a 21 i . (42)

Taking the telescoping sum and plugging the initial conditions, we derive (12). O
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A.7 Proof of Corollary 2

Proof. With o = ﬁ and ¢ = W, 1+ nca = 1+ 2C, is a constant. We set § = ﬁ and
q q
—14, [1+48E2
. q 1 m s . ..
¥ = mln{ oL DLt ea)(LE R/ } In general, C7" is bounded which makes the first bound negligible,

1

ie,y= when K is large enough. Therefore, we have
12L(14ca)(1+4/K/n)
6] 9 1—6(1+ ca)Ly 1
— —3(1 C"™+ 1)L = . 43
y 3 eo)(CF FVEFY = =y S qem ) (43)
From Theorem 2, we derive
LS
= S BV
k=1
<4(C;" +1)(EA! — EAKFL) N 12(1 + nca)Lo?y
- vK n
1 1 (1+nea)o? 1
<A8L(C™ + 1)(1 + ca)(EAY — EAKTH (= + + , 44
(€ + 1) (1 + ca) &+ 7o)t e (44)

which completes the proof.



