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Notation. In proofs, we let ⊗ denote the Kronecker product, and for a vector u, we denote the outer product

by u⊗2 = uu>. We define the infinity norm for a matrix M as ‖M‖∞ = maxi,j |Mij |. Given index set J , vJ

is the vector restricted to indices J . Similarly, MJJ is the sub-matrix on indices J × J . we use {Cj}3j=0 to

denote constants that are independent of dimension, but whose value can change from line to line.

A Proofs for the meta-theorem

In this section, we prove the global linear convergence guarantee given the Definition 2.1. In each iteration of

Algorithm 1, we use Ĝt to update

βt+1 = Pk′
(
βt − ηĜt

)
,

where η = 1/µβ is a fixed step size. Given the condition ‖Ĝ (β)−G (β)‖22 ≤ α(ε)‖G (β)‖22 + ψ (ε) in RSGE’s

definition, we show that Algorithm 1 linearly converges to a neighborhood around β∗ with error at most O(
√
ψ (ε)).

First, we introduce a supporting Lemma from Shen and Li (2017), which bounds the distance between Pk′(β
t−ηĜt)

and β∗ in each iteration of Algorithm 1.

Lemma A.1 (Theorem 1 in Shen and Li (2017)). Let z ∈ Rd be an arbitrary vector and β∗ ∈ Rd be any k-sparse

signal. For any k′ ≥ k, we have the following bound:

‖Pk′(z)− β∗‖2 ≤
√
ζ‖z − β∗‖2, ζ = 1 +

ρ+
√

(4 + ρ)ρ

2
, ρ =

min{k, d− k′}
k′ − k + min{k, d− k′}

.

We choose the hard thresholding parameter k′ = kc2κ � d, hence ρ = 1/c2κ.

Theorem A.1 (Theorem 2.1). Suppose we observe N (k, d, ε, ν) ε-corrupted samples from Model 1.1. Algorithm 1,

with ψ (ε)-RSGE defined in Definition 2.1, with step size η = 1/µβ outputs β̂, such that∥∥∥β̂ − β∗∥∥∥
2

= O
(√

ψ (ε)
)
,

with probability at least 1− ν, by setting k′ = c2κk and T = Θ
(

log
(
‖β∗‖2/

√
ψ (ε)

))
. The sample complexity is

N (k, d, ε, ν) = n (k, d, ε, ν/T )T .

Proof. By splitting N samples into T sets (each set has sample size n), Algorithm 1 collects a fresh batch

of samples with size n (k, d, ε, ν/T ) at each iteration t ∈ [T ]. Definition 2.1 shows that for the fixed gradient

expectation Gt, the estimate for the gradient Gt satisfies:∥∥∥Ĝt −Gt
∥∥∥2

2
≤ α(ε)

∥∥Gt
∥∥2

2
+ ψ(ε) (6)

with probability at least 1− ν/T , where α(ε) is determined by ε.

Letting zt = βt − ηĜt, we study the t-th iteration of Algorithm 1. Based on Lemma A.1, we have

∥∥βt+1 − β∗
∥∥

2
≤
√
ζ
∥∥∥βt − ηĜ− β∗∥∥∥

2

=
√
ζ
∥∥∥βt − ηG− β∗ + η(G− Ĝ)

∥∥∥
2

≤
√
ζ
∥∥βt − ηG− β∗∥∥

2
+
√
ζη
∥∥∥G− Ĝ∥∥∥

2
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(i)

≤
√
ζ
∥∥(Id − ηΣ)(βt − β∗)

∥∥
2

+
√
ζη

√
α(ε)‖G‖22 + ψ(ε)

(ii)

≤
√
ζ
∥∥(Id − ηΣ)(βt − β∗)

∥∥
2

+
√
ζη
√
α(ε)

∥∥Σ(βt − β∗)
∥∥

2
+
√
ζη
√
ψ(ε)

where (i) follows from the theoretical guarantee of RSGE, and (ii) follows from the basic inequality
√
a+ b ≤

√
a+
√
b for non-negative a, b.

By setting η = 1/µβ , we have

∥∥βt+1 − β∗
∥∥

2
≤
√
ζ
∥∥(Id − ηΣ)(βt − β∗)

∥∥
2

+
√
ζη
√
α(ε)

∥∥Σ(βt − β∗)
∥∥

2
+
√
ζη
√
ψ(ε)

≤
√
ζ(1− 1

cκ
)
∥∥βt − β∗∥∥

2
+
√
ζ
√
α(ε)

∥∥βt − β∗∥∥
2

+
√
ζη
√
ψ(ε)

≤
√
ζ(1− 1

cκ
+
√
α(ε))

∥∥βt − β∗∥∥
2

+
√
ζη
√
ψ(ε) (7)

When ε is a small enough constant, we have
√
α(ε) ≤ 1

2cκ
, then

√
ζ(1− 1

cκ
+
√
α(ε)) ≤

√
ζ(1− 1

2cκ
)

≤

√
1 +

ρ+
√

(4 + ρ)ρ

2
(1− 1

2cκ
)

Plugging in the parameter ρ = 1/c2κ in Lemma A.1, we have

√
ζ(1− 1

cκ
+
√
α(ε)) ≤ 1− 1

10cκ

Together with eq. (7), we have the recursion

∥∥βt+1 − β∗
∥∥

2
≤
(

1− 1

10cκ

)∥∥βt − β∗∥∥
2

+
√
ζη
√
ψ(ε).

By solving this recursion and using a union bound, we have

∥∥βt − β∗∥∥
2
≤
(

1− 1

10cκ

)t ∥∥β0 − β∗
∥∥

2
+

√
ζη
√
ψ(ε)

1−
(

1− 1
10cκ

) ≤ (4α(ε))
t ‖β∗‖22 + 10cκ

√
ζη
√
ψ(ε),

with probability at least 1− ν.

By the definition of cκ and η, we have
∥∥∥β̂ − β∗∥∥∥

2
= O

(√
ψ(ε)

µα

)

B Correcting Lemma A.3 in Balakrishnan et al. (2017a)’s proof

A key part of the proof of the main theorem in Balakrishnan et al. (2017a) is to obtain an upper bound on the

k-sparse operator norm. Specifically, their Lemmas A.2 and A.3 aim to show:

λ∗ ≥

∥∥∥∥∥∥
|S|∑
i=1

wi

(
gi − Ĝ(w)

)⊗2

− F
(
Ĝ(w)

)∥∥∥∥∥∥
k̃,op

≥

∥∥∥Pk̃ (∆̃(w)
)∥∥∥2

2

5ε
, (8)
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where Ĝ(w) = P2k̃

(∑|S|
i=1 wigi

)
, ∆̃(w) =

∑|S|
i=1 wigi −G3, and recall λ∗ is the solution to the SDP as given in

Algorithm 3.

Lemma A.3 asserts the first inequality above, and Lemma A.2 the second. As we show below, Lemma A.3 cannot

be correct. Specifically, the issue is that the quantity inside the second term in eq. (8) may not be positive

semidefinite. In this case, the convex optimization problem whose solution is λ∗ is not a valid relaxation, and

hence the λ∗ they obtain need not a valid upper bound. Indeed, we give a simple example below that illustrates

precisely this potential issue.

Fortunately, not all is lost – indeed, as our results imply, the main results in Balakrishnan et al. (2017a) is correct.

The key is to show that while λ∗ does not upper bound the sparse operator norm, it does, however, upper bound

the quantity

max
‖v‖2=1,‖v‖0≤k̃

v>

 |S|∑
i=1

wi

(
gi − Ĝ(w)

)⊗2

− F
(
Ĝ(w)

)v. (9)

We show this in Appendix D. More specifically, in Lemma D.3, we replace the k̃-sparse operator norm in the

second term of eq. (8) by the term in eq. (9). We show this can be used to complete the proof in Appendix D.4.

We now provide a counterexample that shows the first inequality in (8) cannot hold. The main argument is

that the convex relaxation for sparse PCA is a valid upper bound of the sparse operator norm only for positive

semidefinite matrices. Specifically, denoting E = Σ̂(w)− F (Ĝ(w)) as the matrix in eq. (9), Balakrishnan et al.

(2017a) solves the following convex program:

max
H

Tr (E ·H) , subject to H < 0, ‖H‖1,1 ≤ k,Tr (H) = 1.

Since Σ̂(w)− F (Ĝ(w)) is no longer a p.s.d. matrix, the trace maximization above may not be a valid convex

relaxation, and thus not an upper bound. Let us consider a specific example, in robust sparse mean estimation

for N (µ, Id), where function F (·) is a fixed identity matrix Id. We choose k̃ = 1, µ = [1, 0]>, and d = 2. Suppose

we observe data to be x1 = [2.5, 0]>, x2 = [0, 0]>, and the weights for x1 and x2 are the same. Then, we can

compute the following matrices as:

Σ̂ =

[
1.5625 0

0 0

]
, F =

[
1 0

0 1

]
,E = Σ̂− F =

[
0.5625 0

0 −1

]
.

It is clear that ‖Σ̂−F‖k̃,op = 1. Solving the convex relaxation maxH Tr (E ·H) or maxH Tr(Σ̂ ·H) gives answer

H∗ =
[
1 0; 0 0

]
and the corresponding λ∗ = 0.5625, which is clearly not an upper bound of ‖Σ̂ − F‖k̃,op.

Hence λ∗ ≥ ‖Σ̂− F‖k̃,op cannot hold in general.

C Covariance smoothness properties in robust sparse mean estimation

When the covariance is identity, the ellipsoid algorithm requires a closed form expression of the true covariance

function F (G). Indeed, the ellipsoid-based robust sparse mean estimation algorithm uses the covariance structure

given by F (·) to detect outliers. The accuracy of robust sparse mean estimation explicitly depends on the

properties of F (G). Lcov and LF are two important properties of F (G), related to its smoothness. We first

3The {wi} are weights, and these are defined precisely in Section D, but are not required for the present discussion or
counterexample.
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provide a closed-form expression for F , and then define precisely smoothness parameters Lcov and LF, and show

how these can be controlled.

Closed form expression of F (G).

Lemma C.1. Suppose we observe i.i.d. samples {zi, i ∈ G} from the distribution P in Model 1.1 with Σ = Id,

we have the covariance of gradient as

Cov(g) = Ezi∼P
(

(gi −G) (gi −G)
>
)

= ‖G‖22Id +GG> + σ2Id.

Proof. Since gi = xi
(
x>i β − yi

)
, and G = Ezi∼P (gi) and Σ = Id, we have

Ezi∼P
(

(gi −G) (gi −G)
>
)

= EP
((
xx> − Id

)
GG>

(
xx> − Id

))
+ σ2Id

= EP
(
xx>GG>xx>

)
− 2EP

(
xx>GG>

)
+GG> + σ2Id,

where we drop i in xi without abuse of notation.

Next, we apply the Stein-type Lemma Stein (1981) for x ∼ N (0, Id), and a function f (x) whose second derivative

exists:

E
(
f (x)xx>

)
= E (f (x)) Id + E

(
∇2f (x)

)
. (10)

By eq. (10), we have

Cov(g) = ‖G‖22Id +GG> + σ2Id.

Smoothness properties of ‖F‖op. We first assume

Lcov = max
‖v‖2=1,‖v‖0≤k̃

∣∣v> Cov(g)v
∣∣. (11)

If we define the functional F (·), such that F (Ĝ) = ‖Ĝ‖22Id + ĜĜ> + σ2Id, and F (G) = ‖G‖22Id +GG> + σ2Id,

then we assume that there exists LF satisfying∥∥∥F (G)− F
(
Ĝ
)∥∥∥

op
≤ LF

∥∥∥G− Ĝ∥∥∥
2

+ C
∥∥∥G− Ĝ∥∥∥2

2
, (12)

where C is a universal constant.

Lemma C.2. Under the same setting as Lemma C.1, we have

Lcov = 2‖G‖22 + σ2, and LF = 4‖G‖2.

Proof. Lcov is upper bounded by the top eigenvalue of F (G),

Lcov ≤ ‖F (G)‖2 ≤ 2‖G‖22 + σ2.



Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis

For the LF term, we have∥∥∥F (G)− F
(
Ĝ
)∥∥∥

op

=

∥∥∥∥2G>
(
G− Ĝ

)
Id −

∥∥∥G− Ĝ∥∥∥2

2
Id +G

(
G− Ĝ

)>
+
(
G− Ĝ

)
G> −

(
G− Ĝ

)(
G− Ĝ

)>∥∥∥∥
op

≤ 4‖G‖2
∥∥∥G− Ĝ∥∥∥

2
+ 2
∥∥∥G− Ĝ∥∥∥2

2
.

Therefore, we can choose LF = 4‖G‖2 and C = 2.

D Proofs for the ellipsoid algorithm in robust sparse regression

In this section, we prove guarantees for the ellipsoid algorithm in robust sparse regression. In the theoretical

analysis of the ellipsoid algorithm, we use Sin to denote the observations S, which shares the same notations

with Algorithm 3. We first give preliminary definitions of error terms defined on Sgood and Sin, and then

prove Lemma D.1. Next, we prove concentration results for gradients of uncorrupted sparse linear regression

in Lemma D.2. In Lemma D.3, we provide lower bounds for the k̃-sparse largest eigenvalue defined in eq. (9).

Finally, we prove Corollary 3.1 based on previous Lemmas in Appendix D.4.

D.1 Preliminary definitions and properties related to Sgood,Sbad

Here, we state again the definitions of Sgood, Sbad and Sin. In Algorithm 3, we denote the input set as Sin, which

can be partitioned into two parts: Sgood = {i : i ∈ G and i ∈ Sin}, and Sbad = {i : i ∈ B and i ∈ Sin}. Note that

Sin = Sgood ∪ Sbad, and n = |Sin|. For the convenience of our analysis, we define the following error terms:

∆̃Sgood = Ei∈uSgood (gi)−G,

∆̂Sgood = P2k̃

(
Ei∈uSgood (gi)

)
−G,

∆̃ = Ei∈uSin (gi)−G,

∆̂ = P2k̃ (Ei∈uSin (gi))−G.

These error terms are defined under a uniform distribution over samples, whereas previous papers using ellipsoid

algorithms consider a set of balanced weighted distribution. More specifically, the weights in our setting are

defined as:

w̃i =
1

n
, ∀i ∈ Sgood ∪ Sbad.

The balanced weighted distribution is defined to satisfy:

0 ≤ wi ≤
1

(1− 2ε)n
, ∀i ∈ Sgood ∪ Sbad,

∑
i∈Sin

wi = 1.

Notice that
∑
i∈Sbad

w̃i = O (ε), and
∑
i∈Sbad

wi = O
(

ε
1−2ε

)
with high probability, which intuitively says that

both types of distributions have O(ε) weights over all bad samples. We are interested in considering uniform

weighted samples since this formulation helps us analyze the filtering algorithm more conveniently, as we show in

the following sections.
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We restate the following Lemma which shows the connection of these different error terms.

Lemma D.1 (Lemma A.1 in Balakrishnan et al. (2017a)). Suppose G is k-sparse. Then we have the following

result:

1

5

∥∥∥∆̂
∥∥∥

2
≤
∥∥∥Pk (∆̃

)∥∥∥
2
≤ 4
∥∥∥∆̂
∥∥∥

2
.

D.2 Concentration bounds for gradients in Sgood

We first prove concentration bounds for gradients for sparse linear regression in the uncorrupted case. The

following is similar to Lemma D.1 in Balakrishnan et al. (2017a).

Lemma D.2. Suppose we observe i.i.d. gradient samples {gi, i ∈ G} from Model 1.1 with |G| = Ω
(
k log(d/ν)

ε2

)
.

Then, there is a δ = Õ (ε), such that with probability at least 1− ν, for any index subset J ⊂ [d], |J | ≤ k̃ and for

any G′ ⊂ G, |G′| ≥ (1− 2ε)|G|, the following inequalities hold:

∥∥Ei∈uG′ (gJi )−GJ ∥∥2
≤ δ (‖G‖2 + σ) , (13)∥∥∥Ei∈uG′ (gJi −GJ )⊗2 − F (G)

JJ
∥∥∥

op
≤ δ

(
‖G‖22 + σ2

)
. (14)

Proof. The main difference from their Lemma D.1 is that we consider a uniform distribution over all samples

instead of a balanced weighted distribution. Furthermore, eqs. (13) and (14) are the concentration inequalities

for the mean and covariance of the collected gradient samples {gi, i ∈ G} in the good set with the form:

gi = xix
>
i G− xiξi,

which is equivalent to their Lemma D.1, where they consider yixi = xix
>
i β + xiξi. Therefore, by setting all

weights to 1
(1−2ε)|G| in their Lemma D.1 we obtain the desired concentration properties.

D.3 Relationship between the first and second moment of samples in Sin

In this part, we show an important connection between the covariance deviation (the empirical covariance of Sin

minus the true covariance of authentic data) and the mean deviation (the empirical mean of Sin minus the true

mean of authentic data). When the mean deviation (in `2 sense) is large, the following Lemma implies that the

covariance deviation must also be large. As a result, when the magnitude of the covariance deviation is large, the

current set of samples (or the current weights of all samples) needs to be adjusted; when the magnitude of the

covariance deviation is small, the average of current sample set (or the weighted sum of samples using current

weights) provides a good enough estimate of the model parameter. Moreover, the same principle holds when we

use an approximation of the true covariance, which can be efficiently estimated.

Unlike Lemma A.2 in Balakrishnan et al. (2017a), in eq. (17), eq. (18), we provide lower bounds for the k̃-sparse

largest eigenvalue (rigorous definition in eq. (20)), instead of the k̃-sparse operator norm. As we discussed

in Appendix B, λ∗ is the convex relaxation of finding the k̃-sparse largest eigenvalue (instead of the k̃-sparse

operator norm). In the statement of the following Lemma, for the purpose of consistency, we consider the uniform

distribution of weights. However, the proof and results can be easily extended to the setting with the balanced

distribution of weights. This is due to the similarity between the two types of weight representation, as discussed

in Appendix D.1.



Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis

Lemma D.3. Suppose |Sbad| ≤ 2ε|Sin|, δ = Ω (ε), and the gradient samples in Sgood satisfy∥∥∥Pk̃ (∆̃Sgood

)∥∥∥
2
≤ c (‖G‖2 + σ) δ, (15)∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥

k̃,op
≤ c

(
‖G‖22 + σ2

)
δ, (16)

where c is a constant. If
∥∥∥Pk̃ (∆̃

)∥∥∥
2
≥ C1 (‖G‖2 + σ) δ, where C1 is a large constant, we have,

max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F (G)

)
v ≥

∥∥∥Pk̃ (∆̃
)∥∥∥2

2

4ε
, (17)

max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F
(
Ĝ
))
v ≥

∥∥∥Pk̃ (∆̃
)∥∥∥2

2

5ε
. (18)

Proof. We focus on the k̃-sparse largest eigenvalue (rigorous definition in eq. (20)), which is the correct route of

analysis the convex relaxation of Sparse PCA.

Let J = arg maxJ ′⊂[d],|J ′|≤k̃

∥∥∥∆̃J
′
∥∥∥

2
. Then ∆̃J =

∥∥∥Pk̃ (∆̃
)∥∥∥

2
≥ C1 (‖G‖2 + σ) δ according to the assumption.

Using |Sin| to denote the size of Sin, we have a lower bound for the sum over bad samples:

∥∥∥∥∥ 1

|Sin|
∑
i∈Sbad

(
gJi −G

J )∥∥∥∥∥
2

=

∥∥∥∥∥∥∆̃J − 1

|Sin|
∑

i∈Sgood

(
gJi −G

J )∥∥∥∥∥∥
2

≥
∥∥∥∆̃J

∥∥∥
2
−

∥∥∥∥∥∥ 1

|Sin|
∑

i∈Sgood

(
gJi −G

J )∥∥∥∥∥∥
2

(i)

≥
∥∥∥∆̃J

∥∥∥
2
− c (‖G‖2 + σ) δ

(ii)

≥

∥∥∥∆̃J
∥∥∥

2

1.1
,

where (i) follows from eq. (15) and the assumptions; (ii) follows from that we choose C1 large enough.

By p.s.d.-ness of covariance matrices, we have

1

|Sbad|
∑
i∈Sbad

(
gJi −G

J ) (gJi −GJ )> <

(
1

|Sbad|
∑
i∈Sbad

(
gJi −G

J ))⊗2

.

Therefore, because |Sbad| ≤ 2ε|Sin|, we have

∥∥∥∥∥ 1

|Sin|
∑
i∈Sbad

(
gJi −G

J )⊗2

∥∥∥∥∥
op

≥

∥∥∥ 1
|Sin|

∑
i∈Sbad

(
gJi −GJ

)∥∥∥2

2

2ε
≥

∥∥∥∆̃J
∥∥∥2

2

2.5ε
. (19)

With a lower bound of this submatrix of the covariance matrix, we define a vector v0 ∈ Rk̃ as follows:

v0 = arg max
‖v‖2=1

v>

( ∑
i∈Sbad

1

|Sin|
(
gJi −G

J )⊗2

)
v. (20)
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For this v0, we have

v>0

 1

|Sin|

|Sin|∑
i=1

(
gJi −G

J )⊗2 − F (G)
JJ

v0

≥ v>0

(
1

|Sin|
∑
i∈Sbad

(
gJi −G

J )⊗2

)
v0

−

∥∥∥∥∥∥ 1

|Sin|
∑

i∈Sgood

(
gJi −G

J )⊗2 − |Sgood|
|Sin|

F (G)
JJ

∥∥∥∥∥∥
op

−
∥∥∥∥ |Sbad|
|Sin|

F (G)
JJ
∥∥∥∥

op

(i)

≥

∥∥∥∆̃J
∥∥∥2

2.5ε
− c

(
‖G‖22 + σ2

)
δ − 2ε(‖G‖22 + σ2)

(ii)

≥

∥∥∥∆̃J
∥∥∥2

3ε
, (21)

where (i) follows from eq. (16) and eq. (19); (ii) follows from the assumption that ε is sufficiently small.

Applying eq. (21) on our target Ei∈uSin
(
gi − Ĝ

)⊗2

− F (G), we have

v>0

 1

|Sin|

|Sin|∑
i=1

(
gJi − Ĝ

J
)⊗2

− F (G)
JJ

v0

= v>0

 1

|Sin|

|Sin|∑
i=1

(
gJi −G

J )⊗2 − F (G)
JJ − ∆̂J

(
∆̃J
)>
− ∆̃J

(
∆̂J
)>

+
(

∆̂J
)⊗2

v0

(i)

≥ v>0

 1

|Sin|

|Sin|∑
i=1

(
gJi −G

J )⊗2 − F (G)
JJ

v0 − 24

(∥∥∥∆̃J
∥∥∥2

2

)

(ii)

≥

∥∥∥∆̃J
∥∥∥2

2

4ε
, (22)

where (i) follows from Lemma D.1; (ii) follows from eq. (21) and ε is sufficiently small. By a construction

v = (v0,0d−k̃)>, it is easy to see that v0 provides a lower bound for the maximum of {v : ‖v‖2 = 1, ‖v‖0 ≤ k̃} in

eq. (17).

By eq. (22), we already know that

v>0

 1

|Sin|

|Sin|∑
i=1

(
gJi − Ĝ

J
)⊗2

− F (G)
JJ

v0 ≥

∥∥∥∆̃J
∥∥∥2

2

4ε
.

By our assumptions on F , we have∥∥∥F (G)− F
(
Ĝ
)∥∥∥

k̃,op
≤ LF

∥∥∥∆̂
∥∥∥

2
+ C

∥∥∥∆̂
∥∥∥2

2

(i)

≤ 5LF

∥∥∥∆̃J
∥∥∥

2
+ 5C

∥∥∥∆̃J
∥∥∥2

2
,

where (i) follows from Lemma D.1. Since δ = Ω (ε), we obtain eq. (18) by using the triangle inequality.
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D.4 Proof of Corollary 3.1

Equipped with Lemma D.1, Lemma D.2 and Lemma D.3, we can now prove Corollary 3.1.

Corollary D.1 (Corollary 3.1). Suppose we observe N (k, d, ε, ν) ε-corrupted samples from Model 1.1 with

Σ = Id. By setting k̃ = k′ + k, if we use the ellipsoid algorithm for robust sparse gradient estimation with

ρsep = Θ
(
ε
(
‖Gt‖22 + σ2

))
, it requires N (k, d, ε, ν) = Ω

(k2 log(dT/ν)
ε2

)
T samples, and guarantees ψ (ε) = Õ

(
ε2σ2

)
.

Hence, Algorithm 1 outputs β̂, such that ∥∥∥β̂ − β∗∥∥∥
2

= Õ (σε) ,

with probability at least 1− ν, by setting T = Θ
(

log
(
‖β∗‖2
εσ

))
.

Proof. We consider only the t-th iteration, and thus omit t in gti and Gt. The function F (G) is given by

F (G) = ‖G‖22Id + GG> + σ2Id, as in Appendix C. The accuracy in robust sparse estimation on gradients

depends on two parameters for F (G): Lcov = 2‖G‖22 +σ2, and LF = 4‖G‖2, which are calculated in Appendix C.

Under the statistical model and the contamination model described in Theorem 2.1, we can set the parameters

ρsep = Θ(ε
(
‖Gt‖22 + σ2

)
) in Algorithm 2 by the calculation of Lcov and LF

The ellipsoid algorithm considers all possible sample weights in a convex set and finds the optimal weight for each

sample. The algorithm iteratively uses a separation oracle Algorithm 2, which solves the convex relaxation of

Sparse PCA at each iteration:

λ∗ = max
H

Tr
((

Σ̂− F
(
Ĝ
))
·H
)
, subject to H < 0, ‖H‖1,1 ≤ k̃,Tr (H) = 1. (23)

To prove the Main Theorem (Theorem 3.1) in Balakrishnan et al. (2017a), the only modification is to replace the

lower bound of λ∗ in their Lemma A.3.

A weighted version of Lemma D.3 implies that if the mean deviation is large, then

max
‖v‖2=1,‖v‖0≤k̃

v>

|Sin|∑
i=1

wi

(
gi − Ĝ(w)

)⊗2

− F
(
Ĝ(w)

)v ≥
∥∥∥Pk̃ (∆̃(w)

)∥∥∥2

2

5ε
, (24)

where Ĝ(w) = P2k̃

(∑|Sin|
i=1 wigi

)
, and ∆̃(w) =

∑|Sin|
i=1 wigi −G. Then, λ∗ in the ellipsoid algorithm satisfies

λ∗ ≥ max
‖v‖2=1,‖v‖0≤k̃

v>

|Sin|∑
i=1

wi

(
gi − Ĝ(w)

)⊗2

− F
(
Ĝ(w)

)v, (25)

since λ∗ is the solution to the trace norm maximization eq. (23), which is the convex relaxation of finding the

k̃-sparse largest eigenvalue.

Combining eq. (24) and eq. (25), we have

λ∗ ≥

∥∥∥Pk̃ (∆̃(w)
)∥∥∥2

2

5ε
, (26)
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which recovers the correctness of the separation oracle in the ellipsoid algorithm, and their Main Theorem

(Theorem 3.1).

Finally, the ellipsoid algorithm guarantees that, with sample complexity Ω
(
k2 log(d/ν)

ε2

)
, the estimate Ĝ satisfies

∥∥∥Ĝ−G∥∥∥2

2
= Õ

(
ε2
(
L2

F + Lcov

))
= Õ

(
ε2
(
‖G‖22 + σ2

))
, (27)

with probability at least 1 − ν. This exactly gives us a Õ
(
ε2σ2

)
-RSGE. Hence, we can apply eq. (27) as the

RSGE in Theorem 2.1 to prove Corollary 3.1.

E Outlier removal guarantees in the filtering algorithm

In this section, we consider a single iteration of Algorithm 1, and prove Lemma 4.1 at the t-th step. For clarity,

we omit the superscript t in both gti and Gt.

In order to show guarantees for Lemma 4.1, we leverage previous results Lemma D.2 and Lemma D.3. We state

Lemma E.1 as a modification of Lemma D.2 by replacing ε by
√
ε, using concentration results in Lemma D.2, and

replacing ε by
√
ε. We state Lemma E.2 as a modification of Lemma D.3 by replacing δ = Ω (ε) with δ = Ω (

√
ε),

since the results for δ = Ω (ε) implies the results for δ = Ω (
√
ε).

The reason we modify the above is to prove guarantees for our computationally more efficient RSGE described in

Algorithm 3. Our motivation for calculating the score for each sample according to τi = Tr(H∗ ·(gi−Ĝ)(gi−Ĝ)>)

is to make sure that all the scores τi are positive (notice that the scores calculated based on the original non-p.s.d

matrix may be negative). Based on this, we show that the sum of scores over all bad samples is a large constant

(> 1) times larger than the sum of scores over all good samples. When finding an upper bound for
∑
i∈Sgood τi,

we compromise an ε factor in the value of λ∗, which results in an
√
ε factor in the recovery guarantee.

As described above, we immediately have Lemma E.1 and Lemma E.2 given the proofs in Appendix D. Note that

we still use the same definitions ∆̃Sgood and ∆̃ on set Sgood and Sin respectively as in Appendix D.1.

Lemma E.1. Suppose we observe i.i.d. gradient samples {gi, i ∈ G} from Model 1.1 with |G| = Ω
(
k log(d/ν)

ε

)
.

Then there is a δ = Õ (
√
ε) that with probability at least 1− ν, we have for any subset J ⊂ [d], |J | ≤ k̃, and for

any G′ ⊂ G, |G′| ≥ (1− 2ε)|G|, the following inequalities hold:

∥∥Ei∈uG′ (gJi )−GJ ∥∥2
≤ δ (‖G‖2 + σ) , (28)∥∥∥Ei∈uG′ (gJi −GJ )⊗2 − F (G)

JJ
∥∥∥

op
≤ δ

(
‖G‖22 + σ2

)
. (29)

Lemma E.2. Suppose |Sbad| ≤ 2ε|Sin|, δ = Ω (
√
ε), and the gradient samples in Sgood satisfy∥∥∥Pk̃ (∆̃Sgood

)∥∥∥
2
≤ c (‖G‖2 + σ) δ, (30)∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥

k̃,op
≤ c

(
‖G‖22 + σ2

)
δ, (31)

where c is a constant. If
∥∥∥Pk̃ (∆̃

)∥∥∥
2
≥ C1 (‖G‖2 + σ) δ, where C1 is a constant. Then we have,

max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F (G)

)
v ≥

∥∥∥Pk̃ (∆̃
)∥∥∥2

2

4ε
, (32)
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max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F
(
Ĝ
))
v ≥

∥∥∥Pk̃ (∆̃
)∥∥∥2

2

5ε
. (33)

By Lemma E.1, eq. (30) and eq. (31) in Lemma E.2 are satisfied, provided that we have |G| = Ω
(
k log(d/ν)

ε

)
.

Now, equipped with Lemma E.1 and Lemma E.2, the effect of good samples can be controlled by concentration

inequalities. Based on these, we are ready to prove Lemma 4.1.

Lemma E.3 (Lemma 4.1). Suppose we observe n = Ω
(k2 log(d/ν)

ε

)
ε-corrupted samples from Model 1.1 with

Σ = Id. Let Sin be an ε-corrupted set of gradient samples {gti}ni=1. Algorithm 3 computes λ∗ that satisfies

λ∗ ≥ max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2
)
v. (34)

If λ∗ ≥ ρsep = Cγ

(
‖Gt‖22 + σ2

)
, then with probability at least 1− ν, we have

∑
i∈Sgood

τi ≤ 1
γ

∑
i∈Sin

τi, (35)

where τi is defined in line 10, Cγ is a constant depending on γ, and γ ≥ 4 is a constant.

Proof. Since λ∗ is the solution of the convex relaxation of Sparse PCA, we have

λ∗ =Tr

(
H∗ ·

(
Ei∈uSin

(
gi − Ĝ

)⊗2
))

≥ max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2
)
v.

By Theorem A.1 in Balakrishnan et al. (2017a), we have

Tr

(
H∗ ·

(
Ei∈uSgood

(
gi − Ĝ

)⊗2

− F
(
Ĝ
)))

≤ C
(∥∥∥∆̂

∥∥∥2

2
+
(
LF + k̃

∥∥∥∆̃Sgood

∥∥∥
∞

)∥∥∥∆̂
∥∥∥

2
+ k̃
∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥
∞

)
, (36)

where C is a constant. Noticing that
∥∥∥∆̃Sgood

∥∥∥
∞

and
∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥
∞

are unrelated to Ĝ

and only defined on Sgood, Balakrishnan et al. (2017a) shows concentration bounds for these two terms, when

n = Ω
(
k̃2 log(d/ν)

ε

)
. Specifically, it showed that with probability at least 1− ν, we have

∥∥∥∆̃Sgood

∥∥∥
∞
≤ C1

(
LF +

√
Lcov

)√
ε/k̃ (37)∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥
∞
≤ C1

(
L2

F + Lcov

)√
ε/k̃ (38)

Now, we focus on the LHS of eq. (35), the sum of scores of points in Sgood. By definition, we have

Ei∈uSgood τi

= Tr

(
H∗ ·

(
Ei∈uSgood

(
gi − Ĝ

)⊗2
))
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= Tr

(
H∗ ·

(
Ei∈uSgood

(
gi − Ĝ

)⊗2

− F
(
Ĝ
)))

+ Tr
(
H∗F

(
Ĝ
))

(i)

≤ C

(∥∥∥∆̂
∥∥∥2

2
+
(
LF + k̃

∥∥∥∆̃Sgood

∥∥∥
∞

)∥∥∥∆̂
∥∥∥

2
+ k̃
∥∥∥Ei∈uSgood (gi −G)

⊗2 − F (G)
∥∥∥
∞

)
+ Tr

(
H∗F

(
Ĝ
))

,

where (i) follows from eq. (36).

To bound the RHS above, we first bound Tr
(
H∗ · F

(
Ĝ
))

. Because of the constraint of the SDP given in eq. (2),

H∗ belongs to the Fantope F1 Vu et al. (2013), and thus for any matrix A, we have Tr (A ·H∗) ≤ ‖A‖op .

Thus, we have

Tr
(
H∗ · F

(
Ĝ
))

= Tr (H∗ · F (G)) + Tr
(
H∗ ∗

(
F
(
Ĝ
)
− F (G)

))
≤ ‖F (G)‖op +

∥∥∥F (Ĝ)− F (G)
∥∥∥

op

(i)

≤ C1

(
‖G‖22 + σ2

)
+
∥∥∥F (Ĝ)− F (G)

∥∥∥
op

(ii)

≤ C1

(
‖G‖22 + σ2

)
+ LF

∥∥∥∆̂
∥∥∥

2
+ C2

∥∥∥∆̂
∥∥∥2

2
, (39)

where (i) follows from the expression of F (G) in Appendix C; (ii) from the smoothness of F (G).

By plugging in the concentration guarantees eq. (37) and combining eq. (39), we have

Ei∈uSgood τi

≤ C2

((
L2

F + Lcov

)√
ε+

((
LF +

√
Lcov

)√
ε+ LF

)∥∥∥∆̂
∥∥∥

2
+
∥∥∥∆̂
∥∥∥2

2

)
+ C1

(
‖G‖22 + σ2

)
(i)

≤ C2

(
‖G‖2

∥∥∥∆̂
∥∥∥

2
+
∥∥∥∆̂
∥∥∥2

2

)
+ C1

(
‖G‖22 + σ2

)
≤ C1

(
‖G‖2

∥∥∥∆̂
∥∥∥

2
+
∥∥∥∆̂
∥∥∥2

2
+ ‖G‖22 + σ2

)
, (40)

where (i) follows from the fact that ε is sufficiently small.

On the other hand, we know that: Ei∈uSin τi = λ∗.

Now, under the condition λ∗ ≥ ρsep = Θ
(
‖G‖22 + σ2

)
, we consider two cases separately. By separating two cases,

we can always show λ∗ is very large, and the contribution from good samples is limited.

First, if ‖∆̂‖22 ≥ Θ
(
‖G‖22 + σ2

)
, then in eq. (40), we have

‖∆̂‖22 & ‖G‖2‖∆̂‖2 & ‖G‖22, and ‖∆̂‖22 & σ2.

Thus, we only need to compare λ∗ and ‖∆̂‖22. By Lemma E.2, we have

Ei∈uSin τi = λ∗ ≥ max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2
)
v

≥ max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F
(
Ĝ
))
v
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≥

∥∥∥∆̂
∥∥∥2

2

ε
.

Hence, by eq. (40), we have Ei∈uSin τi ≥ γ Ei∈uSgood τi, where γ ≥ 4 is a constant.

Second, if ‖∆̂‖22 ≤ Θ
(
‖G‖22 + σ2

)
, then in eq. (40), we have

‖G‖22 & ‖G‖2‖∆̂‖2 & ‖∆̂‖22, or σ2 & ‖∆̂‖22.

Thus, we only need to compare λ∗ and max
(
‖G‖22, σ2

)
. Since λ∗ ≥ Cγ

(
‖G‖22 + σ2

)
by the condition of

Lemma 4.1, we still have Ei∈uSin τi ≥ γ Ei∈uSgood τi, where γ ≥ 4 is a constant.

Combing all of above, and setting ρsep = Cγ

(
‖G‖22 + σ2

)
, we have

∑
i∈Sin

τi = |Sin|Ei∈uSin τi ≥ γ|Sgood|Ei∈uSgood τi = γ
∑

i∈Sgood

τi.

F RSGE via the filtering algorithm

In this section, we still consider the t-th iteration of Algorithm 1 and prove Theorem 4.1 on t. We omit t in gti
and Gt.

In the case of λ∗ ≥ Cγ

(
‖G‖22 + σ2

)
, Algorithm 3 iteratively removes one sample according to the probability

distribution eq. (4). We denote the steps of this outlier removal procedure as l = 1, 2, · · · , n. The first step of

proving Theorem 4.1 is to show we can remove a corrupted samples with high probability at each step, which is a

result by Lemma 4.1.

Intuitively, if all subsequent steps are i.i.d., we can expect Algorithm 3 to remove outliers within around εn

iterations, with exponentially high probability. However, the subsequent steps in Algorithm 3 are not independent.

To circumvent this challenge we appeal to a martingale argument.

F.1 Supermartingale construction

Let F l be the filtration generated by the set of events until iteration l of Algorithm 3. We define the corresponding

set Slin, Slgood and Slbad at the step l. We have that Slin,Slgood,Slbad ∈ F l, and |Slin| = n− l.

We denote a good event E l at step l as ∑
i∈Slbad

τi ≤ (γ − 1)
∑

i∈Slgood

τi.

Then, by the definition of Algorithm 3 and Lemma 4.1, if λ∗ ≥ Cγ
(
‖G‖22 + σ2

)
, E l is not true; if E l is true, then

Algorithm 3 will return a Ĝ.

In Lemma F.1, we show that at any step l when E l is not true, the random outlier removal procedure removes a

corrupted sample with probability at least (γ − 1) /γ.

Lemma F.1. In each subsequent step l, if E l is not true, then we can remove one remaining outlier from Slin
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with probability at least (γ − 1) /γ:

Pr
(
one sample from Slbad is removed |Fl

)
≥ γ − 1

γ
.

Proof of Lemma F.1. When λ∗ ≥ Cγ
(
‖G‖22 + σ2

)
, Lemma 4.1 implies

∑
i∈Slbad

τi ≥ (γ − 1)
∑

i∈Slgood

τi.

Then we randomly remove a sample r from Sin according to

Pr (gi is removed |Fl) =
τi∑

i∈Slin
τi
.

Finally,

Pr
(
one sample from Slbad is removed |Fl

)
=
∑
i∈Slbad

τi∑
i∈Slin

τi
≥ γ − 1

γ
.

Since subsequent steps for applying Algorithm 3 on Sin are not independent, we need martingale arguments to

show the total iterations of applying Algorithm 3 is limited.

We use the martingale technique in Xu et al. (2013), by defining T : T = min{l : E l is true}. Based on T , we

define a random variable:

Y l =

|S
T−1
bad |+

γ−1
γ (T − 1) , if l ≥ T

|Slbad|+
γ−1
γ l, if l < T

Lemma F.2 (Lemma 1 in Xu et al. (2013)). {Y l,F l} is a supermartingale.

Now, equipped with Lemma F.1 and Lemma F.2, we are ready to prove Theorem 4.1.

F.2 Proof of Theorem 4.1

Theorem F.1 (Theorem 4.1). Suppose we observe n = Ω
(k2 log(d/ν)

ε

)
ε-corrupted samples from Model 1.1 with

Σ = Id. Let Sin be an ε-corrupted set of gradient samples {gti}ni=1. By setting k̃ = k′ + k, if we run Algorithm 3

iteratively with initial set Sin, and subsequently on Sout, and use ρsep = Cγ
(
‖Gt‖22 + σ2

)
, then this repeated use

of Algorithm 3 will stop after at most 1.1γ
γ−1 εn iterations, and output Ĝt, such that

∥∥∥Ĝt −Gt
∥∥∥2

2
= Õ

(
ε
(∥∥Gt

∥∥2

2
+ σ2

))
,

with probability at least 1− ν − exp (−Θ (εn)). Here, Cγ is a constant depending on γ, where γ ≥ 4 is a constant.

Proof. We analyze Algorithm 3 by discussing a series of {E l}.
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If E l is true, then λ∗ ≤ ρsep = Cγ

(
‖G‖22 + σ2

)
. By Lemma E.2, we have

λ∗ ≥ max
‖v‖2=1,‖v‖0≤k

v>
(
Ei∈uSin

(
gi − Ĝ

)⊗2

− F
(
Ĝ
))
v ≥

∥∥∥Pk̃ (∆̃S

)∥∥∥2

2

5ε
.

Plugging in λ∗ ≤ Cγ
(
‖G‖22 + σ2

)
, we have

1

5

∥∥∥∆̂S

∥∥∥2

2

(i)

≤
∥∥∥Pk̃ (∆̃S

)∥∥∥2

2
≤ 5ελ∗ ≤ O

(
ε
(
‖G‖22 + σ2

))
,

where (i) follows from Lemma D.1. Hence, when E l is true, Algorithm 3 can return a Ĝ, such that
∥∥∥Ĝ−G∥∥∥2

2
≤

O
(
ε
(
‖G‖22 + σ2

))
.

Then, we only need to show
⋃L
l=1 E l is true, where L = 1.1γ

γ−1 εn, with high probability. That said, we need to

upper bound the probability

Pr

(
L⋂
l=1

E l
)

= Pr (T ≥ L) ≤ Pr

(
Y L ≥ γ − 1

γ
L

)
= Pr

(
Y L ≥ 1.1εn

)
. (41)

Then, we can construct the martingale difference according to Xu et al. (2013). Let Dl = Y l − Y l−1, where

Y 0 = εn, and

D̄l = Dl − E
(
Dl|D1, · · · , Dl−1

)
.

Thus {D̄l} is a martingale difference process, and E
(
Dl|D1, · · · , Dl−1

)
≤ 0, since {Y l} is a supermartingale.

Now, eq. (41) can be viewed as a bound for the sum of the associated martingale difference sequence.

Y l − Y 0 =

l∑
j=1

Dj =

l∑
j=1

D̄j +

l∑
j=1

E
(
Dj |D1, · · · , Dj−1

)
≤

l∑
j=1

D̄j .

Since we only remove one example from the set Slin, we can guarantee |Dl| ≤ 1 and |D̄l| ≤ 2. For these bounded

random variables, by applying the Azuma-Hoeffding inequality, we have

Pr
(
Y L ≥ 1.1εn

)
≤ Pr

(
L∑
l=1

D̄l ≥ 0.1εn

)

≤ exp

(
− (0.1εn)

2

8L

)
.

Plugging in L = 1.1γ
γ−1 εn, this probability is upper bounded by exp (−Θ (εn)).

Notice that L = 1.1γ
γ−1 εn ≤ 1.5εn, by setting γ ≥ 4. Hence, from l = 1 to L, we always have |Slbad| ≤ 2ε|Slin|. Then

Lemma E.1 and Lemma E.2 hold and Lemma 4.1 is still valid.

Combining all of the above, we have proven that, with exponentially high probability, Algorithm 3 returns a Ĝ

satisfying
∥∥∥Ĝ−G∥∥∥2

2
≤ O

(
ε
(
‖G‖22 + σ2

))
, within 1.1γ

γ−1 εn iterations.
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G Robust sparse regression with unknown covariance

In this section, we prove the guarantees for RSGE when the covariance matrix Σ is unknown, but each row and

column is sparse. In this case, the population mean of all authentic gradients Gt can be calculated as

Gt = EP
(
gti
)

= EP
(
xix

>
i

(
βt − β∗

))
= Σωt.

Therefore, Gt = Σωt is guaranteed to be r(k′ + k) sparse. And we use the filtering algorithm (Algorithm 3) with

k̃ = r(k′ + k) as a RSGE.

First, we derive the functional F (G) with general covariance matrix Σ, and compute the corresponding LF, Lcov,

which has been defined in eq. (11) and eq. (12) for the case Σ = Id in Appendix C.

Lemma G.1. Suppose we observe i.i.d. samples {zi, i ∈ G} from the distribution P in Model 1.1 with an unknown

Σ, we have the covariance of gradient as

Cov(g) := Ezi∼P
(

(gi −G) (gi −G)
>
)

= Σ
∥∥∥Σ− 1

2G
∥∥∥2

2
+GG> + σ2Σ.

Proof. As in the Model 1.1, we draw x from Gaussian distribution N (0,Σ), the expression of F (·) is given by

Cov(g) = E
(

(gi −G) (gi −G)
>
)

= E
((
xx> −Σ

)
ωω>

(
xx> −Σ

))
+ σ2Σ

(i)
= E

(
Σ

1
2

(
x̃x̃> − Id

)
Σ

1
2ωω>Σ

1
2

(
x̃x̃> − Id

)
Σ

1
2

)
+ σ2Σ

(ii)
= Σ

∥∥∥Σ− 1
2G
∥∥∥2

2
+GG> + σ2Σ.

where (i) follows from the re-parameterization x = Σ
1
2 x̃, where x̃ ∼ N (0, Id), and (ii) follows from the Stein-type

Lemma as in Appendix C.

By Lemma G.1, we define the functional F (G) = Σ
∥∥∥Σ− 1

2G
∥∥∥2

2
+GG> + σ2Σ. In Algorithm 3, we do not need

to evaluate F (·), but our analysis requires upper bounds for two parameters of F (·) – Lcov, LF – to control tail

bounds. Under the same setting as Lemma G.1, we use similar bounds as Appendix C, based on assumptions in

Model 1.1. Hence, we have Lcov = Θ(‖G‖22 + σ2), and LF = Θ(‖G‖2).

Next, we show concentration bounds (Lemma G.2) similar to Lemma E.1, which controls deviation of empirical

mean and covariance for all samples in the good set G.

Lemma G.2. Suppose we observe i.i.d. gradient samples {gi, i ∈ G} from Model 1.1 with |G| = Ω̃
(
k̃ log(d/ν)

ε

)
.

Then, there is a δ = Õ (
√
ε), such that with probability at least 1− ν, for any index subset J ⊂ [d], |J | ≤ k̃ and

for any G′ ⊂ G, |G′| ≥ (1− 2ε)|G|, we have

∥∥Ei∈uG′ (gJi )−GJ ∥∥2
≤ δ (‖G‖2 + σ) , (42)∥∥∥Ei∈uG′ (gJi −GJ )⊗2 − F (G)

JJ
∥∥∥

op
≤ δ

(
‖G‖22 + σ2

)
. (43)

Proof. We prove the concentration inequality for the covariance eq. (43), the bound for mean eq. (42) is similar.
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For any index subset J ⊂ [d], |J | ≤ k̃, we can expand eq. (43) as follows,

Ei∈uG′
(
gJi −G

J )⊗2 − F (G)
JJ

= Ei∈uG′
(
xJx>ωω>x(xJ )>

)
−
(

ΣJJ
∥∥∥Σ 1

2ω
∥∥∥2

2
+ 2GJ (GJ )>

)
(44)

− Ei∈uG′
(
xx>ωω>Σ

)JJ
+GJ (GJ )> (45)

+ Ei∈uG′ ξ2
i x
J (xJ )> − σ2ΣJJ (46)

Here, we prove the concentration inequality for eq. (44), and the other two terms can be bounded by the same

technique. It is sufficient to prove an upper bound for the operator norm as follows∥∥∥∥Ei∈uG′ xJ (xJ )>ωJ (ωJ )>xJ (xJ )> −
(

ΣJJ
∥∥∥Σ 1

2ω
∥∥∥2

2
+ 2GJ (GJ )>

)∥∥∥∥
op

≤ δ‖G‖22, (47)

where x is drawn from a Gaussian distribution N (0,Σ). Note that the index subset J reduce the matrix

to R|J |×|J |. For the concentration bounds of covariance matrix estimation eq. (47), we have a near identical

argument as Lemma 4.5 of Diakonikolas et al. (2016), by replacing Theorem 5.50 with Theorem 5.44 in Vershynin

(2010).

This establishes eq. (47) with sample complexity n = Ω̃
(
k̃ log(1/ν)

ε

)
, with probability at least 1− ν. Next, we take

a union bound over all possible subsets J ⊂ [d], and this gives concentration results for the covariance eq. (43).

Hence we have proved the concentration results for the gradient under the assumption that Σ is row/column

sparse.

Based on Lemma G.2, we have Theorem 5.1, which guarantees the recovery of β∗ in robust sparse regression with

unknown covariance as defined in Model 5.1.

Corollary G.1 (Theorem 5.1). Suppose we observe N (k, d, ε, ν) ε-corrupted samples from Model 1.1, where the

covariates xi’s follow from Model 5.1. If we use Algorithm 3 for robust sparse gradient estimation, it requires

Ω̃
(
r2k2 log(dT/ν)

ε

)
T samples, and T = Θ

(
log
(
‖β∗‖2
σ
√
ε

))
, then, we have

∥∥∥β̂ − β∗∥∥∥
2

= Õ
(
σ
√
ε
)
, (48)

with probability at least 1− ν − T exp (−Θ (εn)).

Proof. With the concentration result Lemma G.2 in hand, the remaining parts share the same theoretical analysis

as Appendix E and Appendix F, by replacing (k′ + k)2 with r2(k′ + k)2 = Θ(r2k2). Hence, we have a result

similar to Corollary 4.1, with sample complexity Ω̃
(
r2k2 log(dT/ν)

ε

)
. And this yields Theorem 5.1.

H Additional experiments

In the this section, we consider the actual running time to demonstrate the practical usefulness of the algorithm

in high dimensions, by plotting against wall time (Section 6 has only plots against iteration number).

We show the scalability of our robust sparse regression algorithm under different setups. The setup for robust

sparse regression is similar to Section 6 – the entries of the true parameter β∗ are set to be either +1 or −1,

hence ‖β∗‖22 = k is fixed. The authentic xis are generated from N (0, Id), and the authentic yi = x>i β
∗ + ξi as in
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Figure 4: In this figure, we show the error accuracy vs. wall clock time for each iterate of Algorithm 1 via filtering
(Algorithm 3). In both plots, we use the same setup in the paper and fix d = 2000, and clean data sample size n = 1000.
In the left plot, the fraction of outliers epsilon is fixed as 0.1. In the right plot, the noise variance is fixed as 0.1, and we
vary the epsilon. Since larger epsilon leads to more outliers, the computational time for ε = 0.2 is slightly larger.
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Figure 5: In this figure, we show the wall clock time vs. the sample size or the dimensionality. In both plots, we use
ε = 0.1 and fix the iteration number to be 20, which is sufficient to recover the parameter. In the left plot, we fix d = 500
and vary the sample size n. Since the number of outliers is linear in n when epsilon is fixed, the computational time has a
linear dependence on n in theory and practice. In the right plot, we fix n = 1000 and vary the dimensionality d. Though
the computational complexity depends on different Sparse PCA solvers (e.g., d’Aspremont et al. (2007)), we show that our
algorithm can easily scale for high dimensions.

Model 1.1. We set the covariates of the outliers as A, where A is a random ±1 matrix of dimension εn/(1− ε)× d,

and set the responses of outliers to −Aβ∗.

The error accuracy vs. wall clock time and scalability in high dimensions are summarized in Figure 4 and Figure 5.

In particular, the convergence in Figure 4 with respect to clock time is similar to the convergence with respect to

iterations in Figure 2. And Figure 5 shows the scalability of our robust sparse regression algorithm in very high

dimensions.


