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Abstract

We provide a novel – and to the best of
our knowledge, the first – algorithm for high
dimensional sparse regression with constant
fraction of corruptions in explanatory and/or
response variables. Our algorithm recovers
the true sparse parameters with sub-linear
sample complexity, in the presence of a con-
stant fraction of arbitrary corruptions. Our
main contribution is a robust variant of Itera-
tive Hard Thresholding. Using this, we pro-
vide accurate estimators: when the covariance
matrix in sparse regression is identity, our er-
ror guarantee is near information-theoretically
optimal. We then deal with robust sparse
regression with unknown structured covari-
ance matrix. We propose a filtering algorithm
which consists of a novel randomized outlier
removal technique for robust sparse mean es-
timation that may be of interest in its own
right: the filtering algorithm is flexible enough
to deal with unknown covariance. Also, it is
orderwise more efficient computationally than
the ellipsoid algorithm. Using sub-linear sam-
ple complexity, our algorithm achieves the
best known (and first) error guarantee. We
demonstrate the effectiveness on large-scale
sparse regression problems with arbitrary cor-
ruptions.

1 Introduction

Learning in the presence of arbitrarily (even adver-
sarially) corrupted outliers in the training data has a
long history in Robust Statistics (Huber, 2011; Hampel
et al., 2011; Tukey, 1975), and has recently received
much renewed attention. The high dimensional set-
ting poses particular challenges as outlier removal via
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preprocessing is essentially impossible when the num-
ber of variables scales with the number of samples.
We propose a computationally efficient estimator for
outlier-robust sparse regression that has near-optimal
sample complexity, and is the first algorithm resilient
to a constant fraction of arbitrary outliers with cor-
rupted covariates and/or response variables. Unless we
specifically mention otherwise, all future mentions of
outliers mean corruptions in covariates and/or response
variables.

We assume that the authentic samples are indepen-
dent and identically distributed (i.i.d.) drawn from an
uncorrupted distribution P , where P represents the
linear model yi = x>i β

∗+ξi, where xi ∼ N (0,Σ), and
β∗ ∈ Rd is the true parameter (see Section 1.3 for com-
plete details and definitions). To model the corruptions,
the adversary can choose an arbitrary ε-fraction of the
authentic samples, and replace them with arbitrary
values. We refer to the observations after corruption as
ε-corrupted samples (Definition 1.1). This corruption
model allows the adversary to select an ε-fraction of
authentic samples to delete and corrupt, hence it is
stronger than Huber’s ε-contamination model Huber
(1964), where the adversary independently corrupts
each sample with probability ε.

Outlier-robust regression is a classical problem within
robust statistics (e.g., Rousseeuw and Leroy (2005)),
yet even in the low-dimensional setting, efficient al-
gorithms robust to corruption in the covariates have
proved elusive, until recent breakthroughs in Prasad
et al. (2018); Diakonikolas et al. (2019a) and Klivans
et al. (2018), which built on important results in Ro-
bust Mean Estimation Diakonikolas et al. (2016); Lai
et al. (2016) and Sums of Squares Barak and Steurer
(2016), respectively.

In the sparse setting, the parameter β∗ we seek to
recover is also k-sparse, and a key goal is to provide
recovery guarantees with sample complexity scaling
with k, and sublinearly with d. Without outliers, by
now classical results (e.g., Donoho (2006)) show that
n = Ω(k log d) samples from a i.i.d sub-Gaussian dis-
tribution are enough to give recovery guarantees on β∗

with and without additive noise. These strong assump-
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tions on the probabilistic distribution are necessary,
since in the worst case, sparse recovery is known to be
NP-hard Bandeira et al. (2013); Zhang et al. (2014).

Sparsity recovery with a constant fraction of arbitrary
corruption is fundamentally hard. For instance, to the
best of our knowledge, there’s no previous work can
provide exact recovery for sparse linear equations with
arbitrary corruption in polynomial time. In contrast, a
simple exhaustive search can easily enumerate the sam-
ples and recover the sparse parameter in exponential
time.

In this work, we seek to give an efficient, sample-
complexity optimal algorithm that recovers β∗ to
within accuracy depending on ε (the fraction of out-
liers). In the case of no additive noise, we are interested
in algorithms that can guarantee exact recovery, inde-
pendent of ε.

1.1 Related work

The last 10 years have seen a resurgence in interest in
robust statistics, including the problem of resilience
to outliers in the data. Important problems attacked
have included PCA (Klivans et al., 2009; Xu et al.,
2012, 2013; Lai et al., 2016; Diakonikolas et al., 2016),
and more recently robust regression (as in this pa-
per) (Prasad et al., 2018; Diakonikolas et al., 2019a,b;
Klivans et al., 2018) and robust mean estimation (Di-
akonikolas et al., 2016; Lai et al., 2016; Balakrishnan
et al., 2017a), among others. We focus now on the
recent work most related to the present paper.

Robust regression. Earlier work in robust regres-
sion considers corruption only in the output, and shows
that algorithms nearly as efficient as for regression with-
out outliers succeeds in parameter recovery, even with
a constant fraction of outliers (Li, 2013; Nguyen and
Tran, 2013; Bhatia et al., 2015, 2017; Karmalkar and
Price, 2018). Yet these algorithms (and their analysis)
focus on corruption in y, and do not seem to extend
to the setting of corrupted covariates – the setting of
this work. In the low dimensional setting, there has
been remarkable recent progress. The work in Klivans
et al. (2018) shows that the Sum of Squares (SOS)
based semidefinite hierarchy can be used for solving
robust regression. Essentially concurrent to the SOS
work, (Chen et al., 2017; Holland and Ikeda, 2017;
Prasad et al., 2018; Diakonikolas et al., 2019a) use
robust gradient descent for empirical risk minimization,
by using robust mean estimation as a subroutine to
compute robust gradients at each iteration. Diakoniko-
las et al. (2019b) uses filtering algorithm Diakonikolas
et al. (2016) for robust regression. Computationally,
these latter works scale better than the algorithms in
Klivans et al. (2018), as although the Sum of Squares

SDP framework gives polynomial time algorithms, they
are often not practical (Hopkins et al., 2016).

Much less appears to be known in the high-dimensional
regime. Exponential time algorithm, such as Gao
(2017); Johnson and Preparata (1978), optimizes Tukey
depth Tukey (1975); Chen et al. (2018). Their results
reveal that handling a constant fraction of outliers
(ε = const.) is actually minimax-optimal. Work in
Chen et al. (2013) first provided a polynomial time
algorithm for this problem. They show that replacing
the standard inner product in Matching Pursuit with
a trimmed version, one can recover from an ε-fraction
of outliers, with ε = O(1/

√
k). Very recently, Liu et al.

(2019) considered more general sparsity constrained
M -estimation by using a trimmed estimator in each
step of gradient descent, yet the robustness guarantee
ε = O(1/

√
k) is still sub-optimal. Another approach

follows as a byproduct of a recent algorithm for ro-
bust sparse mean estimation, in Balakrishnan et al.
(2017a). However, their error guarantee scales with
‖β∗‖2, and moreover, does not provide exact recovery
in the adversarial corruption case without stochastic
noise (i.e., noise variance σ2 = 0). We note that this
is an inevitable consequence of their approach, as they
directly use sparse mean estimation on {yixi}, rather
than considering Maximum Likelihood Estimation.

Robust mean estimation. The idea in (Prasad
et al., 2018; Diakonikolas et al., 2019a,b) is to leverage
recent breakthroughs in robust mean estimation. Very
recently, (Diakonikolas et al., 2016; Lai et al., 2016) pro-
vided the first robust mean estimation algorithms that
can handle a constant fraction of outliers (though Lai
et al. (2016) incurs a small (logarithmic) dependence
in the dimension). Following their work, Balakrishnan
et al. (2017a) extended the ellipsoid algorithm from
Diakonikolas et al. (2016) to robust sparse mean esti-
mation in high dimensions. They show that k-sparse
mean estimation in Rd with a constant fraction of out-
liers can be done with n = Ω

(
k2 log (d)

)
samples. The

k2 term appears to be necessary, as n = Ω(k2) follows
from an oracle-based lower bound Diakonikolas et al.
(2017).

1.2 Main contributions

• Our result is a robust variant of Iterative Hard
Thresholding (IHT) Blumensath and Davies (2009).
We provide a deterministic stability result showing
that IHT works with any robust sparse mean esti-
mation algorithm. We show our robust IHT does
not accumulate the errors of a (any) robust sparse
mean estimation subroutine for computing the gra-
dient. Specifically, robust IHT produces a final solu-
tion whose error is orderwise the same as the error
guaranteed by an single use of the robust mean esti-



Liu Liu, Yanyao Shen, Tianyang Li, Constantine Caramanis

mation subroutine. We refer to Definition 2.1 and
Theorem 2.1 for the precise statement. Thus our
result can be viewed as a meta-theorem that can be
coupled with any robust sparse mean estimator.

• Coupling robust IHT with a robust sparse mean esti-
mation subroutine based on a version of the ellipsoid
algorithm given and analyzed in Balakrishnan et al.
(2017a), our results Corollary 3.1 show that given
ε-corrupted sparse regression samples with identity
covariance, we recover β∗ within additive error O(σε)
(which is minimax optimal Gao (2017)). The proof
of the ellipsoid algorithm’s performance in Balakr-
ishnan et al. (2017a) hinges on obtaining an upper
bound on the sparse operator norm (their Lemmas
A.2 and A.3). As we show (see Appendix B), the
statement of Lemma A.3 seems to be incorrect, and
the general approach of upper bounding the sparse
operator norm may not work. Nevertheless, the al-
gorithm performance they claim is correct, as we
show through a different avenue (see Lemma D.3 in
Appendix D.3).

Using this ellipsoid algorithm, In particular, we ob-
tain exact recovery if either the fraction of outliers
goes to zero (this is just ordinary sparse regression),
or in the presence of a constant fraction of outliers
but with the additive noise term going to zero (this
is the case of robust sparse linear equations). To
the best of our knowledge, this is the first result
that shows exact recovery for robust sparse linear
equations with a constant fraction of outliers. This
is the content of Section 3.

• For robust sparse regression with unknown covari-
ance matrix, we consider the wide class of sparse
covariance matrices Bickel and Levina (2008). We
then prove a result that may be of interest in its own
right: we provide a novel robust sparse mean estima-
tion algorithm that is based on a filtering algorithm
for sequentially screening and removing potential
outliers. We show that the filtering algorithm is
flexible enough to deal with unknown covariance,
whereas the ellipsoid algorithm cannot. It also runs
a factor of O(d2) faster than the ellipsoid algorithm.
If the covariance matrix is sufficiently sparse, our
filtering algorithm gives a robust sparse mean esti-
mation algorithm, that can then be coupled with
our meta-theorem. Together, these two guarantee
recovery of β∗ within an additive error of O(σ

√
ε).

In the case of unknown covariance, this is the best
(and in fact, only) result we are aware of for robust
sparse regression. We note that it can be applied to
the case of known and identity covariance, though it
is weaker than the optimal results we obtain using
the computationally more expensive ellipsoid algo-
rithm. Nevertheless, in both cases (unknown sparse,

or known identity) the result is strong enough to
guarantee exact recovery when either σ or ε goes
to zero. We demonstrate the practical effectiveness
of our filtering algorithm in Section 6. This is the
content of Section 4 and Section 5.

1.3 Setup, Notation and Outline

In this subsection, we formally define the corruption
model and the sparse regression model. We first intro-
duce the ε-corrupted samples described above:

Definition 1.1 (ε-corrupted samples). Let {zi, i ∈ G}
be i.i.d. observations follow from a distribution P . The
ε-corrupted samples {zi, i ∈ S} are generated by the
following process: an adversary chooses an arbitrary
ε-fraction of the samples in G and modifies them with
arbitrary values. After the corruption, we use S to
denote the observations, and use B = S \ G to denote
the corruptions.

The parameter ε represents the fraction of outliers.
Throughout, we assume that it is a (small) constant,
independent of dimension or other problem parameters.
Furthermore, we assume that the distribution P is the
standard Gaussian-design AWGN linear model.

Model 1.1. The observations {zi = (yi,xi), i ∈ G}
follow from the linear model yi = x>i β

∗ + ξi, where
β∗ ∈ Rd is the model parameter, and assumed to
be k-sparse. We assume that xi ∼ N (0,Σ) and
ξi ∼ N

(
0, σ2

)
, where Σ is the normalized covariance

matrix with Σjj ≤ 1 for all j ∈ [d]. We denote µα
as the smallest eigenvalue of Σ, and µβ as its largest
eigenvalue. They are assumed to be universal constants
in this paper, and we denote the constant cκ = µβ/µα.

As in Balakrishnan et al. (2017a), we pre-process by
removing “obvious” outliers; we henceforth assume that
all authentic and corrupted points are within a radius
bounded by a polynomial in n, d and 1/ε.

Notation. We denote the hard thresholding operator
of sparsity k′ by Pk′ . We define the k-sparse operator
norm as ‖M‖k̃,op = max‖v‖2=1,‖v‖0≤k̃

|v>Mv|, where

M is not required to be positive-semidefinite (p.s.d.).
We use trace inner produce 〈A,B〉 to denote Tr

(
A>B

)
.

We use Ei∈uS to denote the expectation operator ob-
tained by the uniform distribution over all samples i
in a set S. Finally, we use the notation Õ(·) to hide

the dependency on poly log(1/ε), and Ω̃(·) to hide the
dependency on poly log(k) in our bounds.

2 Hard thresholding with robust
gradient estimation

In this section, we present our method of using robust
sparse gradient updates in IHT. We then show sta-
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Algorithm 1 Robust sparse regression with RSGE

1: Input: Samples {yi,xi}Ni=1, RSGE subroutine.

2: Output: The estimation β̂.
3: Parameters: Hard thresholding parameter k′.

4: Split samples into T subsets of size n. β0 = 0.
5: for t = 0 to T − 1, do
6: At current βt, calculate all gradients for current

n samples: gti = xi
(
x>i β

t − yi
)
, i ∈ [n].

7: For {gti}ni=1, We use a RSGE to get Ĝt.

8: Update the parameter: βt+1 = Pk′
(
βt − ηĜt

)
.

9: end for
10: Output the estimation β̂ = βT .

tistical recovery guarantees given any accurate robust
sparse gradient estimation, which is formally defined
in Definition 2.1.

We define the notation for the stochastic gradient
gi corresponding to the ith point zi, and the pop-
ulation gradient for zi ∼ P based on Model 1.1,
gti = xi

(
x>i β

t − yi
)
, and Gt = Ezi∼P (gti) , where

P is the distribution of the authentic points.
Since Ezi∼P

(
xix

>
i

)
= Σ, the population mean

of all authentic gradients is given by Gt =
Ezi∼P

(
xix

>
i (βt − β∗)

)
= Σ(βt − β∗).

In the uncorrupted case where all samples {zi, i ∈ G}
follow from Model 1.1, a single iteration of IHT updates
βt via βt+1 = Pk′(β

t − Ei∈uG gti). Here, the hard
thresholding operator Pk′ selects the k′ largest elements
in magnitude, and the parameter k′ is proportional to k
(specified in Theorem 2.1). However, given ε-corrupted
samples {zi, i ∈ S} according to Definition 1.1, the
IHT update based on empirical average of all gradient
samples {gi, i ∈ S} can be arbitrarily bad.

The key goal in this paper is to find a robust estimate
Ĝt to replace Gt in each step of IHT, with sample
complexity sub-linear in the dimension d. For instance,
we consider robust sparse regression with Σ = Id.
Then, Gt = βt−β∗ is guaranteed to be (k′+k)-sparse
in each iteration of IHT. In this case, given ε-corrupted
samples, we can use a robust sparse mean estimator

to recover the unknown true Gt from {gti}
|S|
i=1, with

sub-linear sample complexity.

More generally, we propose Robust Sparse Gradient
Estimator (RSGE) for gradient estimation given ε-
corrupted samples, as defined in Definition 2.1, which
guarantees that the deviation between the robust es-
timate Ĝ (β) and true G (β), with sample complexity
n � d. For a fixed k-sparse parameter β, we drop
the superscript t without abuse of notation, and use
gi in place of gti , and G in place of Gt; G (β) denotes
the population gradient over the authentic samples’

distribution P , at the point β.

Definition 2.1 (ψ (ε)-RSGE). Given n (k, d, ε, ν) ε-
corrupted samples {zi}ni=1 from Model 1.1, we call

Ĝ (β) a ψ (ε)-RSGE, if given {zi}ni=1, Ĝ (β) guaran-

tees ‖Ĝ (β) − G (β)‖22 ≤ α(ε)‖G (β)‖22 + ψ (ε), with
probability at least 1− ν.

Here, we use n (k, d, ε, ν) to denote the sample com-
plexity as a function of (k, d, ε, ν), and note that the
definition of RSGE does not require Σ to be iden-
tity matrix. The parameters α(ε) and ψ (ε) will be
specified by concrete robust sparse mean estimators
in subsequent sections. Equipped with Definition 2.1,
we propose Algorithm 1, which takes any RSGE as a
subroutine in line 7, and runs a robust variant of IHT
with the estimated sparse gradient Ĝt at each iteration
in line 8.1

Global linear convergence and parameter recov-
ery guarantees. In each single IHT update step,
RSGE introduces a controlled amount of error. Theo-
rem 2.1 gives a global linear convergence guarantee for
Algorithm 1 by showing that IHT does not accumulate
too much error. In particular, we are able to recover β∗

within error O(
√
ψ (ε)) given any ψ (ε)-RSGE subrou-

tine. We give the proof of Theorem 2.1 in Appendix A.
The hyper-parameter k′ = c2κk guarantees global linear
convergence of IHT when cκ > 1 (when Σ 6= Id). This
setup has been used in Jain et al. (2014); Shen and Li
(2017), and is proved to be necessary in Liu and Bar-
ber (2018). Note that Theorem 2.1 is a deterministic
stability result in nature, and we obtain probabilistic
results by certifying the RSGE condition.

Theorem 2.1 (Meta-theorem). Suppose we observe
N (k, d, ε, ν) ε-corrupted samples from Model 1.1. Al-
gorithm 1, with ψ (ε)-RSGE defined in Definition 2.1,

with step size η = 1/µβ outputs β̂, such that ‖β̂ −
β∗‖2 = O(

√
ψ (ε)), with probability at least 1 − ν, by

setting k′ = c2κk and T = Θ(log(‖β∗‖2/
√
ψ(ε))). The

sample complexity is N (k, d, ε, ν) = n (k, d, ε, ν/T )T .

3 Robust sparse regression with
near-optimal guarantee

In this section, we provide near optimal statistical
guarantee for robust sparse regression when the co-
variance matrix is identity. Under the assumption
Σ = Id, Balakrishnan et al. (2017a) proposes a ro-
bust sparse regression estimator based on robust sparse

1Our results require sample splitting to maintain inde-
pendence between subsequent iterations, though we believe
this is an artifact of our analysis. Similar approach has been
used in Balakrishnan et al. (2017b); Prasad et al. (2018)
for theoretical analysis. We do not use sample splitting
technique in the experiments.
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Algorithm 2 Separation oracle for robust sparse esti-
mation Balakrishnan et al. (2017a)

1: Input: Weights from the previous iteration
{wi, i ∈ S}, gradient samples {gi, i ∈ S}.

2: Output: Weight {w′i, i ∈ S}
3: Parameters: Hard thresholding parameter k̃, pa-

rameter ρsep.

4: Compute the weighted sample mean G̃ =∑
i∈S wigi, and Ĝ = P2k̃

(
G̃
)
.

5: Compute the weighted sample covariance matrix

Σ̂ =
∑
i∈S wi

(
gi − Ĝ

)(
gi − Ĝ

)>
.

6: Let λ∗ be the optimal value, and H∗ be the corre-
sponding solution of the following program

max
H

Tr
((

Σ̂− F
(
Ĝ
))
·H
)
,

subject to H < 0, ‖H‖1,1 ≤ k̃,Tr (H) = 1.

7: if λ∗ ≤ ρsep , then return “Yes”.
8: return The hyperplane: `(w′) =〈( ∑

i∈S
w′i
(
gi − Ĝ

)(
gi − Ĝ

)> − F (Ĝ)),H∗〉−λ∗.
mean estimation on {yixi, i ∈ S}, leveraging the fact
that Ezi∼P (yixi) = β∗. With sample complexity

N = Ω
(k2 log(d/ν)

ε2

)
, this algorithm produces a β̃ such

that ‖β̃ − β∗‖22 = Õ(ε2(‖β∗‖22 + σ2)), with probabil-
ity at least 1 − ν. Using Theorem 2.1, we show that
we can obtain significantly stronger statistical guaran-
tees which are statistically optimal; in particular, our
guarantees are independent of ‖β∗‖2 and yield exact
recovery when σ = 0.

3.1 RSGE via the ellipsoid algorithm

More specifically, the ellipsoid-based robust sparse
mean estimation algorithm Balakrishnan et al. (2017a)
deals with outliers by trying to optimize the set of
weights {wi, i ∈ S} on each of the samples in Rd – ide-
ally outliers would receive lower weight and hence their
impact would be minimized. Since the set of weights
is convex, this can be approached using a separation
oracle Algorithm 2. The Algorithm 2 depends on a
convex relaxation of Sparse PCA, and the hard thresh-
olding parameter is k̃ = k′+ k, as the population mean
of all authentic gradient samples Gt is guaranteed to
be (k′ + k)-sparse. In line 4 and 5, we calculate the
weighted mean and covariance based on a hard thresh-
olding operator. In line 6 of Algorithm 2, with each call
to the relaxation of Sparse PCA, we obtain an optimal
value, λ∗, and optimal solution, H∗, to the problem:

λ∗ = max
H

Tr
((

Σ̂− F
(
Ĝ
))
·H
)
,

subject to H < 0, ‖H‖1,1 ≤ k̃,Tr (H) = 1. (1)

Here, Ĝ, Σ̂ are weighted first and second order moment
estimates from ε-corrupted samples, and F : Rd →
Rd×d is a function with closed-form F (Ĝ) = ‖Ĝ‖22Id +

ĜĜ> + σ2Id. Given the population mean G, we have
F (G) = Ezi∼P ((gi −G) (gi −G)

>
), which calculates

the underlying true covariance matrix. We provide
more details about the calculation of F (·), as well as
some smoothness properties, in Appendix C.

The key component in the separation oracle Algo-
rithm 2 is to use convex relaxation of Sparse PCA
eq. (1). This idea generalizes existing work on using
PCA to detect outliers in low dimensional robust mean
estimation Diakonikolas et al. (2016); Lai et al. (2016).
To gain some intuition for eq. (1), if gi is an outlier,
then the optimal solution of eq. (1), H∗, may detect
the direction of this outlier. And this outlier will be
down-weighted in the output of Algorithm 2 by the
separating hyperplane. Finally, Algorithm 2 will ter-
minate with λ∗ ≤ ρsep (line 7) and output the robust

sparse mean estimation of the gradients Ĝ.

Indeed, the ellipsoid-algorithm-based robust sparse
mean estimator gives a RSGE, which we can combine
with Theorem 2.1 to obtain stronger results. We state
these as Corollary 3.1. We note again that the analysis
in Balakrishnan et al. (2017a) has a flaw. Their Lemma
A.3 is incorrect, as our counterexample in Appendix B
demonstrates. We provide a correct route of analysis
in Lemma D.3 of Appendix D.

3.2 Near-optimal statistical guarantees

Corollary 3.1. Suppose we observe N (k, d, ε, ν) ε-
corrupted samples from Model 1.1 with Σ = Id.
By setting k̃ = k′ + k, if we use the ellipsoid al-
gorithm for robust sparse gradient estimation with
ρsep = Θ

(
ε
(
‖Gt‖22 + σ2

))
, it requires N (k, d, ε, ν) =

Ω
(k2 log(dT/ν)

ε2

)
T samples, and guarantees ψ (ε) =

Õ
(
ε2σ2

)
. Hence, Algorithm 1 outputs β̂, such that

‖β̂ − β∗‖2 = Õ (σε), with probability at least 1− ν, by

setting T = Θ
(

log
(
‖β∗‖2
εσ

))
.

Any one-dimensional robust variance estimate of the
regression residual {ri, i ∈ [n]} in each iteration is
sufficient for ρsep, where ri = yi − x>i βt. For a desired
error level ε′ ≥ ε, we only require sample complexity

N (k, d, ε, ν) = Ω
(k2 log(dT/ν)

ε′2

)
T . Hence, we can achieve

statistical error Õ
(
σ
(√

k2 log (d)/N ∨ ε
))

. Our error
bound is nearly optimal compared to the information-
theoretically optimal O

(
σ
(√

k log (d)/N ∨ ε
))

in Gao
(2017), as the k2 term is necessary by an oracle-based
SQ lower bound Diakonikolas et al. (2017).
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Proof sketch of Corollary 3.1 The key to the proof relies
on showing that λ∗ controls the quality of the weights of
the current iteration, i.e., small λ∗ means good weights
and thus a good current solution. Showing this relies
on using λ∗ to control Σ̂−F (Ĝ). Lemma A.3 in Balakr-

ishnan et al. (2017a) claims that λ∗ ≥ ‖Σ̂−F (Ĝ)‖k̃,op.
As we show in Appendix B, however, this need not
hold. This is because the trace norm maximization
eq. (1) is not a valid convex relaxation for the k̃-sparse

operator norm when the term Σ̂− F (Ĝ) is not p.s.d.
(which indeed it need not be). We provide a differ-
ent line of analysis in Lemma D.3, essentially showing
that even without the claimed (incorrect) bound, λ∗

can still provide the control we need. With the cor-
rected analysis for λ∗, the ellipsoid algorithm guaran-
tees ‖Ĝ −G‖22 = Õ(ε2(‖β − β∗‖22 + σ2)) with proba-
bility at least 1− ν. Therefore, the algorithm provides
an Õ

(
ε2σ2

)
-RSGE.

4 Robust sparse mean estimation via
filtering

From a computational viewpoint, the time complexity
of Algorithm 1 depends on the RSGE in each iterate.
The time complexity of the ellipsoid algorithm is indeed
polynomial in the dimension, but it requires O

(
d2
)

calls to a relaxation of Sparse PCA (Bubeck (2015)).
In this section, we introduce a faster algorithm as a
RSGE, which only requires O (n) calls of Sparse PCA
(recall that n only scales with k2 log d). Importantly,
this RSGE is flexible enough to deal with unknown
covariance matrix, yet the ellipsoid algorithm cannot.
Before we move to the result for unknown covariance
matrix in Section 5, we first introduce Algorithm 3
and analyze its performance when the covariance is
identity. These supporting Lemmas will be later used
in the unknown case.

Our proposed RSGE (Algorithm 3) attempts to remove
one outlier at each iteration, as long as a good solution
has not already been identified. It first estimates the
gradient Ĝ by hard thresholding (line 4) and then
estimates the corresponding sample covariance matrix
Σ̂ (line 5). By solving (a relaxation of) Sparse PCA,
we obtain a scalar λ∗ as well as a matrix H∗. If λ∗

is smaller than the predetermined threshold ρsep, we
have a certificate that the effect of the outliers is well-
controlled (specified in eq. (5)). Otherwise, we compute
a score for each sample based on H∗, and discard one
of the samples according to a probability distribution
where each sample’s probability of being discarded is
proportional to the score we have computed. 2

2Although we remove one sample in Algorithm 3, our
theoretical analysis naturally extend to removing constant
number of outliers. This speeds up the algorithm in practice,

Algorithm 3 RSGE via filtering

1: Input: A set Sin.
2: Output: A set Sout or sparse mean vector Ĝ.
3: Parameters: Hard thresholding parameter k̃, pa-

rameter ρsep.

4: Compute the sample mean G̃ = Ei∈uSin
(
gi
)
, and

Ĝ = P2k̃

(
G̃
)
.

5: Compute the sample covariance matrix

Σ̂ = Ei∈uSin
(
gi − Ĝ

)(
gi − Ĝ

)>
.

6: Solve the following convex program:

max
H

Tr
(
Σ̂ ·H

)
,

subject to H < 0, ‖H‖1,1 ≤ k̃,Tr (H) = 1. (2)

Let λ∗ be the optimal value, and H∗ be the corre-
sponding solution.

7: if λ∗ ≤ ρsep , then return with Ĝ.
8: Calculate projection score for each i ∈ Sin:

τi = Tr
(
H∗ ·

(
gi − Ĝ

)(
gi − Ĝ

)> )
. (3)

9: Randomly remove a sample r from Sin according
to

Pr (gi is removed) =
τi∑

i∈Sin τi
. (4)

10: return the set Sout = Sin \ {r}.

Algorithm 3 can be used for other robust sparse func-
tional estimation problems (e.g., robust sparse mean
estimation forN (µ, Id), where µ ∈ Rd is k-sparse). To
use Algorithm 3 as a RSGE given n gradient samples
(denoted as Sin), we call Algorithm 3 repeatedly on Sin

and then on its output, Sout, until it returns a robust
estimator Ĝ. The next theorem provides guarantees
on this iterative application of Algorithm 3.

Theorem 4.1. Suppose we observe n = Ω
(k2 log(d/ν)

ε

)
ε-corrupted samples from Model 1.1 with Σ = Id. Let
Sin be an ε-corrupted set of gradient samples {gti}ni=1.

By setting k̃ = k′ + k, if we run Algorithm 3 iteratively
with initial set Sin, and subsequently on Sout, and use
ρsep = Cγ

(
‖Gt‖22 + σ2

)
, then this repeated use of Algo-

rithm 3 will stop after at most 1.1γ
γ−1 εn iterations, and

output Ĝt, such that ‖Ĝt−Gt‖22 = Õ
(
ε
(
‖Gt‖22 + σ2

))
,

with probability at least 1 − ν − exp (−Θ (εn)). Here,
Cγ is a constant depending on γ, where γ ≥ 4 is a
constant.

yet shares the same computational complexity
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Thus, Theorem 4.1 shows that with high probability,
Algorithm 3 provides a Robust Sparse Gradient Es-
timator where ψ (ε) = Õ

(
εσ2
)
. For example, we can

take ν = d−Θ(1). Combining now with Theorem 2.1, we
obtain an error guarantee for robust sparse regression.

Corollary 4.1. Suppose we observe N (k, d, ε, ν) ε-
corrupted samples from Model 1.1 with Σ = Id. Un-
der the same setting as Theorem 4.1, if we use Algo-
rithm 3 for robust sparse gradient estimation, it requires

N (k, d, ε, ν) = Ω
(
k2 log(dT/ν)

ε

)
T samples, and T =

Θ
(

log
(
‖β∗‖2
σ
√
ε

))
, then we have ‖β̂ − β∗‖2 = Õ (σ

√
ε)

with probability at least 1− ν − T exp (−Θ (εn)).

Similar to Section 3, we can achieve statistical error
Õ
(
σ
(√

k2 log (d)/N ∨
√
ε
))

. The scaling of ε in Corol-

lary 4.1 is Õ (
√
ε). These guarantees are worse than

Õ (ε) achieved by ellipsoid methods. Nevertheless, this
result is strong enough to guarantee exact recovery
when either σ or ε goes to zero. The simulation of
robust estimation for the filtering algorithm is in Sec-
tion 6.

The key step in Algorithm 3 is outlier removal eq. (4)
based on the solution of Sparse PCA’s convex relaxation
eq. (2). We describe the outlier removal below, and
then give the proofs in Appendix E and Appendix F.

Outlier removal guarantees in Algorithm 3. We
denote samples in the input set Sin as gi. This input
set Sin can be partitioned into two parts: Sgood = {i :
i ∈ G and i ∈ Sin}, and Sbad = {i : i ∈ B and i ∈
Sin}. Lemma 4.1 shows that Algorithm 3 can return
a guaranteed gradient estimate, or the outlier removal
step eq. (4) is likely to discard an outlier. The guarantee
on the outlier removal step eq. (4) hinges on the fact
that if

∑
i∈Sgood τi is less than

∑
i∈Sbad

τi, we can show

eq. (4) is likely to remove an outlier.

Lemma 4.1. Suppose we observe n = Ω
(k2 log(d/ν)

ε

)
ε-

corrupted samples from Model 1.1 with Σ = Id. Let Sin

be an ε-corrupted set {gti}ni=1. Algorithm 3 computes
λ∗ that satisfies

λ∗ ≥ max
‖v‖2=1,‖v‖0≤k̃

v>
(
Ei∈uSin

(
gi − Ĝ

)(
gi − Ĝ

)>)
v.

(5)

If λ∗ ≥ ρsep = Cγ

(
‖Gt‖22 + σ2

)
, then with probability

at least 1−ν, we have
∑
i∈Sgood τi ≤

1
γ

∑
i∈Sin τi, where

τi is defined in eq. (3), Cγ is a constant depending on
γ, and γ ≥ 4 is a constant.

The proofs are collected in Appendix E. In a nutshell,
eq. (5) is a natural convex relaxation for the sparsity

constraint {v : ‖v‖2 = 1, ‖v‖0 ≤ k̃}. On the other

hand, when λ∗ ≥ ρsep, the contribution of
∑
i∈Sgood τi

is relatively small, which can be obtained through con-
centration inequalities for the samples in Sgood. Based
on Lemma 4.1, if λ∗ ≤ ρsep, then the RHS of eq. (5) is

bounded, leading to the error guarantee of ‖Ĝt−Gt‖22.
On the other hand, if λ∗ ≥ ρsep, we can show that
eq. (4) is more likely to throw out samples of Sbad

rather than Sgood. Iteratively applying Algorithm 3 on
the remaining samples, we can remove those outliers
with large effect, and keep the remaining outliers’ ef-
fect well-controlled. This leads to the final bounds in
Theorem 4.1.

5 Robust sparse regression with
unknown covariance

In this section, we consider robust sparse regression
with unknown covariance matrix Σ, which has addi-
tional sparsity structure. Formally, we define the sparse
covariance matrices as follows:

Model 5.1 (Sparse covariance matrices). In Model 1.1,
the authentic covariates {xi, i ∈ G} are drawn from
N (0,Σ). We assume that each row and column of Σ
is r-sparse, but the positions of the non-zero entries
are unknown.

Model 5.1 is widely studied in high dimensional statis-
tics Bickel and Levina (2008); El Karoui (2008); Wain-
wright (2019). Under Model 5.1, for the population
gradient Gt = EP

(
xix

>
i (βt − β∗)

)
= Σωt, where we

use ωt to denote the (k′+ k)-sparse vector βt−β∗, we
can guarantee the ‖Gt‖0 = ‖Σωt‖0 ≤ r(k′+k). Hence,
we can use the filtering algorithm (Algorithm 3) with

k̃ = r(k′ + k) as a RSGE for robust sparse regression
with unknown Σ. When the covariance is unknown,
we cannot evaluate F (·) a priori, thus the ellipsoid al-
gorithm is not applicable to this case. And we provide
error guarantees as follows.

Theorem 5.1. Suppose we observe N (k, d, ε, ν) ε-
corrupted samples from Model 1.1, where the co-
variates xi’s follow from Model 5.1. If we use
Algorithm 3 for robust sparse gradient estimation,

it requires Ω̃
(
r2k2 log(dT/ν)

ε

)
T samples, and T =

Θ
(

log
(
‖β∗‖2
σ
√
ε

))
, then, we have‖β̂ − β∗‖2 = Õ (σ

√
ε),

with probability at least 1− ν − T exp (−Θ (εn)).

The proof of Theorem 5.1 is collected in Appendix G,
and the main technique hinges on previous analysis
for the identity covariance case (Theorem 4.1 and
Lemma 4.1). In the case of unknown covariance, this
is the best (and in fact, only) recovery guarantee we
are aware of for robust sparse regression. We show the
performance of robust estimation using our filtering
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Figure 1: Simulations for Algorithm 3 showing the de-
pendence of relative MSE on sparsity and dimension. For
each parameter, we choose corresponding sample complex-
ity n ∝ k2 log(d)/ε. Different curves for ε ∈ {0.1, 0.15, 0.2}
are the average of 15 trials. Consistent with the theory, the
rescaled relative MSE’s are nearly independent of sparsity
and dimension. Furthermore, by rescaling for different ε,
three curves have the same magnitude.

algorithm with unknown covariance in Section 6, and
we observe same linear convergence as Section 4.

6 Numerical results

We provide the complete details for our experiment
setup and experiments on wall-clock time in Appendix.

Robust sparse mean estimation. We first demon-
strate the performance of Algorithm 3 for robust sparse
mean estimation, and then move to Algorithm 1 for
robust sparse regression. For the robust sparse gra-
dient estimation, we generate samples through gi =
xix

>
i G− xiξi, where the unknown true mean G is k-

sparse. The authentic xi’s are generated from N (0, Id).
We set σ = 0, since the main part of the error in robust
sparse mean estimation is G. We plot the relative MSE
of parameter recovery, defined as ‖Ĝ−G‖22/‖G‖

2
2, with

respect to different sparsities and dimensions.

Parameter error vs. sparsity k. We fix the dimension
to be d = 50. We solve the trace norm maximization in
Algorithm 3 using CVX Grant et al. (2008). We solve
robust sparse gradient estimation under different levels
of outlier fraction ε and different sparsity values k.

Parameter error vs. dimension d. We fix k = 5. We use
a Sparse PCA solver from d’Aspremont et al. (2008)
which is much more efficient for higher dimensions.
We run robust sparse gradient estimation Algorithm 3
under different levels of outlier fraction ε and different
dimensions d.

For each parameter, the corresponding number of sam-
ples required for the authentic data is n ∝ k2 log(d)/ε
according to Theorem 4.1. Therefore, we add εn/(1−ε)
outliers (so that the outliers are an ε-fraction of
the total samples), and then run Algorithm 3. Ac-
cording to Theorem 4.1, the rescaled relative MSE:
‖Ĝ −G‖22/(ε‖G‖

2
2) should be independent of the pa-

rameters {ε, k, d}. We plot this in Figure 1, and these
plots validate our theorem on the sample complexity
in robust sparse mean estimation problems.

Iterations

0 2 4 6 8 10 12 14 16 18 20

lo
g
(p

a
ra

m
e
te

r 
e
rr

o
r)

-6

-5

-4

-3

-2

-1

0

1

2

3

epsilon = 0.1

epsilon = 0.15

epsilon = 0.2

Iterations

1 2 3 4 5 6 7 8 9 10

lo
g
(p

a
ra

m
e
te

r 
e
rr

o
r)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

σ
2
 = 0.0

σ
2
 = 0.1

σ
2
 = 0.2

Figure 2: Empirical illustration of the linear convergence
of log(‖βt − β∗‖22) vs. iteration counts in the Algorithm 1.
In all cases, we fix k = 5, d = 500, and choose the sample
complexity n ∝ 1/ε. The left plot considers different ε with
fixed σ2 = 0.1. The right plot considers different σ2 with
fixed ε = 0.1. As expected, the convergence is linear, and
flatten out at the level of the final error.
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Figure 3: When the unknown covariance matrix is a

Toeplitz matrix with a decay Σij = exp−(i−j)2 , and the
other settings are the same as Figure 2. We observe similar
linear convergence as Figure 2.

Robust sparse regression. We use Algorithm 1 for
robust sparse regression. Similarly as in robust sparse
mean estimation, we use Algorithm 3 as our Robust
Sparse Gradient Estimator, and leverage the Sparse
PCA solver from d’Aspremont et al. (2008). In the
simulation, we fix d = 500, and k = 5, hence the
corresponding sample complexity is n ∝ 1/ε. We do not
use the sample splitting technique in the simulations.

To show the performance of Algorithm 1 under dif-
ferent settings, we use different levels of ε and σ in
Figure 2, and track the parameter error ‖βt − β∗‖22
of Algorithm 1 in each iteration. Consistent with the
theory, the algorithm displays linear convergence, and
the error curves flatten out at the level of the final error.
Furthermore, Algorithm 1 achieves machine precision
when σ2 = 0 in the right plot of Figure 2.

We then study the empirical performance of robust
sparse regression with unknown covariance matrix Σ
following from Model 5.1. We use the same experimen-
tal setup as in identity covariance case, but modify the
covariance matrix to be a Toeplitz matrix with a decay
Σij = exp−(i−j)2 . Under this setting, the covariance
matrix is sparse, thus follows from Model 5.1. Figure 3
indicates that we have nearly the same performance as
the Σ = Id case.
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