
Haihao Lu∗, Sai Praneeth Karimireddy∗, Natalia Ponomareva, Vahab Mirrokni

Appendix

A Additional Experiment Details

Datasets: Table 3 summaries the basic statistics of the LIBSVM datasets that were used.

Dataset task # samples # features
a1a classification 1605 123
w1a classification 2477 300

diabetes classification 768 8
german classification 1000 24
housing regression 506 13
sonar classification 208 60

Table 3: Basic statistics of the (real) datasets used.

All fine-tuning experiments: We now look at the testing performance of GBM and AGBM on six datasets
with hyperparameter tuning.

For each dataset, we randomly choose 80% as the training and the remaining as the testing dataset. We repeat
this splitting 5 times and report mean train and test errors along with standard errors.

We consider depth 3 trees as weak-learners and fix the number of trees to 30, 50 and 100 (notice, that for AGBM
that means that the number of boosting iterations is 15, 25 and 50 respectively). We fix learning rate (η) to
0.1 and tune (using 5 fold cross-validation on training dataset with RandomizedSearchCV in scikit-learn) the
following parameters:

• min split gain - [10, 5, 2, 1, 0.5, 0.1, 0.01, 0.001, 1e-4, 1e-5]

• l2 regularizer on leaves - [0.01, 0.1, 0.5, 1,2,4, 8, 16, 32, 64]

• momentum parameter γ (only for AGBM): uniform(0.1,1)

We use early stopping for final training on full training dataset (using 5 early stop rounds)

As AGBM has more parameters (namely γ), we did proportionally more iterations of random search for AGBM.

As we can see from Table 2, the accelerated method in general is beneficial for underfiting scenarios (30 and 50
trees). However, for such small datasets, 100 weak learners start overfiting, and accelerated method overfits faster,
as expected.

B Extensions and Variants

In this section we study two more practical variants of AGBM. First we see how to restart the algorithm to take
advantage of strong convexity of the loss function. Then we will study a straight-forward approach to accelerated
GBM, which we call vanilla accelerated gradient boosting machine (VAGBM), a variant of the recently proposed
algorithm in Biau et al. (2018), however without any theoretical guarantees.

B.1 A Vanilla Accelerated Gradient Boosting Method

A natural question to ask is whether, instead of adding two learners at each iteration, we can get away with
adding only one? Below we show how such an algorithm would look like and argue that it may not always
converge.

Following the updates in Equation (3), we can get a direct acceleration of GBM by using the weak learner fitting
the gradient. This leads to an Algorithm 4.



Accelerating Gradient Boosting Machines

Algorithm 4 Vanilla Accelerated Gradient Boosting Machine (VAGBM)

Input. Starting function f0(x) = 0, step-size η, momentum parameter γ ∈ (0, 1].
Initialization. h0(x) = f0(x), and sequence θm = 2

m+2 .
For m = 0, . . . ,M − 1 do:
Perform Updates:
(1) Compute a linear combination of f and h: gm(x) = (1− θm)fm(x) + θmh

m(x).

(2) Compute pseudo residual: rm = −
[
∂`(yi,g

m(xi))
∂gm(xi)

]
i=1,...,n

.

(3) Find the best weak-learner for pseudo residual: τm = arg minτ∈Tm
∑n
i=1(rmi − bτ (xi))

2.
(4) Update the model: fm+1(x) = gm(x) + ηbτm(x).
(5) Update the momentum model: hm+1(x) = hm(x) + η/θmbτm(x).

Output. fM (x).

Algorithm 4 is equivalent to the recently developed accelerated gradient boosting machines algorithm (Biau et al.,
2018; Fouillen et al., 2018). Unfortunately, it may not always converge to an optimum or may even diverge.
This is because bτm from Step (2) is only an approximate-fit to rm, meaning that we only take an approximate
gradient descent step. While this is not an issue in the non-accelerated version, in Step (2) of Algorithm 4, the
momentum term pushes the h sequence to take a large step along the approximate gradient direction. This
exacerbates the effect of the approximate direction and can lead to an additive accumulation of error as shown in
Devolder et al. (2014). In Section 5.1, we see that this is not just a theoretical concern, but that Algorithm 4 also
diverges in practice in some situations.

Remark B.1. Our corrected residual cm in Algorithm 2 was crucial to the theoretical proof of converge in
Theorem 4.1. One extension could be to introduce γ ∈ (0, 1) in step (5) of Algorithm 4 just as in Algorithm 2.

Remark B.2. It is worth noting that Vanilla AGBM may bring good empirical performance on small datasets.
We hypothesize that the accumulated error in gradient may serve as an additional regularization that slows down
overfitting

C Proof of Theorem 4.1

This section proves our major theoretical result in the paper:

Theorem 4.1 Consider Accelerated Gradient Boosting Machine (Algorithm 2). Suppose ` is σ-smooth, the
step-size η ≤ 1

σ and the momentum parameter γ ≤ Θ4/(4 + Θ2). Then for all M ≥ 0, we have:

L(fM )− L(f∗) ≤ 1

2ηγ(M + 1)2
‖f∗(X)‖22 .

Let’s start with some new notations. Define scalar constants s = γ/Θ2 and t := (1− s)/2 ∈ (0, 1). We mostly
only need s+ t ≤ 1—the specific values of γ and t are needed only in Lemma C.6. Then define

αm :=
ηγ

θm
=
ηsΘ2

θm
,

then the definitions of the sequences {rm}, {cm}, ĥm(X) and {θm} from Algorithm 3 can be simplified as:

θm =
2

m+ 2

rm = −
[
∂l(yi, g

m(xi))

∂gm(xi)

]
i=1,...n

cm = rm + (αm−1/αm)
[
cm−1 − bτ2

m−1
(X)

]
ĥm+1(X) = ĥm(X) + αmr

m .



Haihao Lu∗, Sai Praneeth Karimireddy∗, Natalia Ponomareva, Vahab Mirrokni

The sequence ĥm(X) is in fact closely tied to the sequence hm(X) as we show in the next lemma. For notational
convenience, we define c−1 = bτ2

−1
(X) = 0 and similarly α−1

θ−1
= 0 throughout the proof.

Lemma C.1.

ĥm+1(X) = hm+1(X) + αm(cm − bτm,2(X)) .

Proof. Observe that

ĥm+1(X) =

m∑
j=0

αjr
j and that hm+1(X) =

m∑
j=0

αjbτj,2(X) .

Then we have

ĥm+1(X)− hm+1(X) =

m∑
j=0

αj(r
j − bτj,2(X))

=

m∑
j=0

αj(r
j − αj−1

αj
bτ2

j−1
(X))− αmbτm,2

(X)

=

m∑
j=0

αj(c
j − αj−1

αj
cj−1)− αmbτm,2

(X)

=

m∑
j=0

(αjc
j − αj−1c

j−1)− αmbτm,2
(X)

= αm(cm − bτm,2(X)) ,

where the third equality is due to the definition of cm.

Lemma C.2 presents the fact that there is sufficient decay of the loss function:

Lemma C.2.

L(fm+1) ≤ L(gm)− ηΘ2

2
‖rm‖2 .

Proof. Recall that τm,1 is chosen such that

τm,1 = arg min
τ∈T

‖bτ (X)− rm‖2 .

Since the class of learners T is scalable (Assumption 2.1), we have

‖bτm,1
(X)− rm‖2 = min

τ∈Tm
min
σ∈R
‖σbτ (X)− rm‖2

= ‖rm‖2
[
1− arg max

τ∈T
cos(rm, bτ (X))2

]
≤ ‖rm‖2

[
1−Θ2

]
, (6)

where the last inequality is because of the definition of Θ, and the second equality is due to the simple fact that
for any two vectors a and b,

min
σ∈R
‖σa− b‖2 = ‖a‖2 −max

σ∈R

[
σ〈a, b〉 − σ2

2
‖b‖2

]
= ‖a‖2 − ‖a‖2 〈a, b〉

‖a‖2‖b‖2
.

Now recall that L(fm+1) =
∑n
i=1 l(yi, f

m+1(xi)) and that fm+1(x) = gm(x) + ηbτm,1
(x). Since the loss function



Accelerating Gradient Boosting Machines

l(yi, x) is σ-smooth and step-size η ≤ 1
σ , it holds that

L(fm+1) =

n∑
i=1

l(yi, f
m+1(xi))

≤
n∑
i=1

l(yi, g
m(xi) + ηbτm,1(xi))

≤
n∑
i=1

[∗] l(yi, gm(xi)) +
∂l(yi, g

m(xi))

∂gm(xi)
(ηbτm,1

(xi)) +
σ

2
(ηbτm,1

(xi))
2

≤
n∑
i=1

[∗] l(yi, gm(xi)) +
∂l(yi, g

m(xi))

∂gm(xi)
(ηbτm,1

(xi)) +
η

2
(bτm,1

(xi))
2

=

n∑
i=1

[∗] l(yi, gm(xi))− rmi (ηbτm,1
(xi)) +

1

2η
(bτm,1

(xi))
2

= L(gm)− η
〈
rm, bτm,1

(X)
〉

+
η

2
‖bτm,1

(X)‖2

= L(gm) +
η

2
‖bτm,1(X)− rm‖2 − η

2
‖rm‖2

≤ L(gm)− Θ2η

2
‖rm‖2 ,

where the final inequality follows from (6). This furnishes the proof of the lemma.

Lemma C.3 is a basic fact of convex function, and it is commonly used in the convergence analysis in accelerated
method.

Lemma C.3. For any function f and m ≥ 0,

L(gm) + θm〈rm, hm(X)− f(X)〉 ≤ θmL(f) + (1− θm)L(fm) .

Proof. For any function f , it follows from the convexity of the loss function l that

L(gm) + 〈rm, gm(X)− f(X)〉 =

n∑
i=1

l(yi, g
m(xi)) +

∂l(yi, g
m(xi))

∂gm(xi)
(f(xi)− gm(xi))

≤
n∑
i=1

l(yi, f(xi)) = L(f) . (7)

Substituting f = fm in (7), we get

L(gm) + 〈rm, gm(X)− fm(X)〉 ≤ L(fm) . (8)

Also recall that gm(X) = (1− θm)fm(X) + θmh
m(X). This can be rewritten as

θm(gm(X)− hm(X)) = (1− θm)(fm(X)− gm(X)) . (9)

Putting (7), (8), and (9) together:

L(gm) + θm〈rm, hm(X)− f(X)〉
=L(gm) + θm〈rm, gm(X)− f(X)〉+ θm〈rm, hm(X)− gm(X)〉
=θm[L(gm) + 〈rm, gm(X)− f(X)〉] + (1− θm)[L(gm) + 〈rm, gm(X)− fm(X)〉]
≤θmL(f) + (1− θm)L(fm) ,

which finishes the proof.

We are ready to prove the key lemma which gives us the accelerated rate of convergence.



Haihao Lu∗, Sai Praneeth Karimireddy∗, Natalia Ponomareva, Vahab Mirrokni

Lemma C.4. Define the following potential function V (f) for any given output function f :

V m(f) =
αm−1

θm−1
(L(fm)− L(f)) +

1

2

∥∥∥f(X)− ĥm(X)
∥∥∥2

. (10)

At every step, the potential decreases at least by δm:

V m+1(f) ≤ V m(f) + δm ,

where δm is defined as:

δm :=
sα2

m−1

2t
‖cm−1 − bτ2

m−1
(X)‖2 − (1− s− t)α

2
m

2s
‖rm‖2 . (11)

Proof. Recall that c−1 = bτ2
−1

(X)) = 0 and α−1

θ−1
= 0. It follows from Lemma C.2 that:

L(fm+1)− L(gm) +
(1− s)ηΘ2

2
‖rm‖2

≤− sηΘ2

2
‖rm‖2

=− αmθm‖rm‖2 +
αmθm

2
‖rm‖2

=θm

〈
rm, ĥm(X)− ĥm+1(X)

〉
+

θm
2αm

‖ĥm(X)− ĥm+1(X)‖2

=θm

〈
rm, ĥm(X)− f(X)

〉
+

θm
2αm

(
‖f(X)− ĥm(X)‖2 − ‖f(X)− ĥm+1(X)‖2

)
,

where the second equality is by the definition of ĥm(x) and the third is just mathematical manipulation of the
equation (it is also called three-point property). By rearranging the above inequality, we have

L(fm+1) +
(1− s)ηΘ2

2
‖rm‖2

≤L(gm) +
〈
rm, ĥm(X)− f(X)

〉
+

θm
2αm

(
‖f(X)− ĥm(X)‖2 − ‖f(X)− ĥm+1(X)‖2

)
=L(gm) + θm〈rm, hm(X)− f(X)〉+

θm
2αm

(
‖f(X)− ĥm(X)‖2 − ‖f(X)− ĥm+1(X)‖2

)
+ θm

〈
rm, ĥm(X)− hm(X)

〉
≤θmL(f) + (1− θm)L(fm) +

θm
2αm

(
‖f(X)− ĥm(X)‖2 − ‖f(X)− ĥm+1(X)‖2

)
+ θmαm−1

〈
rm, cm−1 − bτ2

m−1
(X)

〉
,

where the first inequality uses Lemma C.3 and the last inequality is due to the fact that ĥm(X) − hm(X) =
αm−1(cm−1 − bτ2

m−1
(X)) from Lemma C.1. Rearranging the terms and multiplying by (αm/θm) leads to

αm
θm

(L(fm+1)− L(f)) +
1

2
‖f(X)− ĥm+1(X)‖2

≤ αm(1− θm)

θm︸ ︷︷ ︸
:=A

(L(fm)−L(f))+
1

2
‖f(X)−ĥm(X)‖2+αmαm−1

〈
rm, (cm−1 − bτ2

m−1
(X))

〉
− (1− s)ηΘ2αm

2θm
‖rm‖2︸ ︷︷ ︸

:=B

.

Let us examine first the term A:

αm(1− θm)

θm
= (ηΘ2s)

1− θm
θ2
m

≤ (ηΘ2s)
1

θ2
m−1

=
αm−1

θm−1
.



Accelerating Gradient Boosting Machines

We have thus far shown that
V m+1(f) ≤ V m(f) + B ,

and we now need to show that B ≤ δm. Using Mean-Value inequality, the first term in B can be bounded as

αmαm−1

〈
rm, (cm−1 − bτ2

m−1
(X))

〉
≤ α2

mt

2s
‖rm‖2 +

α2
m−1s

2t
‖cm−1 − bτ2

m−1
(X)‖2 .

Substituting it in B shows:

B = αmαm−1

〈
rm, (cm−1 − bτ2

m−1
(X))

〉
− (1− s)ηΘ2αm

2θm
‖rm‖2

≤ α2
mt

2s
‖rm‖2 +

α2
m−1s

2t
‖cm−1 − bτ2

m−1
(X)‖2 − (1− s)α2

m

2s
‖rm‖2

=
α2
m−1s

2t
‖cm−1 − bτ2

m−1
(X)‖2 − (1− s− t)α

2
m

2s
‖rm‖2

= δm ,

which finishes the proof.

Unlike the typical proofs of accelerated algorithms, which usually shows that the potential V m(f) is a decreasing
sequence, there is no guarantee that the potential V m(f) is decreasing in the boosting setting due to the use of
weak learners. Instead, we are able to prove that:

Lemma C.5. For any given m, it holds that
∑m
j=0 δj ≤ 0.

Proof. We can rewrite the statement of the lemma as:

m−1∑
j=0

α2
j‖cj − bτj,2(X)‖2 ≤ t(1− s− t)

s2

m∑
j=0

α2
j‖rj‖2 . (12)

Here, let us focus on the term ‖cj+1 − bτ2
j+1

(X)‖2 for a given j. We have that∥∥∥cj+1 − bτ2
j+1

(X)
∥∥∥2

≤ (1−Θ2)
∥∥cj+1

∥∥2

= (1−Θ2)

∥∥∥∥rj+1 +
θj+1

θj

[
cj − bτj,2(X)

]∥∥∥∥2

≤ (1−Θ2)(1 + ρ)
∥∥rj+1

∥∥2
+ (1−Θ2)(1 + 1/ρ)

∥∥∥∥θj+1

θj

[
cj − bτj,2(X)

]∥∥∥∥2

≤ (1 + ρ)(1−Θ2)
∥∥rj+1

∥∥2
+ (1−Θ2)(1 + 1/ρ)

∥∥[cj − bτj,2(X)
]∥∥2

,

where the first inequality follows from our assumption about the density of the weak-learner class B (the same
of the argument in (6)), the second inequality holds for any ρ ≥ 0 due to Mean-Value inequality, and the
last inequality is from θj+1 ≤ θj . We now derives a recursive bound on the left side of (12). From this, (12)

follows from an elementary fact of recursive sequence as stated in Lemma C.6 with aj = α2
j

∥∥cj − bτj,2(X)
∥∥2

and

cj = α2
j

∥∥rj∥∥2
.

Remark C.1. If cm = bτm,2
(X) (i.e. our class of learners B is strong), then δm = −(1− s− t)α

2
m

2s2 ‖r
m‖2 ≤ 0.

Lemma C.6 is an elementary fact of recursive sequence used in the proof of Lemma C.5.

Lemma C.6. Given two sequences {aj ≥ 0} and {cj ≥ 0} such that the following holds for any ρ ≥ 0,

aj+1 ≤ (1−Θ2)[(1 + 1/ρ)aj + (1 + ρ)cj+1] ,

then the sum of the terms aj can be bounded as

m∑
j=0

aj ≤
t(1− s− t)

s2

m∑
j=0

cj .



Haihao Lu∗, Sai Praneeth Karimireddy∗, Natalia Ponomareva, Vahab Mirrokni

Proof. The recursive bound on aj implies that

aj ≤ (1−Θ2)[(1 + 1/ρ)aj−1 + (1 + ρ)cj ]

≤
j∑

k=0

[(1 + 1/ρ)(1−Θ2)]j−k(1 + ρ)(1−Θ2)ck .

Summing both the terms gives

m∑
j=0

aj ≤
m∑
j=0

j∑
k=0

[(1 + 1/ρ)(1−Θ2)]j−k(1 + ρ)(1−Θ2)ck

=

m∑
k=0

m∑
j=k

[(1 + 1/ρ)(1−Θ2)]j−k(1 + ρ)(1−Θ2)ck

≤
m∑
k=0

 ∞∑
j=0

[(1 + 1/ρ)(1−Θ2)]j

 (1 + ρ)(1−Θ2)ck

=
(1 + ρ)(1−Θ2)

1− (1 + 1/ρ)(1−Θ2)

m∑
k=0

ck

=
(1 + ρ)(1−Θ2)

Θ2 − (1−Θ2)/ρ

m∑
k=0

ck

=
2(1 + ρ)(1−Θ2)

Θ2

m∑
k=0

ck

=
2(2−Θ2)(1−Θ2)

Θ4

m∑
k=0

ck ,

where in the last two equalities we chose ρ = 2(1−Θ2)
Θ2 . Now recall that s ≤ Θ2

4+Θ2 ∈ (0, 1) and that t = (1− s)/2:

m∑
j=0

aj ≤
2(2−Θ2)(1−Θ2)

Θ4

m∑
k=0

ck

≤ 4

Θ4

m∑
k=0

ck

=

(
4 + Θ2

Θ2
− 1

)2
1

4

m∑
k=0

ck

≤
(

1

s
− 1

)2
1

4

m∑
k=0

ck

=
(1− s)2

4s2

m∑
k=0

ck

=
t(1− s− t)

s2

m∑
k=0

ck .

Lemma C.4 and Lemma C.5 directly result in our major theorem:

Proof of Theorem 4.1 It follows from Lemma C.4 and Lemma C.5 that

VM (f?) ≤ VM−1(f?) + δm ≤ V 0(f?) +

M−1∑
j=0

δj ≤
1

2
‖f0(X)− f?(X)‖2 .



Accelerating Gradient Boosting Machines

Training Loss Testing Loss

Figure 3: Training and testing loss versus number of trees for AGBM with different η.
Figure 4 presents the performance of different algorithms on tree stumps (namely smaller Θ). They are consistent

with Figure 1.

Notice VM (f?) ≥ αm−1

θm−1
(L(fM )− L(f?)) as the term 1

2‖f
M (X)− f?(X)‖2 ≥ 0, which induces that

L(fM )− L(f?) ≤ θM−1

2αM−1
‖f0(X)− f?(X)‖2 =

1

2γη
· ‖f

0(X)− f?(X)‖2

M2
.

D Additional Numerical Experiments

D.1 VAGBM may diverge with small η

Figure 3 shows that for smaller η, VAGBM may still diverge. Of course, the smaller the η, the longer VAGBM
stay stable.

D.2 Performance of different algorithms with tree stumps



Haihao Lu∗, Sai Praneeth Karimireddy∗, Natalia Ponomareva, Vahab Mirrokni

η = 1 η = 0.1 η = 0.01

tr
ai

n
in

g
lo

ss
te

st
in

g
lo

ss

number of trees number of trees number of trees

Figure 4: Training and testing loss versus number of trees for logistic regression on a1a with tree stumps (one
layer decision trees).


