Exploiting Categorical Structure Using Tree-Based Methods

Brian Lucena
Numeristical

Abstract

Standard methods of using categorical vari-
ables as predictors either endow them with
an ordinal structure or assume they have no
structure at all. However, categorical vari-
ables often possess structure that is more
complicated than a linear ordering can cap-
ture. We develop a mathematical framework
for representing the structure of categorical
variables and show how to generalize decision
trees to make use of this structure. This ap-
proach is applicable to methods such as Gra-
dient Boosted Trees which use a decision tree
as the underlying learner. We show results
on weather data to demonstrate the improve-
ment yielded by this approach.

1 INTRODUCTION

Categorical variables are ubiquitous in practical data
sets, but have received less attention in theoretical
treatments of algorithms. While numerical variables
have lots of beautiful properties due to the mathe-
matics of the real line, their categorical counterparts
have been crudely forced into the same structure. The
literature typically assumes that categorical variables
are either ordinal or unordered, with the latter taken
to mean that there is no structure at all (e.g. Hastie
et al. (2009) pp. 492-494).

However, while the real numbers naturally have a lin-
ear structure, categorical variables may have various
kinds of structure. Here are some examples:

1. The month of the year (e.g. {Jan, Feb, ..., Dec})
has a circular structure.

2. The U.S. States have a geographical structure

Proceedings of the 23"International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

Figure 1: Adjacency graph of the lower 48 states plus
DC.(Weisstein (2019))

based on which states border one another as il-
lustrated in Figure 1.

3. The CIFAR-10 outcome variable has structure in
that 4 of the values represent vehicles (airplane,
automobile, ship, truck) and the other 6 represent
animals (bird, cat, deer, dog, frog, horse).

In all of the above cases, the structure of the possi-
ble values of the random variable (sometimes called
“levels”) contains valuable information that can im-
prove predictive performance. Ignoring this structure
entirely and treating the levels as having no relation-
ship whatsoever fails to capture this signal. Simply
ordering them, while often an improvement, is insuffi-
cient to capture this signal most effectively. However,
the two most common ways of handling categorical
variables follow these approaches.

The first method is creating dummy variables (also
called “one-hot encoding”) where each level of the vari-
able is associated with a binary variable. This corre-
sponds to the “unordered” view - it assumes that that
the values are different, but with with no structure at
all. Thus it is unable to use the information in that
structure: for example, that Connecticut borders Mas-
sachusetts and thus is likely to have similar weather,
or political views. Moreover, it is clumsy in that it cre-
ates many different variables to represent a single con-
cept, and each variable captures a very narrow piece
of information.

Categorical Variable Structure

The second method is to map the levels onto the real
line, thereby imposing an ordinal structure on the vari-
able. This approach is generally an improvement over
the one-hot encoding approach. It can be very effec-
tive if the structure of the variable is truly ordinal, or
close to it. However, it is insufficient for the scenarios
described above, where the structure is more compli-
cated than a strict ordering.

To probe further the notion of “categorical variable
structure”, let us consider a simple scenario where we
have an integer-valued predictor X, a binary target
variable Y and we wish to predict P(Y = 1|X = z).
Generally, approaches to this problem are based on
the assumption that if 21 is “close to” x4, then P(Y =
11X = x4) is “close to” P(Y = 1|X = x2). This is typ-
ically done by appealing to mathematical notions of
continuity, i.e. modeling f(z) = P(Y = 1|X =x) as a
continuous function. However, this itself is an assump-
tion about the structure of the relationship between X
and Y. For example, if P(Y|X = z) depended only on
whether x was odd or even, this would be a poor mod-
eling assumption, and such models would do a poor job
of capturing the information that X contains about Y.

Thus, for categorical variables, we want to capture a
notion of “proximity” between the different levels of
the variable in order to be able to make an analogous
assumption that closeness in the values of X implies
closeness of P(Y|X = x).

In the next section, we will explore how Classification
and Regression Trees (CART) (also known as decision
trees) provide a useful framework for defining a notion
of proximity that is not restricted by the mathematical
structure of the real line. We will see how abstract-
ing some aspects of the decision tree algorithm will
permit us to define categorical structure and utilize it
effectively.

2 DECISION TREES

Decision trees (Breiman et al. (1984), Quinlan (1986))
have been a powerful force in machine learning.
They have been especially effective as the underlying
learner in methods such as Random Forests (Breiman
(2001), Amit and Geman (1997)) or Gradient Boosting
(Friedman (2002), Friedman (2000)). Elegant han-
dling of categorical variables has been a primary fea-
ture of recent Gradient Boosting packages such as Cat-
boost (Prokhorenkova et al. (2018), Dorogush et al.
(2018)) and LightGBM (Ke et al. (2017)). These ap-
proaches are no doubt an improvement over their more
naive counterparts. However, they still lack the ability
to use prior information about the natural structure
of the levels of the categorical variable. Rather, they
attempt to use the data to either find an appropri-

ate linear ordering or resort to exhaustively searching
all possible splits. Another class of approaches (Xie
et al. (2010), Stanfill and Waltz (1986), Cheng et al.
(2004)) attempt to learn a distance function between
categories and thereby incorporate that information
into supervised learning methods.

2.1 Decision Trees as “on-the-fly”
aggregators

To provide one perspective on why the decision tree
is effective, we will explore how decision trees act as
“on-the-fly” aggregators of predictor values. This is
by no means the only advantage of decision trees, but
it will motivate our approach to categorical variables.
Consider again the case where X is one-dimensional,
numerical, and Y is binary. Further assume that X
could only take on finitely many values. As the size
of our training data grows to infinity, for each pos-
sible value z; of X we would have as many observa-
tions as we wish from the distribution P(Y|X = z;).
Therefore, we could estimate P(Y|X = ;) directly
simply by counting the number of times ¥ = 1 and
Y = 0 among the data points where X = z;. With
more and more data, we could estimate the exact value
with arbitrarily fine precision for all z;. We refer to
this extreme case as the siloed approach. That is, in
estimating P(Y|X = x;) we do not consider any of the
training observations where X # x;.

However, with a smaller data set, the siloed approach
may not be the best. Rather, we may want to pool
nearby values of z; to achieve variance reduction at the
cost of introducing bias. One approach could be to de-
cide which values to pool together in advance of seeing
any data. For example, survey data will often define
an age-group (18-24, 25-39, etc.). Similarly, when U.S.
state is used as a predictor, it is common to group them
into regions such as “Northeast” or “Midwest”. The
decision tree algorithm offers a more sophisticated ap-
proach that lets the data inform the pooling decision.
Specifically, we specify ahead of time which sets of z;
it could make sense to pool, and then use a greedy al-
gorithm to explore the space of possible aggregations.

How do we decide which sets it “would make sense
to pool”? Since X is one-dimensional and numerical,
and motivated by the belief that P(Y|X = z;) is con-
tinuous, we determine that intervals of the real line
form “reasonable” choices of sets of z; to average to-
gether. As discussed before, our choice to consider
only the intervals as appropriate sets to average over
represents a statement about our prior beliefs on the
form of P(Y|X). In this way, the intervals form our
choice of “averageable” sets. Thus, we wish to parti-
tion the state space of X into such sets in a manner
that maximizes some metric that balances bias and

Brian Lucena

variance.

How do we search the space of partitions? Since X
can only take on finitely many different values, there
are a finite number of partitions. A simple counting
argument demonstrates that if X takes on m different
values, there are 2(™~1) — 1 total partitions into inter-
vals.! To avoid this exponential search the standard
decision tree uses a greedy approach. Specifically, we
find the binary partition that maximizes our metric,
and then recursively look for binary partitions of those
components.

Aside from the computational expense of searching all
partitions, there is another reason for doing the stage-
wise greedy approach. When we have multiple predic-
tor variables, it may be the case that there is more to
be gained by considering coarse partitions of several
different predictors rather than refining a single pre-
dictor to its maximum effectiveness. For this reason,
it makes sense to proceed conservatively, maintaining
larger data sets at each node in the tree.

Note that the decision tree only considers the parti-
tions that are maximally coarse — that is, those that
are not themselves a refinement of another partition.
With the intervals as the only averageable sets, the
maximally coarse partitions will be precisely those of
size 2.

The above informally illustrates how to re-frame the
decision tree algorithm in terms of averageable sets,
partitions, maximally coarse partitions, and so forth.
These notions enable us to generalize the decision tree
framework to accommodate the kinds of structured
categorical variables described at the beginning of the

paper.

3 THOUGHT EXPERIMENTS
ABOUT “AVERAGEABLE” SETS

Consider the following scenarios. In each case, X takes
on finitely many possible values and Y is a binary
outcome whose distribution depends on the value of
X. However, as we will see, the appropriateness of
whether and how to use a decision tree to determine
the best pooling (or at least, a good pooling) varies
considerably.

e Fxample 1: Die and coins. Each observation cor-
responds to the roll of a die and the flip of a coin.
Let there be 6 coins, indexed 1 to 6, each with a
different bias p; (e.g. each p; is drawn indepen-
dently from a Uniform [0, 1] distribution). Con-

!The number of partitions of a set of m elements with no
structure restrictions at all is the mth Bell number, which
is much much bigger.

sider a data-generation process whereby we roll
a 6-sided die X to generate a value x and then
flip the corresponding coin to generate the corre-
sponding Y| X = z.

o Fxample 2: Rain by Month. Each observation
corresponds to a random choice of day in the past
20 years. Let X be the month in which the day
in question occurred, and let Y be an indicator of
whether or not it rained in San Francisco on that
day.

e Example 3: Rain by County. Fach observation
corresponds to a random choice of day in the past
20 years and a random choice of county among the
58 counties in California. Let X be the county in
question and let Y be an indicator of whether or
not it rained in that county on that day.

In example 1, it never makes sense to pool different
values of z; together for estimating P(Y|X = x). The
only reasonable choice is to silo the data for each differ-
ent possible value of X. So the only sets that it “makes
sense to aggregate” are the sets containing one single
value. There is actually some nuance here — if the p;
were drawn from a distribution with an unknown pa-
rameter, it is possible that pooling could help. How-
ever, with p;~U|0, 1] drawn independently, there is no
information that the different coin flips could contain
about the other.

In example 2, we should consider grouping any subset
of consecutive months including those that cross from
December to January. A flawed approach (though
common in practice) would be to map the months
to their corresponding number (i.e. January—1,
February—2, ..., December—12) and then use a stan-
dard decision tree on this numerical representation.
However, if the rainy season goes from November to
March (as it does in San Francisco) we would be elim-
inating the possibility of grouping these 5 months to-
gether. To put things more precisely, there is a nat-
ural circular structure to this variable that should be
considered when deciding which splits (partitions) to
evaluate.

In example 3, we expect some regionality in the proba-
bility of rainfall. A dry area is more likely to neighbor
another dry area and similarly for wet areas. It is un-
clear from previous literature how to apply a decision
tree to this variable outside of the standard ordinal or
unordered approaches. Our previous discussion sug-
gests a possible method: let any contiguous group of
counties be an averageable set and then consider max-
imally coarse partitions of the state space into these
averageable sets. For example, the decision tree would
consider splitting the coastal counties versus inland

Categorical Variable Structure

counties, or the northern counties versus the southern
counties.

4 STRUCTURE
REPRESENTATION IN
CATEGORICAL VARIABLES

Here we begin the technical definitions used to repre-
sent the structure of a categorical predictor variable.
Our goal is to define a notion of structure for categori-
cal variables based on sets of values that it “could make
sense to average over”. Subsequently, we will general-
ize the decision tree to accommodate these structured
categorical variables. In doing so, we will see that our
generalized algorithm becomes the standard decision
tree when dealing with a linearly ordered structure.

To begin, we capture the notion of “averageable” sets
with a mathematical object that we call a terrain.

Definition 4.1. For a finite set V, define a terrain A
on V to be a set of subsets of V such that V & A,
0 ¢ A and for all v € V,{v} € A. In other words, A
contains all singleton subsets, but neither the empty
set nor the full set V.

A terrain can be thought of as a hypergraph on V
where each “hyper-edge” represents a (proper) subset
of values of V' that is “averageable” in the sense de-
scribed in the previous sections. We require all single-
ton subsets to be included since it always makes sense
to average over a single value.

Given a set V', denote by Part(V') the set of partitions
of the set V. In other words P = {Py, Ps,..., P} €
Part(V) if and only if each P; is a non-empty set and
every v € V is contained by exactly one P;. Further-
more we denote the size of the partition (in this case,
k) by |P|.

Definition 4.2. A partition P = {Py, Ps,..., P} €
Part(V) is said to conform to a terrain A over V if
P,e Aforalliin1,2,... k.

Definition 4.3. Given two partitions Py, Py €
Part(V), we say that P; is a coarsening of Ps if
|P1] < |P2| and for all Sy € Py there exists S; € Py
such that Sy C 5;.

Definition 4.4. Given a finite set V and a set S C
Part(V), we say that P* € S is mazimally coarse in
S if there does not exist P € S such that P is a coars-
ening of P*.

Definition 4.5. Let A be a terrain on V. The restric-
tion of a terrain A to a subset B C V is a terrain on
B defined as {A € A: A C B} and denoted Ap.

5 DEFINING TERRAINS WITH
GRAPHS

It is frequently tedious to specify a terrain by exhaus-
tively listing each of its elements. Graphs can provide
a convenient way to capture the structure of the “lev-
els” of a random wvariable. This is especially true if
there is a spatial aspect to the relationship between
levels. Consider the case where we have a random vari-
able that represents which US state a person resides
in. For simplicity, just consider the lower 48 states
plus the District of Columbia as the possible values.
We may wish to define our terrain to include any con-
tiguous collections of states. This can be easily done
by letting G = (V, E) be the corresponding adjacency
graph and then defining a terrain to be the connected
sets in G (excluding the set V).

Definition 5.1. Let G = (V,E) be an undirected
graph and let A C V. We say the set A is connected
in G if the subgraph induced by A is connected.

Definition 5.2. Let G = (V, E) be a connected, undi-
rected graph. Define the terrain induced by the graph
G, denoted T (G) to be such that A € T(G) if and only
if A is connected in G and A # V.

If our terrain is defined by a graph in this way we
will ensure that the maximally coarse partitions are
binary. This property will be useful when we present
the generalized version of the decision tree, as it will
guarantee that the resulting decision trees are binary.
We make the precise mathematical statement below.

Theorem 5.1. Let G = (V, E) be a connected, undi-
rected graph, and let T(G) be the terrain induced by G.
Let P be a mazimally coarse partition that conforms
to G. Then |P| = 2.

Proof. We will show that any partition P conforming
to G with |P| # 2 is not maximally coarse. Since
V & T(G) there are no partitions of size 1. Let P =
{V1,...,Vi} be a partition of size k > 3. Since G is
connected, there must exist 4, j such that there exists
an edge in G between a vertex in V; and a vertex in V.
Since V; and V; are themselves connected sets, we can
conclude that V; U Vj is a connected set and therefore
ViUV, € T(G). Let P’ be the partition formed from P
by removing V7 and V5 and adding V3 U V5. Clearly, P
is a refinement of P’ and therefore P is not maximally
coarse. O

While graphs can be a useful means to define a ter-
rain, they are not sufficient to describe any terrain.
Consider a random variable with the possible values
V = {Monkey, Chimp, Car, Truck, Dog, Wolf}. A
reasonable terrain might be AU B where:

Brian Lucena

o A = {{Monkey, Chimp},{Car, Truck},
{Dog,Wolf},{Monkey, Chimp, Dog, Wolf}}

o B = {{Monkey}, {Chimp},{Car},
{Truck},{Dog}, {Wolf}}

“

In other words, the “primates”, “vehicles”, “ca-
nines”, and “mammals” represent the averageable
sets outside of the singletons. However, this ter-
rain cannot be induced by any graph G. Having
{Monkey, Chimp, Dog, Wolf} as a connected compo-
nent in G requires an edge between some primate and
some canine (say, Chimp and Dog). This in turn im-
plies that the set {Chimp, Dog} induces a connected
subgraph and is therefore in the terrain.

Nevertheless, many categorical variables, including
those of a spatial nature, have a structure that is well
captured by a graph-based terrain.

6 STRUCTURED CATEGORICAL
DECISION TREE

Inspired by the examples above, and armed with the
preceding definitions, we propose the following refor-
mulation of the Decision Tree / CART. Consider the
standard supervised learning framework, where we
have a set of training data (X1, Xs,..., Xy, Y). We
assume that each X; takes values in a finite set Vj.
Associated with each V; we have a terrain A; repre-
senting the structure of the levels of the corresponding
categorical variable. Algorithm 1 then generalizes the
Decision Tree / CART to use structured categorical
variables.

Algorithm 1 Structured Categorical Decision Tree

Input: Dataset of form (X1, Xo,..., Xk, Y) plus an
associated refined terrain A; on V; (the set of possi-
ble values of X;).

Output: A decision tree

(1) For each feature X;, let S; be the set of partitions
on V; which conform to A; and let S/ be the set of
partitions which are maximally coarse in ;.

(2) For every feature X;, and every partition P €
S/, evaluate the split corresponding to P . Let
Bi1, Bs, ..., B, be the best split.

(3) Split the data into m sets depending on which ¢
satisfies X; € B,.

(4) Recursively apply steps (1) - (3) on each branch,
with the associated dataset, and with the appropri-
ate restricted terrain Ap, replacing A.

(5) Continue until appropriate stopping conditions
are met. (e.g. maximum depth, minimum leaf size)
(6) If desired, apply post-processing steps to prune
the tree.

e If the terrains for all variables X; are induced by
connected graphs G;, then by Theorem 5.1 we
know all maximally coarse partitions have size 2,
and therefore the resulting decision tree will be
binary.

e There are several alternative methods of choosing
the space of partitions to be considered at each
step. When the space of maximally coarse parti-
tions is large, one may choose to evaluate only a
random subset of them. This could also serve as
a regularization method to avoid overfitting.

e This algorithm is equivalent to the standard de-
cision tree with numerical predictors X; when we
take the following steps:

1. Divide the real line into disjoint intervals de-
fined by the distinct values of the variable X;

2. Perceive X; as a categorical variable with
these intervals as the (finitely many) possi-
ble values.

3. Define the associated terrain to be the terrain
with respect to the chain graph G where each
interval is adjacent to its neighbors.

Following these steps, the maximally coarse par-
titions will correspond exactly to the splits to the
“left” or “right” of the distinct training set values,
as in the standard decision tree.

7 COMPLEXITY AND
IMPLEMENTATION

We built a Python/Cython implementation of Struc-
tured Categorical Decision Trees (SCDT), as well as a
Gradient Boosting algorithm with such trees as the un-
derlying learner. Our implementation used the graph-
based terrain approach described earlier. Each vari-
able has a defined set of values V' and an associated
graph G = (V, E) such that terrain contains precisely
the connected subsets in G. Our gradient boosting ap-
proach followed the methods of XGBoost (Chen and
Guestrin (2016)) in how it evaluated splits based on
the first and second derivatives of the loss function.

Compared to a standard decision tree, there is addi-
tional computational complexity in two primary re-
spects:

1. Determining the maximally coarse partitions

2. Evaluating each maximally coarse partition (the
number of which can be much greater than |V|,
in contrast to the standard decision tree).

Categorical Variable Structure

Table 1: Parameters of grids and other graphs

name | v el | IMP(G)| | |CS'(G)| | |CS(G)]
Gr3 3| 9 12 53 79 218
Gr34 | 12 17 146 425 1126
Grdd | 16 24 627 3331 11506
Grd,5 | 20 31 2471 25850 116166
Gr5,5 | 25 40 16213 285938 2301877
Gr5,6 | 30 | 49 111367 | 5616968 | 45280509
US49 | 49 | 107 | 4149721 | 35327031 ?
CA9 | 9 12 36 66 172
CA20 | 20 | 39 3652 46847 177528

Both of these additional costs can be mitigated to keep
the time complexity of the SCDT to a reasonable level
for many interesting, moderately sized problems.

Determining the maximally coarse partitions requires
finding every connected set S in G = (V,E) where

S| < L%J and then checking to see that its comple-

ment is also connected. If both S and S¢ are con-
nected, then the partition {S, S} can be added to
the set of maximally coarse partitions. We will refer
to the set of maximally coarse partitions of a graph G
as M P(G), the set of connected sets of G as C'S(G)

and the set of connected sets of G with |S| < {%

as CS'(G). Therefore, determining the set MP(G)
requires searching across all items in C'S’(G).

Enumerating of the connected sets of G is itself a ques-
tion of active research in graph theory (e.g. Ko-
musiewicz and Sommer (2019), Elbassioni (2015)).
The size of C'S(G) depends greatly on the structure of
G, but can quickly become intractable even for graphs
of moderate size. Fortunately, the sets C'S’(G) and
MP(G), while fast growing, do not grow as explo-
sively as C'S(G). To demonstrate this, we show the
values of these sets for m x n grids (denoted GRm,n),
the US49 graph, and CA-9 and CA-20 (graphs of Cal-
ifornia counties that will be defined next section) in
Table 1. We can see how quickly these numbers grow
with the size of the graph, even for planar graphs.

Fortunately, this cost of determining the set M P(G)
can be mitigated by creating it offline. Once created,
it can be stored and reused for any other problem
that uses that variable. The challenge is that once
the variable is split, we need to recalculate the set of
maximally coarse partitions for each subgraph. Fortu-
nately, since each subgraph is smaller than the parent,
creating the set M P(H) for a subgraph H is consid-
erably less expensive than it is for the initial graph

G.

Figure 2: Selected 20 counties of California.

The second additional complexity cost comes from
evaluating each maximally coarse partition. How-
ever, this can be mitigated by choosing only a small
random subset to evaluate. We can set a parame-
ter called maz_splits_to_search such that if the size
of the set of maximally coarse partitions is greater
than max_splits_to_search, we choose a random sub-
set of partitions (of that size) and only evaluate those
splits. As we will see in the next section, we can keep
this parameter rather small and still get performance
comparable to or better than the exhaustive search.

8 EXPERIMENTS AND RESULTS

To demonstrate this algorithm on a practical problem,
we collected weather data from all available weather
stations in California from the years 2000-2019. These
data were obtained from NOAA via their website data
search tool (https://www.ncdc.noaa.gov/cdo-web/).
Each row represents a daily summary from a partic-
ular weather station available in those counties from
2000-present. The raw data was highly unbalanced
as some counties contain more stations than others,
so we subsetted the data to include an equal number
of observations from each county (19,232 to be pre-
cise). Our goal was to predict the probability of rain
on a given day using only two predictor variables: the
month of the observation and the county where the
observation occurred. We chose log-loss (i.e. negative
maximum log-likelihood divided by the number of test
set points) as our metric of interest, since our goal was
to estimate accurate probabilities of rainfall.

The geographical structure of the counties is com-
plex, so this problem is a good candidate to demon-
strate how exploiting categorical structure could im-
prove predictive performance. The 20 counties selected
range from the coast to the mountains to the desert.
Additionally, the circular structure of the months is
another example where traditional methods are sub-
optimal in capturing the categorical structure.

We implemented a gradient boosted trees algorithm

Brian Lucena

Performance of Algorithms on CA-9 Data Set

— Structured
— One-Hot
005 — Ordinal
Siloed

log-loss - optimal log-loss

107 10° 10¢ 10°
Training Set Size (log-10 scale)

Figure 3: Results of Algorithms on CA-9 data set

using several variants of decision trees to compare the
performances of different ways of handling the categor-
ical variables “Month” and “County”. One advantage
of this problem and data set is that the amount of
data was very large compared to the number of differ-
ent month-county combinations. In fact, we possess
enough data to accurately calculate the mean prob-
ability of rainfall for each month-county combination
separately to a high degree of precision, so effectively
we “know” the right answer. In this way, we were able
to compute the “optimal” log-loss - i.e. what log-loss
you would get on the test set if you knew the actual
distribution. Consequently, we can run the different
variants of our algorithms on training data sets of dif-
ferent sizes to see not only how they compare with
each other, but how far they are from the “optimal”
solution.

We compared 4 models in this evaluation:

1. One-Hot: Build each decision tree using one-hot-
encoded versions of month and county.

2. Ordinal: Build each decision tree using the nu-
merical encoding of month (i.e. January: 1, July:
7) and ordinally ranking the counties by their
mean probability of rainfall in the training set.

3. Structured: Build each decision tree using the
structured categorical approach: with the “circu-
lar” encoding of month and the adjacency graph
representation of the counties.

4. Siloed: Calculate the mean for each county-month
combination from the training data. This is a
very naive model, but for large enough training
data sets it approaches optimality. It is useful to
consider as it demonstrates the level of signal in
the training data.

We compared these models on two subsets of coun-
ties: County-20 representing the 20 counties pic-

Performance of Algorithms on CA-20 Data Set

\ — Structured
008 |\ — One-Hot
— Ordinal
007\ \ siloed

0.06

0.05

004

log-loss - optimal log-loss

10° 10¢ 10°
Training Set Size (log-10 scale)

Figure 4: Results of Algorithms on CA-20 data set

tured in Figure 2 and County-9 representing only
the 9 “Bay Area” counties (San Francisco, San Ma-
teo, Santa Clara, Marin, Napa, Sonoma, Solano,
Alameda, Contra Costa). The County-20 dataset con-
tains 386,460 observations while the County-9 dataset
contains 173,907 observations. We set aside 40% of
the data for testing (quantity of training data was not
an issue). Then, for each subset of counties, we exam-
ined the performance of the different algorithms using
training sets of sizes ranging from 100 to 100,000. We
repeated the randomization of train/test sets 3 times
and averaged the results. To reduce variation based on
parameter settings, we tried maximum depths of 2 and
3, chose a small learning rate, a large number of trees,
checked the performance of each model on the test set
every 20 iterations. We kept the best score achieved by
the model for each train/test combination, and then
averaged the results over the test sets for each training
set size and algorithm.

In Figure 3 and Figure 4 we see the average log-loss as
a function of training set size for each of the models. In
both cases the Structured method clearly outperforms
the One-Hot and Ordinal methods. The discrepancy
is larger on the smaller data sets and remains signifi-
cant through the larger data sets. it only disappears
as we reach the largest sizes where even the Siloed
approach converges to optimal. This is in line with
expectations. With smaller data sets there are large
gains to be had by “smartly” aggregating the different
counties (or months) together. As data becomes more
plentiful, the gains diminish in strength.

The Structured variants shown were implemented with
maz-splits-to-search set to 5 (for the CA-9 data set)
and 20 (for the CA-20 data set). That is, we were
able to achieve this performance by searching only a
very tiny fraction of the 36 and 3652 available splits in
the County variable (and the 55 splits in Month). We
also explored increasing the value of the max-splits-
to-search to 10 and unlimited (for the CA-9 data set)

Categorical Variable Structure

Performance of Structured Variants on CA-9 Data Set

°
o
&

— msts=5
— msts=10

o
&

— msts=none

°
s
R

Iog-loss - optimal log-loss
°
e

o

5

V4
//

o
2
/4

0.00
10 10° 104 10°
Training Set Size (log-10 scale)

Figure 5: Performance of SCDT on CA-9 for different
values of maz-splits-to-search

and 100 and 500 (for the CA-20 dataset). The re-
sults are shown in Figures 5 and 6. Interestingly, in-
creasing the number of splits the algorithm searched at
each node did not significantly improve performance,
and in fact, it made the performance worse on the
smaller data sets. This is likely due to two main fac-
tors. First, making very few splits available served to
prevent overfitting on the smaller data sets. This ef-
fect may be exacerbated by the fact that we did not in-
clude any shrinkage methods to regularize (such as the
penalized likelihoods used in XGBoost), but rather re-
lied on building relatively shallow trees. Second, since
the boosting algorithm created hundreds of trees, the
range of splits considered by the whole ensemble far
exceeded the range at any particular node. It is worth
noting, however, that all variants of the Structured
approach noticeably outperformed the One-Hot and
Ordinal methods.

The strong performance of the algorithm while search-
ing very few partitions in a very large space was an un-
expected result. However, it is very promising news for
this approach, as it demonstrates that structured cat-
egorical approaches can be very effective without hav-
ing to exhaustively search the larger partition spaces
created by the structure on the categorical variables.

To give a benchmark of the actual run-time of the
algorithm, training the model with 1000 depth 3 trees
on 100,000 data points for the CA-20 data set took 25.2
minutes on a 2019 MacBook Pro with a 2.4GHz Intel i9
processor. This was without using any parallelization
or GPU computation, which most boosting packages
employ to improve computation time.

9 SUMMARY AND DISCUSSION

We examined the notion of structure in categorical
variables and determined that existing approaches fail
to take advantage of this structure when it is not or-

Performance of Structured Variants on CA-20 Data Set

— msts=20
008 — msts=100
— msts=500

007\

°
°
&

005

004

log-loss - optimal log-loss

o
S

10° 10¢ 10°
Training Set Size (log-10 scale)

Figure 6: Performance of SCDT on CA-20 for different
values of max-splits-to-search

dinal in nature. We gave several natural examples of
categorical variables which contain structure that is
not ordinal. Motivated by thought experiments about
decision trees, we defined a mathematical framework
for defining structure on categorical variables via a ter-
rain, which is essentially a set of subsets of the possi-
ble values of the variable that it “might make sense to
average over”. Using this framework, we precisely de-
fined a new variant of the decision tree that is able to
exploit the structure in categorical variables. We im-
plemented this Structured Categorical Decision Tree
into a Gradient Boosting algorithm, and demonstrated
improvement on a prediction problem that contained
complex structure of a spatial and temporal nature.
We further discovered that an exhaustive search of the
broader partition space was not necessary to achieve
excellent performance. In fact, just searching a tiny
fraction of the available splits improved performance
considerably, and increasing this amount resulted in
poorer performance, likely due to overfitting.

Broadly, this work demonstrates that there is useful
signal in the structure of categorical variables that ex-
isting methods fail to exploit. This opens up numer-
ous directions for future research, two of which are
of particular interest. First, can we exploit struc-
ture in the target variable in the same way as we
exploited structure in the predictor variables? This
may be of particular interest in image classification
problems with a large number of classes. For exam-
ple, can we improve performance by incorporating the
knowledge that monkeys and chimpanzees are “simi-
lar”? The second direction involves further develop-
ment the mathematical foundations of structured cat-
egorical variables, particularly from an information-
theoretic point of view.

References

Amit, Y. and Geman, D. (1997). Shape quantization
and recognition with randomized trees. Neural Com-

Brian Lucena

putation, 9(7):1545-1588.

Breiman, L. (2001). Random forests. Machine Learn-
ing, 45(1):5-32.

Breiman, L., Friedman, J., Olshen, R., and Stone,
C. (1984). Classification and regression trees.
wadsworth & brooks. Cole Statistics/Probability Se-
ries.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge
discovery and data mining, pages 785—794. ACM.

Cheng, V., Li, C.-h., Kwok, J., and Li, C.-K. (2004).
Dissimilarity learning for nominal data. Pattern
Recognition, 37:1471-1477.

Dorogush, A. V., Ershov, V., and Gulin, A. (2018).
Catboost: gradient boosting with categorical fea-
tures support. arXiv preprint arXiv:1810.11363.

Elbassioni, K. M. (2015). A polynomial delay algo-
rithm for generating connected induced subgraphs
of a given cardinality. J. Graph Algorithms Appl.,
19(1):273-280.

Friedman, J. H. (2000). Greedy function approxima-
tion: A gradient boosting machine. Annals of Statis-
tics, 29:1189-1232.

Friedman, J. H. (2002). Stochastic gradient boosting.
Comput. Stat. Data Anal., 38(4):367-378.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The elements of statistical learning: data mining,
inference, and prediction.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W.,
Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm:
A highly efficient gradient boosting decision tree.
In Advances in Neural Information Processing Sys-
tems, pages 3146-3154.

Komusiewicz, C. and Sommer, F. (2019). Enumerating
connected induced subgraphs: Improved delay and
experimental comparison. In International Confer-
ence on Current Trends in Theory and Practice of
Informatics, pages 272-284. Springer.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. (2018). Catboost: unbiased
boosting with categorical features. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 31, pages
6638-6648. Curran Associates, Inc.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine learning, 1(1):81-106.
Stanfill, C. and Waltz, D.

memory-based reasoning.

29(12):1213-1228.

Toward
ACM,

(1986).
Commun.

Weisstein, E. W. (2019). Contiguous usa graph. from
mathworld—a wolfram web resource.

Xie, J., Szymanski, B. K., and Zaki, M. J. (2010).
Learning dissimilarities for categorical symbols.
Journal of Machine Learning Research - Proceedings
Track, 10:97-106.

