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Appendices

A Implementation Details

The most important part in our implementation is
a linear representation of the tree structure using
breadth-first search (BFS). When BFS encounters a
node, the linearization routine adds a tag, which is
the rank of this node in its siblings, in front of the
variables associated with this node, and this tag will
be used to construct the delta kernel in Algorithm 1.
Figure 6 shows the liner representation corresponding
to the tree structure in Figure 1.
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Figure 6: Linear representation of the tree structure
corresponding to Figure 1

When linearizing an observation, we modify its tag
using the following rules:

• if a node is not associated with a continuous pa-
rameter, its tag is changed to a unique value

• if a node doesn’t in this observation’s correspond-
ing path, its tag is changed to a unique value

• otherwise, we set the values after this tag to be
the sub-parameter restricted to this node

For example, the linear representation of an observa-
tion (0.1, 0.2, 0.3, 0.4) falling into the left path is shown
in Figure 7 and the linear representation of an obser-
vation (0.5, 0.6, 0.7, 0.8, 0.9) falling into the right path
is shown in Figure 8.
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Figure 7: Linear representation of an observation
falling into the lower path corresponding to Figure 1

0 0.5 0.6 Uniq vp1 1 0.7 0.8 0.9

Figure 8: Linear representation of an observation
falling into the upper path corresponding to Figure 1

Based on this linear representation, it is now straight-
forward to compute the covariance function, which is
constructed in Algorithm 1, between any two observa-
tions. We note the dimension of such a linear represen-
tation has order O(d), where d is the dimension of the

original parameter space, thus there is little overhead
compared with other covariance functions in existing
GP libraries, such as RBF or Matern in GPyOpt.

B Time Complexity Analysis of
Inference with Add-Tree

We analyse the time complexity of inference using our
proposed Add-Tree covariance function by recursion.
Without loss of generality, let the tree structure T be
a binary tree. If the root node r of T is associated
with a continuous parameter, which means this pa-
rameter is shared by all paths. In this worst case, the
gram matrix in Equation (9) is dense and structure-
less, and the complexity will be O(n3), where n is the
number of observations. Otherwise, when r is not as-
sociated to any continuous parameter, let nl and nr be
the number of samples falling into the left path and the
right path respectively, we have T (r) = T (rl) +T (rr),
where rl is the left child of r, rr is the right child
of r, T (r), T (rl), T (rr) are the running time at nodes
r, rl, rr respectively. Because the worst-case running
time at nodes rl and rr is O(n3l ) and O(n3r) respec-
tively, we have T (r) = O(n3l + n3r).

Table 2 summarizes the worst-case inference time com-
plexity comparison of our Add-Tree covariance func-
tion and other related methods. In Table 2, ni is
number of observations falling into path li and n =∑

1≤i≤|P | n
3
i . In general, Add-Tree performs the worst

among these three methods from the aspect of time
complexity. However, due to the explicit sharing mech-
anism, our approach requires fewer black-box calls to
the expensive objective function, which typically dom-
inates the computational cost of the GP model.

C Time Complexity Analysis of
Algorithm 2

W.l.o.g, let the tree structure T be a perfect binary
tree, the depth of this tree be h, and suppose all
nodes are associated with a du dimensional vector.
Then |P | = 2h−1 and |V | = 2h − 1. The running
time of searching in every leaves in a näıve way is
|P | + |P |O(h2d2u) = 2h−1 + 2h−1O(h2d2u). The run-
ning time of Algorithm 2 is |V |O(d2u) + |P |h + |P | =
2h−1 + 2h−1(h + 2O(d2u)) − O(d2u), here we keep the
constants just for clarity. It is clear that Algorithm 2
has a substantial advantage over a näıve method when
h ≥ 2. We note the complexity of BFGS is O(n2),
where n is the dimension of the parameter.
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Table 2: Inference Time Complexity Comparison

Method Share? Complexity

Independent no O(
∑

1≤i≤|P | n
3
i )

Jenatton et al. yes O(
∑

1≤i≤|P | n
3
i + |V |3)

Add-Tree yes

{
O(n3l + n3r) if no sharing continuous parameter at r

O(n3) otherwise

D Combine With Other Acquisition
Functions

Add-Tree covariance function itself can be combined
with any other acquisition functions and enables effi-
cient information sharing. To efficiently optimize the
acquisition function using Algorithm 2, it is required
the acquisition function has additive structure, other-
wise the two-step approach in Jenatton et al. (2017)
can be used.

E When Additive Assumption is Not
Enough

For objective functions with known additive struc-
ture, our proposed Add-Tree covariance function usu-
ally performs the best. If there is an interaction ef-
fect between the variables along a single path in the
tree structure, we can combine the method proposed
in Duvenaud et al. (2011) by including higher order
additive kernels for these variables. To illustrate the
covariance function design in this case, we again take
the tree-structured function in Figure 1 as an exam-
ple. Since there is an interaction effect between vr and
vp1, the latent variables associated to fp1,T is decom-

posed as f
(1)
r + f1 + fr1, where fr1 is the interaction

term between vr and vp1. Similarity, the latent vari-

ables associated to fp2,T is f
(2)
r + f2 + fr2. Similar to

Equation (6), we have:
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To model fr1 and fr2 separately, we can use product
covariance functions krk1 and krk2 respectively. With-
out further assumptions, it is not clear how to model
the covariance between fr1 and fr2. A visualization
is shown in Equation (13). In this case, a safe choice
is to set these covariance to be zero, because over-
estimating the covariance will confuse the GP, and the
price paid for ignoring these covariance here is we lose
some potential sample-efficiency.
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Combine Equations (9), (12) and (13), we obtain the
joint distribution of a tree-structured function with in-
teraction effects:[
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where K11 = K
(11)
r + K1 + Kr1 and K22 = K

(22)
r +

K2+Kr2. To implement the Add-Tree covariance func-
tion with interaction effects, the linear representation
presented in Appendix A remains unchanged. For Al-
gorithm 1, we only need to construct an extra term by
multiplying the corresponding delta covariance func-
tion with the interaction terms we are interested in,
and append this extra term in the final covariance
function.


