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Abstract

The statistical analysis of Randomized Numer-
ical Linear Algebra (RandNLA) algorithms
within the past few years has mostly focused
on their performance as point estimators.
However, this is insufficient for conducting
statistical inference, e.g., constructing confi-
dence intervals and hypothesis testing, since
the distribution of the estimator is lacking. In
this article, we develop asymptotic analysis to
derive the distribution of RandNLA sampling
estimators for the least-squares problem. In
particular, we derive the asymptotic distri-
bution of a general sampling estimator with
arbitrary sampling probabilities. The analysis
is conducted in two complementary settings,
i.e., when the objective of interest is to ap-
proximate the full sample estimator or is to
infer the underlying ground truth model pa-
rameters. For each setting, we show that the
sampling estimator is asymptotically normally
distributed under mild regularity conditions.
Moreover, the sampling estimator is asymp-
totically unbiased in both settings. Based
on our asymptotic analysis, we use two cri-
teria, the Asymptotic Mean Squared Error
(AMSE) and the Expected Asymptotic Mean
Squared Error (EAMSE), to identify optimal
sampling probabilities. Several of these op-
timal sampling probability distributions are
new to the literature, e.g., the root leverage
sampling estimator and the predictor length
sampling estimator. Our theoretical results
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clarify the role of leverage in the sampling pro-
cess, and our empirical results demonstrate
improvements over existing methods.

1 Introduction

Recent work in Randomized Numerical Linear Alge-
bra (RandNLA) focuses on using random sketches
of the input data in order to construct approximate
solutions more quickly than with traditional deter-
ministic algorithms. In this article, we consider sta-
tistical aspects of recently-developed fast RandNLA
algorithms for the least-squares (LS) linear regres-
sion problem. Given Y = (Y1, . . . , Yn)

T ∈ Rn and
X = (x1, . . . ,xn)

T ∈ Rn×p, we consider the model

Y = Xβ0 + ε, (1)

where β0 ∈ Rp is the coefficient vector, and ε =
(ε1, . . . , εn)

T ∈ Rn, where εis are i.i.d random errors
with mean 0 and variance σ2 < ∞. We assume the
sample size n is large and that X has full column rank.
The ordinary least squares (OLS) estimator of β0 is

β̂OLS = argmin
β
‖Y −Xβ‖2 = (XTX)−1XTY, (2)

where ‖ · ‖ is the Euclidean norm. While the OLS esti-
mate is optimal in several senses, the algorithmic com-
plexity for computing it with direct methods is O(np2),
which can be daunting when n and/or p are large.

Motivated by these algorithmic considerations, random-
ized sketching methods have been developed within
RandNLA to achieve improved computational effi-
ciency (Mahoney, 2011; Drineas and Mahoney, 2016;
Halko et al., 2011; Woodruff et al., 2014; Mahoney
and Drineas, 2016; Drineas and Mahoney, 2018). With
these methods, one takes a (usually nonuniform) ran-
dom sample of the full data (perhaps after prepro-
cessing or preconditioning with a random projection
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matrix (Drineas and Mahoney, 2016)), and then the
sample is retained as a surrogate for the full data for
subsequent computation. Here is an example of this
approach for the LS problem.

Step 1: Sampling. Draw a random sample of size
r � n with replacement from the full data using
probabilities {πi}ni=1. Denote the resulting sample and
probabilities as (X∗,Y∗) and {π∗i }ri=1.
Step 2: Estimation. Calculate the weighted LS
solution, using the random sample, by solving

β̃ = arg minβ‖Φ∗Y∗ −Φ∗X∗β‖2

= (X∗TΦ∗2X∗)−1X∗TΦ∗2Y∗

where Φ∗ = diag(1/
√
rπ∗i ).

Popular RandNLA sampling approaches include the
uniform sampling estimator (UNIF), the basic leverage-
based sampling estimator (BLEV), where πBLEVi =
hii/

∑n
i=1 hii, where hii = xTi (X

TX)−1xi are the
leverage scores of X, and the shrinkage leverage es-
timator (SLEV), which involves sampling probabil-
ities πSLEVi = λhii/

∑n
i=1 hii + (1 − λ)/n, where

λ ∈ (0, 1) (Drineas et al., 2006, 2008, 2012; Ma et al.,
2014).

In this article, we study the statistical properties of
these and other estimators. Substantial evidence has
shown the practical effectiveness of core RandNLA
methods (Ma et al., 2014, 2015; Drineas and Mahoney,
2016) (as well as other randomized approximating meth-
ods, including the Hessian sketch (Wang et al., 2017;
Pilanci andWainwright, 2016) and iterative/divide-and-
conquer methods (Avron et al., 2010; Meng et al., 2014))
in providing point estimators. However, this is not suffi-
cient for statistical analysis since the uncertainty of the
estimator is lacking. In statistics, uncertainty assess-
ment can be conducted through confidence interval con-
struction and significance testing. It is well-known that
the construction of confidence intervals and significance
testing are interrelated with each other (Lehmann and
Romano, 2006). Performing these two analyses is more
difficult than point estimation, since it requires the
distributional results of the estimator, rather than just
moment conditions or concentration bounds. In the
RandNLA literature, distribution results of estimators
are still lacking.

There are two main challenges in studying the sta-
tistical and distributional properties of RandNLA al-
gorithms. The first challenge is that there are two
sources of randomness contributing to the statistical
performance of RandNLA sampling estimators: one
source is the random errors in the model, i.e., the εis,
which are typically attributed to measurement error
or random noise inherited by Y; and the other source

is the randomness in the random sampling procedure
within the approximation algorithm. The second chal-
lenge is that these two sources of randomness couple
together within the estimator in a nontrivial way. More
formally, the sampling estimator can be expressed as
β̃ = (XTWX)−1XTWY, where W is a random di-
agonal matrix, with the ith diagonal element being
related to the probability of choosing the ith sample.
The random variable used to denote the random sam-
pling procedure, i.e., W, is involved in the sampling
estimator in a nonlinear fashion, and it pre-multiplies
Y, which contains randomness from the εis.

We address these challenges to studying the asymptotic
distribution of a general RandNLA sampling estima-
tor for LS problems. Our results are fundamentally
different from previous results on the statistical prop-
erties of RandNLA algorithms (e.g., Ma et al. (2014,
2015); Raskutti and Mahoney (2015); Chen et al. (2016);
Wang et al. (2017); Dereziński et al. (2019)), in that we
provide asymptotic distribution analysis, rather than
finite-sample concentration inequalities. The resulting
asymptotic distributions open the possibility of per-
forming statistical inference tasks such as hypothesis
testing and constructing confidence intervals, whereas
finite sample concentration inequality results may not.
It is worth mentioning that the results of asymptotic
analysis are usually practically valid as long as the
sample size is only moderately large.

Main Results. Our main theoretical contribution
is to derive the asymptotic distribution of RandNLA
estimators in two complementary settings.

Data are a random sample. We first consider the
data as a random sample from a population, in which
case the goal is to estimate the parameters of the pop-
ulation model. In this case, for this unconditional
inference, we establish the asymptotic normality, i.e.,
deriving the asymptotic distribution, of sampling esti-
mators for the linear model under general regularity
conditions. We show that sampling estimators are
asymptotically unbiased estimators with respect to the
true model coefficients, and we obtain an explicit form
for the asymptotic variance, for both fixed number of
predictors (Theorem 1) and diverging number of pre-
dictors (Theorem 2). Sampling Estimators. Using
these distributional results, we propose several efficient
and asymptotically optimal estimators. Depending on
the quantity of interest (e.g., β0 versus some linear func-
tion of β0 such as Y = Xβ0 or XTXβ0), we obtain
different optimal sampling probabilities (Propositions 1,
2, and 3) that lead to sampling estimators that min-
imize the Asymptotic Mean Squared Error (AMSE)
in the respective context. None of these distributions
is proportional to the leverage scores, but one (RL of
Proposition 2) is constructed using the square roots of
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the leverage scores, and another (PL of Proposition 3)
is constructed using the row norms of predictor matrix.

Data are given and fixed. We then consider the
data as given/fixed, in which case the goal is to approx-
imate the full sample OLS estimate. In this case, for
this conditional inference, we establish the asymptotic
normality, i.e., deriving the asymptotic distribution, of
sampling estimators for the linear model under general
regularity conditions. We show that sampling esti-
mators are asymptotically unbiased with respect to
the OLS estimate, and we obtain an explicit form of
the asymptotic variance and the Expected Asymptotic
Mean Squared Error (EAMSE) of sampling estimators
(Theorem 3). Sampling Estimators. Using these
results, we construct sampling probability distributions
that lead to sampling estimators that minimize the
EAMSE. Depending on the quantity of interest (here,
β̂OLS versus some linear function of β̂OLS such as
Ŷ = Xβ̂OLS or XTXβ̂OLS , we obtain different opti-
mal sampling probabilities (Propositions 4, 5, and 6).

Related Work. There is a large body of related work
in RandNLA (Mahoney, 2011; Drineas and Mahoney,
2016; Halko et al., 2011; Woodruff et al., 2014; Ma-
honey and Drineas, 2016; Drineas and Mahoney, 2018).
However, very little of this work addresses statistical
aspects of the methods. Recently, significant progress
has been made in the study of the statistical proper-
ties of RandNLA sampling estimators (Ma et al., 2014,
2015; Raskutti and Mahoney, 2015; Chen et al., 2016;
Wang et al., 2017; Dereziński et al., 2019). The work
most related to ours is that of Ma et al. (2014, 2015),
who employed a Taylor series expansion up to a linear
term to study the MSE of RandNLA sampling esti-
mators. Ma et al. (2014, 2015) failed to characterize
the detailed convergence performance of the remain-
der term. They concluded that neither leverage-based
sampling (BLEV) nor uniform sampling (UNIF) domi-
nates the other in terms of variance; and they proposed
and demonstrated the superiority of the SLEV sam-
pling method. To find the sampling distribution of
estimators, leading to statistically-better RandNLA
sampling estimators, it is important to examine the
convergence properties of the remainder term. To ac-
complish this, we consider the asymptotic distribution
of the sampling estimator. Such asymptotic analysis is
common in statistics, and it can substantially simplify
the derivation of complicated random variables, leading
to simpler analytic expressions (Le Cam, 1986).

Chen et al. (2016) proposed optimal estimators mini-
mizing the variance that accounts for the randomness
of sampling and model error. Our results and those
of Chen et al. (2016) have similar goals, but they are
different. First, Chen et al. (2016) used bias and vari-
ance, while we use AMSE and EAMSE. Second, we

consider the asymptotic distribution of the sampling
estimators, going beyond just the bias and variance of
Chen et al. (2016). Thus, our results could be used
for downstream statistical inferences, e.g., construct-
ing confidence intervals and hypothesis testing, while
those of Chen et al. (2016) could not. Third, the exact
expression of optimal sampling probabilities in Chen
et al. (2016) depends on the unknown true parame-
ter of the model, β0 and σ2 (Eqn (4) in Chen et al.
(2016)), while our optimal sampling probabilities (see
Section 2) are readily computed from the data. Fourth,
Chen et al. (2016) only studied properties of sampling
estimators for estimating true model parameters, while
we consider both estimating the true parameter and
approximating the full sample estimate.

Wang et al. (2017) proposed an approximated A-
optimality criterion, which is based on the conditional
variance of the sampling estimator given a subsam-
ple. Since the randomness of sampling is not con-
sidered in the criterion, they obtained a simple an-
alytic expressions of the optimal results. Dereziński
et al. (2019) also consider experimental design from
the RandNLA perspective, and they propose a frame-
work for experimental design where the responses are
produced by an arbitrary unknown distribution. Their
main result yields nearly tight bounds for the classi-
cal A-optimality criterion, as well as improved bounds
for worst-case responses. In addition, they propose a
minimax-optimality criterion (which can be viewed as
an extension of both A-optimal design and RandNLA
sampling for worst-case regression). Related works on
the asymptotic properties of subsampling estimators in
logistic regression can be found in Wang et al. (2018)
and Wang (2019).

Technical Report. A longer and much more detailed
version of this short conference publication, with addi-
tional results, proofs of our main results, and additional
discussion, is available (Ma et al., 2020)

2 Asymptotic analysis of RandNLA

2.1 Unconditional Inference: Estimating
Model Parameters

For Model (1), from the traditional statistical perspec-
tive of using the data to perform inference, one major
goal is to estimate the underlying true model parame-
ters, i.e., β0. We refer to this as unconditional inference.
For unconditional inference, both randomness in the
data and randomness in the algorithm contribute to
randomness in the RandNLA sampling estimators.

Theorem 1 (Unconditional inference, fixed p).
Assume the number of predictors p is fixed and the
following regularity conditions hold.
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(A1)[Data condition]. There exist positive constants b
and B such that b ≤ λmin ≤ λmax ≤ B, where λmax
and λmin are the maximum and minimum eigenvalues
of matrix XTX/n, respectively.
(A2)[Sampling condition]. The sample size r =
O(n1−α), where 0 ≤ α < 1 and where the minimum
sampling probability πmin = O(n−γ0), where γ0 ≥ 1
satisfy γ0 + α < 2.
Under these assumptions, as n→∞, we have

(σ2Σ0)
− 1

2 (β̃ − β0)
d→ N(0, Ip)

where Σ0 = (XTX)−1
(
XT (In + Ω)X

)
(XTX)−1,

Ω = diag{1/rπi}ni=1, and Ip is the p×p identity matrix.
Thus, in this unconditional inference, the asymptotic
mean of β̃ is AE(β̃) = β0, i.e., β̃ is an asymptotically
unbiased estimator of β0, and the asymptotic variance
of β̃ is AV ar(β̃) = σ2Σ0.

Condition (A1) in Theorem 1 indicates that XTX/n is
positive definite. This condition requires the predictor
matrix X to be of full column rank and that the values
of elements in X are not over-dispersed. This condition
ensures the consistency of full sample OLS estima-
tor (Lai et al., 1978). Condition (A2) in Theorem 1,
which can be rewritten as n−γ0 > n−(2−α), provides
a lower bound on the smallest sampling probability.
Bounding sampling probabilities from below mitigates
the inflation of the variance Σ0, which is proportional
to the reciprocal sampling probability. The importance
of this condition for establishing statistical properties
of RandNLA algorithms was highlighted by Ma et al.
(2014, 2015). Condition (A2) can also be rewritten as
n1−αn−γ0 > n−1, which states that when the small-
est sampling probability is small, one compensates by
making the sample size large.

In Theorem 1, the asymptotic variance AV ar(β̃) can
be written as

AV ar(β̃)=σ2(XTX)−1+σ2(XTX)−1XTΩX(XTX)−1,

where the first term is the variance of the full sample
OLS, and the second term is the variation related to
the sampling process. The second term of AV ar(β̃)
has a “sandwich-type” expression. The center term,
Ω, depends on the reciprocal sampling probabilities,
suggesting that extremely small probabilities will result
in large asymptotic variance and large AMSE of the
corresponding estimator. This was observed previously
by Ma et al. (2015).

Remark. In light of efficient estimation methods such
as iterative Hessian sketch and dual random projection,
we emphasize that besides estimation, our distribution
results can be used for performing additional inference
analysis, e.g., constructing a confidence interval and
conducting hypothesis testing. These inference analyses

cannot be achieved by other iterative methods as far
as we know.

Given Theorem 1, it is natural to ask whether there is
an optimal estimator, i.e., one with the smallest AMSE
for estimating β0. Using the asymptotic results in
Theorem 1, we propose the following three estimators.

Estimating β0. By Theorem 1, we could express
the AMSE(β̃,β0) as a function of {πi}ni=1. Then, it
is straightforward to employ the method of Lagrange
multipliers to find the minimizer subject to the con-
straint

∑n
i=1 πi = 1. The minimizer is then the optimal

sampling probabilities for estimating β0.

Proposition 1. The inverse-covariance (IC) sampling
estimator, with the sampling probabilities

πi =
‖(XTX)−1xi‖∑n
i=1 ‖(XTX)−1xi‖

, i = 1, . . . , n, (3)

has the smallest AMSE(β̃;β0) = σ2tr{(XTX)−1} +
1
r

∑n
i=1

σ2

πi
||(XTX)−1xi||2.

Remark. The implication of this optimal estimator is
two-fold. On the one hand, as defined, the proposed
IC estimator has the smallest AMSE. On the other
hand, if given the same tolerance of uncertainty, i.e., to
achieve a certain small standard error, the IC estimator
requires the smallest sample size.

Estimating linear functions of β0. In addition to
making inference on β0, one may also be interested in
linear functions of β0, i.e., Lβ0, where L is any constant
matrix of suitable dimension. Here, we present results
for Xβ0 and XTXβ0.

Proposition 2. The root leverage (RL) sampling es-
timator, with the sampling probabilities

πi =
‖X(XTX)−1xi‖∑n
i=1 ‖X(XTX)−1xi‖

=

√
hii∑n

i=1

√
hii

, (4)

for i = 1,. . . ,n, has the smallest AMSE(Xβ̃;Xβ0) =

pσ2 + 1
r

∑n
i=1

σ2

πi
||X(XTX)−1xi||2.

The probabilities in RL are a nonlinear transforma-
tion of the probabilities in BLEV. Comparing to the
BLEV estimator, the RL estimator shrinks the large
probabilities and pulls up the small probabilities. Thus
we expect RL to provide an estimator with smaller
variances in a way similar to SLEV.

Remark. Chen et al. (2016) proposed an optimal sam-
pling estimators for estimating β0 and predicting Y.
Their sampling probabilities depend on the unknown
parameters, and they proposed the probabilities in (4)
as a rough approximation of their proposed probabili-
ties without demonstration.
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Proposition 3. The predictor-length (PL) sampling
estimator, with the sampling probabilities

πi =
‖xi‖∑n
i=1 ‖xi‖

, i = 1, . . . , n, (5)

has the smallest AMSE(XTXβ̃;XTXβ0) =

σ2tr(XTX) + σ2

r

∑n
i=1

1
πi
||xi||2.

Remark. All these proposed metrics can be computed
in the time it takes to approximate leverage scores (or
faster, for PL), i.e., the time to implement a random
projection, since they are essentially strongly related
to leverage scores. In particular, all metrics involv-
ing leverages scores can be approximated using the
algorithm of Drineas et al. (2012). Detailed implemen-
tations/comments may be found in Ma et al. (2014,
2015), as well as in the Blendenpik/LSRN papers.

Diverging number of predictors, p→∞. Theo-
rem 1 considers the number of predictors/features, p,
as fixed. It is also of interest to study the asymptotic
properties of RandNLA estimators in the scenario that
p diverges with n→∞ (at a suitable rate relative to
n). The following theorem states our results concerning
this case. Observe that, in the case of a divergent p, the
(β̃−β0) is of divergent dimension. Thus, we character-
ize its asymptotic distribution via the scalar aT (β̃−β0),
where a is an arbitrary bounded-norm vector.

Theorem 2 (Unconditional inference, diverg-
ing p). In addition to condition (A1) in Theorem 1,
assume the following regularity conditions hold.
(B1)[Data condition]. The number of predictors p
diverges at a rate p = n1−κ, 0 < κ < 1; and
maxi ‖xi‖2

n = O( pn ), where xi is the ith row of X.
(B2)[Sampling condition]: The parameters α, γ0, and
κ satisfy α+ γ0 − κ < 1.
Under these assumptions, as n→∞, we have

(σ2aTΣ0a)
− 1

2aT (β̃ − β0)
d→ N(0, 1),

where a ∈ Rp satisfies ‖a‖2 <∞.

Condition (B2) is more stringent than Condition (A2),
and this is required for accommodating a divergent
p. It is easy to verify that the sampling estimators in
Propositions 1, 2, and 3 are still the optimal sampling
estimators for their respective purposes, thus we omit
restating the results.

2.2 Conditional Inference: Approximating
the Full Sample OLS Estimate

For Model (1), a second goal is to approximate the full
sample calculations, say the β̂OLS , regardless of the
underlying true model parameter β0. We refer to this

as conditional inference. For conditional inference, we
consider the full sample as given, and thus the only
source of randomness contributing to the RandNLA
sampling estimators is the randomness in the sampling
algorithm. The following theorem states that, in con-
ditional inference, the asymptotic distribution of the
sampling estimator β̃ is a normal distribution (with
mean βOLS and variance σ2Σc).

Theorem 3 (Conditional inference). Assume the
following regularity conditions hold.
(C1)[Data condition]. The full data {X,Y}, i.e., n
and p are considered fixed; X is of full column rank,
and ‖xi‖ <∞, for i = 1, . . . , n, where xi is the ith row
of X.
(C2)[Sampling condition]. The sampling probabilities
{πi}ni=1 are nonzero.
Under these assumptions, as r →∞, we have

(σ2Σc)
− 1

2 (β̃ − β̂OLS)
d→ N (0, Ip) ,

where Σc = 1
r (X

TX)−1
(∑n

i=1
e2i
πi

xix
T
i

)
(XTX)−1,

ei = Yi − xTi β̂OLS, and Ip is the p× p identity. Thus,
for conditional inference, the asymptotic mean of β̃ is
AE(β̃) = β̂OLS, i.e., β̃ is an asymptotically unbiased
estimator of βOLS, and the asymptotic variance of β̃
is AV ar(β̃) = σ2Σc.

Theorem 3 shows that as the sample size r gets larger,
the distribution of β̃ is well-approximated by a nor-
mal distribution, with mean β̂OLS and variance σ2Σc.
Similar to unconditional inference, the asymptotic vari-
anceAV ar(β̃) here also has “sandwich-type” expression,
where the center term (here,

(∑n
i=1

e2i
πi

xix
T
i

)
) depends

on the reciprocal sampling probabilities. Thus, we also
expect that extremely small probabilities will result in
large variances of the corresponding estimators.

In Theorem 3, AV ar(β̃) depends on the full sample
least square residuals, i.e., the eis. These are not readily
available from the sample. To solve this problem and
to obtain meaningful results, we take the expectation
of the e2i s. The metric we use is thus the EAMSE,

EAMSE(β̃; β̂OLS) = EY(AMSE(β̃; β̂OLS)).

For this result, we denote that EY(e2i ) = (1− hii)σ2.

Approximating β̂OLS. By Theorem 3, we could
express EAMSE(β̃, β̂OLS) as a function of {πi}ni=1.
It is straightforward to find the minimizer of the
EAMSE(β̃, β̂OLS) subject to

∑n
i=1 πi = 1. The min-

imizer is then the optimal sampling probabilities for
approximating β̂OLS .

Proposition 4. The inverse-covariance negative-
leverage (ICNLEV) sample estimator, with the sam-
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pling probabilities

πi =

√
1− hii‖(XTX)−1xi‖∑n

i=1

√
1− hii‖(XTX)−1xi‖

, i = 1, . . . , n, (6)

has the smallest EAMSE(β̃; β̂OLS) =

EY (tr(AV ar(β̃))) = 1
r

∑n
i=1

(1−hii)σ
2

πi
||(XTX)−1xi||2.

Approximating linear functions of β̂OLS. In addi-
tion to approximating β̂OLS , one may also be interested
in linear functions of β̂OLS , i.e., Lβ0, where L is any
constant matrix of suitable dimension. Here, we present
results for Ŷ = Xβ̂OLS and XTXβ̂OLS .

Proposition 5. The root leveraging negative-leverage
(RLNLEV) sample estimator, with the sampling proba-
bilities

πi =

√
1− hii‖X(XTX)−1xi‖∑n

i=1

√
1− hii‖X(XTX)−1xi‖

=

√
(1− hii)hii∑n

i=1

√
(1− hii)hii

, i = 1, . . . , n, (7)

has the smallest EAMSE(Xβ̃;Xβ̂OLS) =
1
r

∑n
i=1

(1−hii)σ
2

πi
||X(XTX)−1xi||2.

Proposition 6. The predictor-length negative-leverage
(PLNLEV) sampling estimator, with the sampling prob-
abilities

πi =

√
1− hii‖xi‖∑n

i=1

√
1− hii‖xi‖

, i = 1, . . . , n, (8)

has the smallest EAMSE(XTXβ̃;XTXβ̂OLS) =
1
r

∑n
i=1

(1−hii)σ
2

πi
||xi||2.

Remark. All these proposed metrics can be computed
in the time it takes to approximate leverage scores,
i.e., the time to implement a random projection, using
the algorithm of Drineas et al. (2012), since they are
essentially strongly related to leverage scores.

2.3 Relationship of the Sampling Estimators

We use simple examples to show the relationship among
various sampling probabilities, each of which is optimal
with respect to a different statistical criterion.

Example 1: “Shrinkage” Properties of Proposed
Estimators. We illustrate the “shrinkage” property
of proposed optimal sampling probabilities compared
to the BLEV sampling probabilities. For convenience,
we refer to the numerators of the sampling probabilities
in a sampling estimator as the scores, e.g., the RL score
is
√
hii and the RLNLEV score is

√
(1− hii)hii. In

Figure 1a, we plot RL score, RLNLEV score, and SLEV
score (0.9hii + 0.1p/n with p/n = 0.2) as functions of

leverage score hii (i.e., BLEV score in Figure 1(a)).
Observe that the RLNLEV score amplifies small hiis
but shrinks large hiis. Both RLNLEV and RL scores
provide nonlinear shrinkage of the BLEV. The SLEV
scores also shrink large hiis and amplify small hiis, but
in a linear fashion. The advantage of such “shrink-
age” is two-fold. On the one hand, the data with high
leverage scores could be “outliers.” Shrinking the sam-
pling probabilities of high leverage data points reduces
the risk of selecting outliers into the sample. On the
other hand, amplifying the sampling probabilities of
low leverage data points reduces the variance of the
resulting sampling estimators.

Example 2: The Role of hiis. On the one hand, if
the hiis are homogeneous, then the sampling probabili-
ties of the ICNLEV estimator (

√
1−hii‖(XTX)−1xi‖∑n

i=1

√
1−hii‖(XTX)−1xi‖

)

and those of the IC estimator ( ‖(XTX)−1xi‖∑n
i=1 ‖(XTX)−1xi‖ ) will

be similar to each other. On the other hand, since∑n
i=1 hii = p, given a fixed value of p, we expect that

hiis are small when sample size n is large. When
hii = o(1) for all i = 1, . . . , n, i.e., hiis are extremely
small compared to 1, the sampling probabilities of the
ICNLEV estimator and those of the IC estimator will
also be similar. Analogous arguments also apply to
PLNLEV and PL.

Example 3: Orthogonal predictor matrix, i.e.,
XTX = I. In this case, hii = xTi (X

TX)−1xi = ‖xi‖2,
and the ICNLEV score, RLNLEV score, and PLNLEV
score are the same and equal

√
(1− hii)hii. Analo-

gously, the IC score coincides with the RL score and
the PL score, and all equal ‖xi‖.

Example 4: A two dimensional example. We
generated 1000 data points for two predictors from a
multivariate normal distribution, a multivariate non-
central t distribution with three degrees of freedom,
and a multivariate noncentral t distribution with one
degree of freedom. In Figure 1(b), we present scat-
terplots of these data points. In each scatterplot, the
color of points indicates the magnitude of sampling
probabilities in IC, PL and BLEV methods. Below
each scatterplot, we also present histograms of the
corresponding sampling probabilities. Examination of
Figure 1(b) reveals one pattern shared by all sampling
distributions, i.e., the sampling probabilities of data
points in the center are smaller than those of data
points at the boundary. In addition, note that, com-
pared to πPLi ∝ ‖xi‖, both πICi ∝ ‖(XTX)−1xi‖ and
πBLEVi ∝ xTi (X

TX)−1xi depends on (XTX)−1, which
normalizes the scale of predictors. Thus, we notice
that data points with high probabilities in PL scatter
around the upper right and lower left corner. How-
ever, the data points with high probabilities in IC and
BLEV form a contour toward the exterior of the data
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(a) Example 2 in Section 2.3.
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(b) Example 4 in Section 2.3.

Figure 1: (a) Relationship between RLNLEV, RL,
SLEV and BLEV scores. (b) The scatterplots of data
points generated from a bivariate t distribution with 3
degrees of freedom, with colors coding the probabilities
in IC, PL, and BLEV, and the corresponding histogram
of sampling probabilities (bottom row). The dot on
x-axis of histograms indicate the position of maximum.

cloud. This difference is caused by the effect of the
normalization using (XTX)−1. The histograms in each
row also show the key difference between the sampling
probabilities of BLEV and those of IC and PL, i.e.,
the sampling probability distribution of BLEV is more
dispersed than others. In other words, there are a sig-
nificant number of data points with either extremely
large or extremely small probabilities in BLEV.

3 Empirical Results

We generated synthetic data from Model (1) with p =
10, n = 5000, and random error εi

iid∼ N(0, 1). We set
the first and last two entries of β0 to be 1 and the rest to
be 0.1. We generated the predictors from the following
distributions. (1) Multivariate noncentral t-distribution
t3(1,D), where 1 is a vector of 1, and the (i, j)th

element of D is set to 2 × 0.7|i−j| for i, j = 1, . . . , p.
We refer to this as T3 data. (2) Multivariate noncentral
t-distribution t1(1,D). We refer to this as T1 data. (3)
Log-normal distribution LN(1,D). We refer to this as
LN data. For t1(1,D), the expectation and variance do
not exist. This violates Condition (A1) in Theorem 1.
Thus, asymptotic squared bias and asymptotic variance
of proposed estimators might not converge fast to 0 as
r increases.
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(a) Estimating β0: squared biases.
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(b) Estimating β0: variances.

Figure 2: IC, RL, PL, SLEV, and BLEV for estimat-
ing β0.

3.1 Estimating Model Parameters

Here, we evaluate the performance of proposed sam-
pling estimators in estimating β0. We generated 100
replicates of T3, LN, and T1 data, applied IC, RL,
PL, SLEV(with λ = 0.9 here and after), and BLEV
to each replicated dataset to obtain β̃b at sample sizes
r = 100, 200, 500, 700, 1000, and calculated squared
bias and variance with respect to β0 for each method.

In Figure 2, we plot the squared biases (in (a)) and
the variances (in (b)) of all the methods in estimat-
ing β0. First, both the squared biases and the vari-
ances show decreasing patterns as r increases, and the
squared biases are much smaller than the corresponding
variances, consistent with Theorem 1 stating that the
RandNLA estimators are asymptotically unbiased and
consistent estimators of β0. Second, the variances of
estimates using IC, whose sampling probabilities mini-
mize AMSE(β̃;β0), among other proposed estimators
in this paper, are smaller than the variances of BLEV
and SLEV when subsample sizes are greater than 200
in T3 and LN. The larger variances of BLEV estimates
are due to the existence of extremely small sampling
probabilities in BLEV. Taking a weighted average of
the sampling probability distribution of BLEV and
that of UNIF show a beneficial effect on the variances
for SLEV estimators. However, the variances of SLEV
estimators are still larger than those of all other pro-
posed estimators, as the sample size r increases in LN
and T3. Third, the squared biases and variances of all
estimates are smaller in LN and T1 compared to T3.
Fourth, despite the violation of the regularity condition
in T1, proposed estimators still show good performance
and have consistently smaller variances than BLEV at
larger rs. For estimating Y and XTXβ0, the biases of
all sampling estimators are very similar to each other
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(b) Estimating XTXβ0 : variances.

Figure 3: IC, RL, PL, SLEV, and BLEV for estimating
Y and XTXβ0.

and are much smaller than the corresponding variances.
This observation is consistent with what we observed
in estimating β0. We thus only present the variances
of different estimators in Figure 3. As shown, the vari-
ances of estimates using PL, IC, and RL are smaller
than the variances of estimates using BLEV and SLEV
in T3 and LN at most sample sizes for estimating both
Y and XTXβ0.

3.2 Approximating the Full Sample OLS
Estimate

Here, we evaluate the performance of the RandNLA
sampling estimators for conditional inference. We gen-
erated one T3 dataset, one LN dataset, and one T1
dataset. For each dataset, the full sample OLS esti-
mates were calculated. Then, we set samples sizes at
r = 100, 200, 500, 700, 1000 and repeatedly applied ICN-
LEV, RLNLEV, PLNLEV, SLEV and BLEV methods
100 times at each r to get β̃b, b = 1, . . . , 100. Using
these estimates, we calculated the squared bias and
variance of each method. In Figure 4, we plot the
squared biases (in (a)) and the variances (in (b)) of
ICNLEV, RLNLEV, PLNLEV, SLEV, and BLEV es-
timates for approximating β̂OLS at different sample
sizes in all datasets. Several observations are worth
noting in Figure 4. First, the squared biases are negli-
gible compared to the corresponding variances. For all
methods, both squared biases and variances decrease
as sample size r increases in all datasets. These ob-
servations corroborates Theorem 3, which states that
sampling estimators are asymptotically unbiased and
consistent approximations to the β̂OLS . Second, the
variances of estimates using ICNLEV, whose probabili-
ties minimize EAMSE(β̃; β̂OLS), and other proposed
estimators, get smaller than the variances of estimates
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(a) Approximating β̂OLS : squared biases.
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Figure 4: ICNLEV, RLNLEV, PLNLEV, SLEV, and
BLEV for approximating β̂OLS .

using SLEV and BLEV, as sample size r increases.
Third, for all estimators the squared biases and vari-
ances of all estimates in LN and T1 are smaller than in
T3. Fourth, despite the violation of the regularity con-
dition in T1, proposed estimators still have consistently
smaller variances than BLEV and SLEV.

4 Conclusion

We have studied the asymptotic properties of RandNLA
sampling estimators in linear regression models. We
showed that under certain regularity conditions on the
sampling probability distributions, the sampling estima-
tors are asymptotically normally distributed. Moreover,
the sampling estimators are asymptotically unbiased for
approximating the full sample OLS estimate and for es-
timating true coefficients. Based on asymptotic results,
we proposed optimality criteria to assess the perfor-
mance of the sampling estimators, based on AMSE and
EAMSE. In particular, we developed six sampling esti-
mators, i.e., IC, RLEV, PL, ICNLEV, RLNLEV, and
PLNLEV, for minimizing AMSE and EAMSE under
a variety of settings. Empirical studies demonstrated
that these new sampling estimators outperform the
conventional ones in the literature. For generalization,
depending on the application, one may consider other
criteria than AMSE and EAMSE. For example, when
hypothesis testing problems are of primary interest, the
power of the test is a more reasonable choice to serve
as a criterion. Developing scalable sampling methods
to optimize criteria such as this are of interest.
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