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Abstract

Causal discovery from data affected by la-
tent confounders is an important and difficult
challenge. Causal functional model-based
approaches have not been used to present
variables whose relationships are affected by
latent confounders, while some constraint-
based methods can present them. This
paper proposes a causal functional model-
based method called repetitive causal dis-
covery (RCD) to discover the causal struc-
ture of observed variables affected by la-
tent confounders. RCD repeats inferring the
causal directions between a small number of
observed variables and determines whether
the relationships are affected by latent con-
founders. RCD finally produces a causal
graph where a bi-directed arrow indicates the
pair of variables that have the same latent
confounders, and a directed arrow indicates
the causal direction of a pair of variables
that are not affected by the same latent con-
founder. The results of experimental valida-
tion using simulated data and real-world data
confirmed that RCD is effective in identifying
latent confounders and causal directions be-
tween observed variables.

1 Introduction

Many scientific questions aim to find the causal rela-
tionships between variables rather than only find the
correlations. While the most effective measure for
identifying the causal relationships is controlled ex-
perimentation, such experiments are often too costly,
unethical, or technically impossible to conduct. There-
fore, the development of methods to identify causal re-
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lationships from observational data is important.
Many algorithms that have been developed for con-
structing causal graphs assume that there are no latent
confounders (e.g., PC [Spirtes and Glymour, 1991],
GES [Chickering, 2002], and LiNGAM [Shimizu et al.,
2006]). They do not work effectively if this assump-
tion is not satisfied. Conversely, FCI [Spirtes et al.,
1999] is an algorithm that presents the pairs of vari-
ables that have latent confounders. However, since
FCI infers causal relations on the basis of the condi-
tional independence in the joint distribution, it cannot
distinguish between the two graphs that entail exactly
the same sets of conditional independence. There-
fore, to understand the causal relationships of vari-
ables where latent confounders exist, we need a new
method that satisfies the following criteria: (1) the
method should accurately (without being biased by
latent confounders) identify the causal directions be-
tween the observed variables that are not affected by
latent confounders, and (2) it should present variables
whose relationships are affected by latent confounders.
Compared to the constraint-based causal discovery
methods (e.g., PC [Spirtes and Glymour, 1991] and
FCI [Spirtes et al., 1999]), causal functional model-
based approaches [Hoyer et al., 2009, Mooij et al.,
2009, Yamada and Sugiyama, 2010, Shimizu et al.,
2011, Peters et al., 2014] can identify the entire causal
model under proper assumptions. They represent an
effect Y as a function of direct cause X. They infer
that variable X is the cause of variable Y when X is
independent of the residual obtained by the regression
of Y on X but not independent of Y . Most of the ex-
isting methods based on causal functional models iden-
tify the causal structure of multiple observed variables
that form a directed acyclic graph (DAG) under the
assumption that there is no latent confounder. They
assume that the data generation model is acyclic, and
that the external effects of all the observed variables
are mutually independent. Such models are called ad-
ditive noise models (ANMs). Their methods discover
the causal structures by the following two steps: (1)
identifying the causal order of variables and (2) elim-
inating unnecessary edges. DirectLiNGAM [Shimizu
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et al., 2011], which is a variant of LiNGAM [Shimizu
et al., 2006], performs regression and independence
testing to identify the causal order of multiple vari-
ables. DirectLiNGAM finds a root (a variable that is
not affected by other variables) by performing regres-
sion and independence testing of each pair of variables.
If a variable is exogenous to the other variables, then
it is regarded as a root. Thereafter, DirectLiNGAM
removes the effect of the root from the other variables
and finds the next root in the remaining variables. Di-
rectLiNGAM determines the causal order of variables
according to the order of identified roots. RESIT [Pe-
ters et al., 2014], a method extended from Mooij et
al. [Mooij et al., 2009] identifies the causal order of
variables in a similar manner by performing an iter-
ative procedure. In each step, RESIT finds a sink (a
variable that is not a cause of the other variables).
A variable is regarded as a sink when it is endoge-
nous to the other variables. RESIT disregards the
identified sinks and finds the next sink in each step.
Thus, RESIT finds a causal order of variables. Di-
rectLiNGAM and RESIT then construct a complete
DAG, in which each variable pair is connected with
the directed edge based on the identified causal or-
der. Thereafter, DirectLiNGAM eliminates unneces-
sary edges using AdaptiveLasso [Zou, 2006]. RESIT
eliminates each edge X → Y if X is independent of
the residual obtained by the regression of Y on Z/{X}
where Z is the set of causes of Y in the complete DAG.
Causal functional model-based methods effectively dis-
cover the causal structures of observed variables gen-
erated by an additive noise model when there is no
latent confounder. However, the results obtained by
these methods are likely disturbed when there are la-
tent confounders because they cannot find a causal
function between variables affected by the same la-
tent confounders. Furthermore, the causal functional
model-based approaches have not been used to show
variables that are affected by the same latent con-
founder, as FCI does.
This paper proposes a causal functional model-based
method called repetitive causal discovery (RCD) to
discover the causal structures of the observed variables
that are affected by latent confounders. RCD is aimed
at producing causal graphs where a bi-directed arrow
indicates the pair of variables that have the same
latent confounders, and a directed arrow indicates
the direct causal direction between two variables that
do not have the same latent confounder. It assumes
that the data generation model is linear and acyclic,
and that external influences are non-Gaussian. Many
causal functional model-based approaches discover
causal relations by identifying the causal order of
variables and eliminating unnecessary edges. How-
ever, RCD discovers the relationships by finding the

direct or indirect causes (ancestors) of each variable,
distinguishing direct causes (parents) from indirect
causes, and identifying the pairs of variables that have
the same latent confounders.

Our contributions can be summarized as follows:

• We developed a causal functional model-based
method that can present variable pairs affected
by the same latent confounders.

• The method can also identify the causal direction
of variable pairs that are not affected by latent
confounders.

• The results of experimental validation using sim-
ulated data and real-world data confirmed that
RCD is effective in identifying latent confounders
and causal directions between observed variables.

2 Problem definition

2.1 Data generation process

This study aims to analyze the causal relations of ob-
served variables confounded by unobserved variables.
We assume that the relationship between each pair of
(observed or unobserved) variables is linear, and that
the external influence of each (observed or unobserved)
variable is non-Gaussian. In addition, we assume that
(observed or unobserved) data are generated from a
process represented graphically by a directed acyclic
graph (DAG). The generation model is formulated us-
ing Equation 1.

xi =
∑

j

bijxj +
∑

k

λikfk + ei (1)

where xi denotes an observed variable, bij is the causal
strength from xj to xi, fk denotes a latent confounder,
λik denotes the causal strength from fk to xi, and ei

is an external effect. The external effect ei and the la-
tent confounder fk are assumed to follow non-Gaussian
continuous-valued distributions with zero mean and
nonzero variance and are mutually independent. The
zero/nonzero pattern of bij and λik corresponds to the
absence/existence pattern of directed edges. With-
out loss of generality [Hoyer et al., 2008], latent con-
founders fk are assumed to be mutually independent.
In a matrix form, the model is described as Equation 2:

x = Bx + Λf + e (2)

where the connection strength matrices B and Λ col-
lect bij and λik, and the vectors x, f and e collect xi,
fk and ei.
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Figure 1: (a) Data generation model (f1 and f2 are
latent confounders). (b) Causal graph that RCD pro-
duces. A bi-directed arrow indicates that two variables
are affected by the same latent confounders.

2.2 Research goals

This study has two goals. First, we extract the pairs of
observed variables that are affected by the same latent
confounders. This is formulated by C whose element
cij is defined by Equation 3:

cij =
{

0 (if ∀k, λik = 0 ∨ λjk = 0)
1 (otherwise)

(3)

Element cij equals 0 when there is no latent con-
founder affecting variables xi and xj . Element cij

equals 1 when variables xi and xj are affected by the
same latent confounders.
The second goal is to estimate the absence/existence
of the causal relations between the observed variables
that do not have the same latent confounder. This is
defined by a matrix P whose element pij is expressed
by Equation 4:

pij =
{

0 (if bij = 0 or cij = 1)
1 (otherwise)

(4)

pij = 0 when cij = 1 because we do not aim to iden-
tify the causal direction between the observed variables
that are affected by the same latent confounders.
Finally, RCD produces a causal graph where a bi-
directed arrow indicates the pair of variables that have
the same latent confounders, and a directed arrow in-
dicates the causal direction of a pair of variables that
are not affected by the same latent confounder. For ex-
ample, assume that using the data generation model
shown in Figure 1-(a), our final goal is to draw a causal
diagram shown in Figure 1-(b), where variables f1 and
f2 are latent confounders, and variables A–H are ob-
served variables.

3 Proposed Method

3.1 The framework

RCD involves three steps: (1) It extracts a set of an-
cestors of each variable. Ancestor is a direct or indirect
cause. In this paper, Mi denotes the set of ancestors
of xi. Mi is initialized as Mi = ∅. RCD repeats the in-
ference of causal directions between variables and up-
datesM . When inferring the causal directions between
observed variables, RCD removes the effect of the al-
ready identified common ancestors. Causal direction
between variables xi and xj can be identified when the
set of identified common causes (i.e. Mi∩Mj) satisfies
the back-door criterion [Pearl, 1993, Pearl, 2000] to xi

and xj . The repetition of causal inference is stopped
when M no longer changes. (2) RCD extracts parents
(direct causes) from M . When xj is an ancestor but
not a parent of xi, the causal effect of xj on xi is me-
diated through Mi \ {xk}. RCD distinguishes direct
causes from indirect causes by inferring conditional in-
dependence. (3) RCD finds the pairs of variables that
are affected by the same latent confounders by extract-
ing the pairs of variables that remain correlated but
whose causal direction is not identified.

3.2 Finding ancestors of each variable

RCD repeats the inference of causal directions between
a given number of variables to extract the ancestors
of each observed variable. We introduce Lemmas 1
and 2, by which the ancestors of each variable can be
identified when there is no latent confounder. Then,
we extend them to Lemma 3 by which RCD extracts
the ancestors of each observed variable for the case
that latent confounders exist. The proofs of Lemmas 1,
2, and 3 are available in Appendices A.1, A.2, and A.3
in [Maeda and Shimizu, 2020]. After the introduction
of Lemmas 1–3, we describe how RCD extracts the
ancestors of each observed variable.
Lemma 1 Assume that there are variables xi and xj ,
and their causal relation is linear, and their external
influences ei and ej are non-Gaussian and mutually
independent. Let r

(j)
i denote the residual obtained

by the linear regression of xi on xj and r
(i)
j denote

the residual obtained by the linear regression of xj on
xi. The causal relation between variables xi and xj is
determined as follows: (1) If xi and xj are not linearly
correlated, then there is no causal effect between xi

and xj . (2) If xi and xj are linearly correlated and xj

is independent of residual r(j)
i , then xj is an ancestor

of xi. (3) If xi and xj are linearly correlated and xj

is dependent on r
(j)
i and xi is dependent on r

(i)
j , then

xi and xj have a common ancestor. (4) There is no
case that xi and xj are linearly correlated and xj is
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Figure 2: (a) Variables A, B, and C are the causes of
variable D, and they have a common cause, f1. (b) A
and B are the causes of D, but C is not.

independent of r(j)
i and xi is independent of r(i)

j .
It is necessary to remove the effect of common causes
to infer the causal directions between variables. When
the set of the identified common causes of variables
xi and xj satisfies the back-door criterion, the causal
direction between xi and xj can be identified. The
back-door criterion [Pearl, 1993, Pearl, 2000] is defined
as follows:
Definition 1 A set of variables Z satisfies the back-
door criterion relative to an ordered pair of variables
(xi, xj) in a DAG G if no node in Z is a descendant
of xi, and Z blocks every path between xi and xj that
contains an arrow into xi.
Lemma 1 is generalized to Lemma 2 to incorporate the
process of removing the effects of the identified com-
mon causes. Lemma 2 can also be used to determine
whether the identified common causes are sufficient to
detect the causal direction between the two variables.
Lemma 2 Let Hij denote the set of common ances-
tors of xi and xj . Let yi and yj denote the residuals
when xi and xj are regressed on Hij , respectively. Let
r

(j)
i and r(i)

j denote the residual obtained by the linear
regression of yi on yj , and yj on yi, respectively. The
causality and the existence of the confounders are de-
termined by the following criteria: (1) If yi and yj are
not linearly correlated, then there is no causal effect
between xi and xj . (2) If yi and yj are linearly corre-
lated and yj is independent of the residual r(j)

i , then
xj is an ancestor of xi. (3) If yi and yj are linearly cor-
related and yj is dependent on r(j)

i and yi is dependent
on r(i)

j , then xi and xj have a common ancestor other
than Hij , and Hij does not satisfy the back-door cri-
terion to (xi, xj) or (xj , xi). (4) There is no case that
yi and yj are linearly correlated and yj is independent
of r(j)

i and yi is independent of r(i)
j .

Next, we consider the case that there are latent con-
founders. In Lemma 2, the direction between two vari-
ables is inferred by regression and independence tests.

However, if there are two paths from latent confounder
fk to xi, and xj is only on one of the paths, then
Mi ∩Mj cannot satisfy the back-door criterion. For
example, in Figure 2-(a), variables A, B, and C are the
causes of variable D, and the causes are also affected
by the same latent confounder f1. The causal direction
between A and D cannot be inferred only by inferring
the causality between them because the effect of f1 is
mediated through B and C to D. Therefore, A, B,
and C are the causes of D when they are independent
of the residual obtained by the multiple regression of
D on {A,B,C}. However, it is necessary to confirm
that variables in each proper subset of {A,B,C} are
not independent of the residual obtained by the regres-
sion of D on the proper subset (i.e., no proper subset
of {A,B,C} satisfies the back-door criterion). For ex-
ample, in Figure 2-(b), C is not a cause of D, but
A, B, and C are all independent of the residual ob-
tained by the multiple regression of D on {A,B,C}.
C should not be regarded as a cause of D because A
and B are also independent of the residual when D is
regressed on {A,B}. This example is generalized and
formulated by Lemma 3:
Lemma 3 Let X denote the set of all observed vari-
ables. Let U denote a subset of X that contains xi

(i.e., U ⊆ X and xi ∈ U). Let M denote the sequence
of Mj where Mj is a set of ancestors of xj . For each
xj ∈ U , let yj denote the residual obtained by the
multiple linear regression of xj on the common ances-
tors of U , where the set of common ancestors of U is⋂

xj∈U Mj . We define f(xi, U,M) as a function that
returns 1 when each yj ∈ {yj | xj ∈ U \ xi} is inde-
pendent of the residual obtained by the multiple linear
regression of yi on {yj | j 6= i}; otherwise it returns 0.
If f(xi, V,M) = 0 for each V ⊂ U and f(xi, U,M) = 1,
then each xj ∈ U is an ancestor of xj .
We describe the procedure and the implementation of
how RCD extracts the ancestors of each observed vari-
able in Algorithm 1. The output of the algorithm is
sequence M = {Mi}, where Mi is the set of identified
ancestors of xi. Argument αC is the alpha level for the
p-value of the Pearson’s correlation. If the p-value of
two variables is smaller than αC, then we estimate that
the variables are linearly correlated. Argument αI is
the alpha level for the p-value of the Hilbert-Schmidt
independence criterion (HSIC) [Gretton et al., 2008].
If the p-value of the HSIC of two variables is greater
than αI, then we estimate that the variables are mu-
tually independent. Argument αS is the alpha level
to test whether a variable is generated from a non-
Gaussian process using the Shapiro-Wilk test [Shapiro
and Wilk, 1965]. Argument n is the maximum number
of explanatory variables used in multiple linear regres-
sion for identifying causal directions; i.e., the maxi-
mum number of (|U | − 1) in Lemma 3. In practice,
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this should be set to a small number when the num-
ber of samples is smaller than the number of variables.
RCD does not perform multiple regression analysis of
more than n explanatory variables.
RCD initializes Mi to be an empty set for each xi ∈ X.
RCD repeats the inference between the variables in
each U ⊂ X that has (l+1) elements. Number l is ini-
tialized to 1. If there is no change in M , l is increased
by 1. If there is a change in M , l is set to 1. When
l exceeds n, the repetition ends. Variable changed
has information about whether there is a change in M
within an iteration.
In line 16 of Algorithm 1, RCD confirms that there
is no identified ancestor of xi in U by checking that
Mi ∩ U = ∅. This confirms that f(xi, V,M) = 0
for each V ⊂ U in Lemma 3. In lines 17–24, RCD
checks whether f(xi, U,M) = 1 in Lemma 3. When
f(xi, U,M) = 1 is satisfied, xi is put into S. S is a set
of candidates for a sink (a variable that is not a cause
of the others) in U . It is necessary to test whether
there is only one sink in U because two variables may
be misinterpreted as causes of each other when the
alpha level for the independence test (αI) is too small.
We use least squares regression for removing the effect
of common causes in line 12 of Algorithm 1, but we
use a variant of multiple linear regression called mul-
tilinear HSIC regression (MLHSICR) to examine the
causal directions between variables in U in line 20 of
Algorithm 1 when l ≥ 2. Coefficients obtained by mul-
tiple linear regression using the ordinary least squares
method with linearly correlated explanatory variables
often differ from true values due to estimation errors.
Thus, the relationship between the explanatory vari-
ables and the residual may be misinterpreted to be
dependent in the case that explanatory variables are
affected by the same latent confounders. To avoid such
failure, we use MLHSICR defined as follows:
Definition 2 Let variable xi denote an explanatory
variable, x denote a vector that collects explanatory
variables xi, and y denote a response variable. MLH-
SICR models the relationship y = λ>x by the coeffi-
cient vector λ in the following equation:

λ = argmin
λ

∑
i

HSIC
∧

(xi, y − λ>x) (5)

where HSIC
∧

(a, b) denotes the Hilbert-Schmidt inde-
pendence criterion of a and b.
Mooij et al. [Mooij et al., 2009] have developed a
method to estimate the nonlinear causal function be-
tween variables by minimizing the HSIC between the
explanatory variables and the residual. RCD estimates
λ by minimizing the sum of the HSICs in Equation 5
using the L-BFGS method [Liu and Nocedal, 1989],
similar to Mooij et al. [Mooij et al., 2009]. L-BFGS

is a quasi-Newton method, and RCD sets the coef-
ficients obtained by the least squares method to the
initial value of λ.

3.3 Finding parents of each variable

When xj is an ancestor but not a parent of xi, the ef-
fect of xj on xi is mediated through Mi \{xj}. There-
fore, xj ⊥⊥xi | Mi \ {xj}. Zhang et al. [Zhang et al.,
2017] proposed a method to test the conditional inde-
pendence using unconditional independence testing in
Theorem 1 (proved by them):
Theorem 1 If xi and xj are neither directly connected
nor unconditionally independent, then there must ex-
ist a set of variables Z and two functions f and g such
that xi − f(Z)⊥⊥xj − g(Z), and xi − f(Z)⊥⊥Z or
xj − g(Z)⊥⊥Z.
In our case, xj ⊥⊥xi | (Mi \ {xj}) ⇔ xj − f(Mi \
{xj})⊥⊥xi− g(Mi \ {xj}), where f and g are multiple
linear regression functions of xj on Mi \ {xj} and xi

on Mi \ {xj}, respectively. Since (Mi \ {xj}) ∩Mj =
Mi ∩Mj , we can assume that xj ⊥⊥xi | (Mi \ {xj})⇔
xj − h(Mi ∩ Mj)⊥⊥xi − g(Mi \ {xj}) where h is a
multiple linear regression function of xj on (Mi∩Mj).
Based on Theorem 1, RCD uses Lemma 4 to distin-
guish the parents from the ancestors. Lemma 4 is
proved without using Theorem 1, and the proof is pre-
sented in Appendix A.4 in [Maeda and Shimizu, 2020].
Lemma 4 Assume that xj ∈ Mi; that is, xj is an
ancestor of xi. Let zi denote the residual obtained
by the multiple regression of xi on Mi \ {xj}. Let wj

denote the residual obtained by the multiple regression
of xj on (Mi∩Mj). If zi and wj are linearly correlated,
then xj is a parent of xi; otherwise, xj is not a parent
of xi.

3.4 Identifying pairs of variables that have
the same latent confounders

RCD infers that two variables are affected by the same
latent confounders when those two variables are lin-
early correlated even after removing the effects of all
the parents. RCD identifies the pairs of variables af-
fected by the same latent confounders by using Lemma
5. The proof of Lemma 5 is available in Appendix A.5
in [Maeda and Shimizu, 2020].
Lemma 5 Let Mi and Mj respectively denote the sets
of ancestors of xi and xj , and Pi and Pj respectively
denote the sets of parents of xi and xj . Assume that
xi /∈ Mj and xj /∈ Mi. Let yi denote the residual
obtained by the multiple regression of xi on Pi, and yj

denote the residual obtained by the multiple regression
of xj on Pj . If yi and yj are linearly correlated, then
xi and xj have the same latent confounders.
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Algorithm 1: Extract ancestors of each variable
Input: X: the set of observed variables, αC: the

alpha level for Pearson’s correlation, αI:
the alpha level for independence test, αS:
the alpha level for Shapiro-Wilk test, n:
the maximum number of explanatory
variables

Output: M : the sequence {Mi} where Mi is a
set of ancestors of xi.

1 function extractAncestors(X,αC, αI, αS, n)
2 initialization
3 foreach i do
4 Mi ← ∅
5 l← 1
6 while l ≤ n do
7 changed← FALSE
8 foreach U ⊆ X; (|U | = l + 1) do
9 HU ←

⋃
xj∈U Mj

10 S ← ∅
11 foreach xj ∈ U do
12 yj ← the residual obtained by

regression of xj on HU

13 tj ← the p-value of Shapiro-Wilk
test of yj

14 if ∀tk < αS then
15 foreach xi ∈ U do
16 if Mi ∩ U = ∅ then
17 foreach xj ∈ U \ {xi} do
18 cij ← the p-value of

linear correlation
between yi and yj

19 if ∀cij < αC then
20 sU

i ← the residual
obtained by regression
of yi on
{yj |xj ∈ U \ {xi}}

21 foreach xj ∈ U \ {xi} do
22 hij ← the p-value of

the HSIC between
sU

i and yj

23 if ∀hij > αI then
24 S ← S ∪ {xi}

25 if |S| = 1 then
26 foreach xi ∈ S do
27 Mi ←Mi ∪ (U \ {xi})
28 changed← TRUE

29 if changed = TRUE then
30 l← 1
31 else
32 l← l + 1

33 return M

4 Performance evaluation

We evaluated the performance of RCD relative to the
existing methods in terms of how accurately it finds
the pairs of variables that are affected by the same
latent confounders and how accurately it infers the
causal directions of the pairs of variables that are not
affected by the same latent confounder. In regard
to the latent confounders, we compared RCD with
FCI [Spirtes et al., 1999], RFCI [Colombo et al., 2012],
and GFCI [Ogarrio et al., 2016]. In addition to these
three methods, we compared RCD with PC [Spirtes
and Glymour, 1991], GES [Chickering, 2002], Di-
rectLiNGAM [Shimizu et al., 2011], and RESIT [Pe-
ters et al., 2014] to evaluate the accuracy of causal
directions. In the following sections, DirectLiNGAM
is called LiNGAM for simplicity.

4.1 Performance on simulated structures

We performed 100 experiments to evaluate RCD rela-
tive to the existing methods. We prepared 300 sets of
samples for each experiment. The data of each exper-
iment were generated as follows: The data generation
process was modeled the same as Equation 1. The
number of observed variables xi was set to 20 and the
number of latent confounders fk was set to 4. Let
X and Y denote the stochastic variables, and assume
that Y ∼ N(0.0, 0.5) and X = Y 3. We used the ran-
dom samples of X for ei and fk because X is non-
Gaussian. The number of causal arrows between the
observed variables is 40, and the start point and the
end point of each causal arrow were randomly selected.
We randomly drew two causal arrows from each latent
confounder to the observed variables. Let Z denote
a stochastic variable that comes from a uniform dis-
tribution on [−1.0,−0.5] and [0.5, 1.0]. We used the
random samples of Z for bij and λik.
We evaluated (1) how accurately each method infers
the pairs of variables that are affected by the same la-
tent confounders (called the evaluation of latent con-
founders), and (2) how accurately each method in-
fers causality between the observed variables that are
not affected by the same latent confounder (called the
evaluation of causality). The evaluation of latent con-
founders corresponds to the evaluation of bi-directed
arrows in a causal graph, and the evaluation of causal-
ity corresponds to the evaluation of directed arrows.
We used precision, recall, and F-measure as evalua-
tion measures. In regard to the evaluation of latent
confounders, true positive (TP) is the number of true
bi-directed arrows that are correctly inferred. In re-
gard to causality, TP is the number of true directed
arrows that a method correctly infers in terms of their
positions and directions. Precision is TP divided by
the number of estimations, and recall is TP divided by
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Figure 3: Performance evaluation on causal graphs using simulated data: The vertical red lines indicate the
median values of the results. The evaluation of the latent confounders corresponds to the evaluation of bi-
directed arrows. The evaluation of causality corresponds to the evaluation of directed arrows.

the number of all true arrows. F-measure is defined as
F-measure = 2 · precision · recall/(precision + recall).
The arguments of RCD, that is, αC (alpha level for
Pearson’s correlation), αI (alpha level for indepen-
dence), αS (alpha level for the Shapiro-Wilk test), and
n (maximum number of explanatory variables for mul-
tiple linear regression) were set as αC = 0.01, αI =
0.01, αS = 0.01, and n = 2.
In regard to the types of edges, FCI, RFCI, and GFCI
produce partial ancestral graphs (PAGs) that include
six types of edges: → (directed), ↔ (bi-directed), ◦→
(partially directed), ◦−◦ (nondirected), and ◦− (par-
tially undirected). In the evaluation, we only used the
directed and bi-directed edges. PC, GES, LiNGAM,
and RESIT produce causal graphs only with the di-
rected edges; thus, we did not evaluate those methods
in terms of latent confounders.
The box plots in Figure 3 display the results. The
vertical red lines indicate the median values. Note
that some median values are the same as the upper
or lower quartiles. For example, the median and the
upper quartile of the recalls of RCD in the results of
latent confounders are the same. It means that the
results between the median and the upper quartile are
the same. In regard to the evaluation of latent con-
founders, the precision, recall, and F-measure values
are almost the same for RCD, FCI, RFCI, and GFCI,
but the medians of precision, recall, and F-measure
values of RCD are the highest among them. In regard
to causality, RCD scores the highest medians of the
precision and F-measure values among all the meth-
ods, and the median of recall for RCD is the second
highest next to RESIT.

The results suggest that RCD does not greatly im-
prove the performance metrics compared to the exist-
ing methods. However, there is no other method that
has the highest or the second highest performance for
each metric. FCI, RFCI, and GFCI perform as well as
RCD in terms of finding the pairs of variables that are
affected by the same latent confounders, but they do
not perform well in terms of the recall of causality. In
addition, no other method performs well in terms of
both precision and recall of causality. RCD can suc-
cessfully find the pairs of variables that are affected by
the same latent confounders and identify the causal di-
rection between variables that are not affected by the
same latent confounder.

4.2 Performance on real-world structures

Causal structures in the real-world are often very com-
plex. Therefore, RCD likely produces a causal graph
where each pair of observed variables is connected with
a bi-directed arrow. The result of identifying latent
confounders is affected by the threshold of the p-value
for the independence test, αI . If αI is too large or too
small, then all the variable pairs are likely concluded to
have the same latent confounders. Therefore, we need
to find the most appropriate value of αI . We increased
k from 1 to 25 and set αI as αI = 0.1k and repeated
the process. We adopted a result that has the small-
est number of pairs of variables with the same latent
confounders.
We analyzed the General Social Survey data set, taken
from a sociological data repository.1 The data have
been used for the evaluation of DirectLiNGAM in

1http://www.norc.org/GSS+Website/
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Table 1: The results of the application to sociological data.
Bidirected arrows (Latent confounders) Directed arrows (Causality)

Method # of estimation # of successes Precision # of estimation # of successes Precision
RCD 4 4 1.0 5 4 0.8
FCI 3 3 1.0 3 1 0.3

RFCI 3 3 1.0 3 1 0.3
GFCI 0 0 0.0 0 0 0.0
PC - - - 2 1 0.5

GES - - - 2 1 0.5
RESIT - - - 12 4 0.3

LiNGAM - - - 5 4 0.8
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Figure 4: Variables and causal relations in the General
Social Survey data set used for the evaluation.

Shimizu et al. [Shimizu et al., 2011]. The sample size
is 1380. The variables and the possible directions are
shown in Figure 4. The directions were determined
based on the domain knowledge in Duncan et al. [Dun-
can et al., 1972] and temporal orders.
We evaluated the directed arrows (causality) in the
causal graphs produced by RCD and the existing
methods, based on the directed arrows in Figure 4. In
addition, we evaluated the bi-directed arrows in causal
graphs produced by the methods as accurate inference
if they exist in Figure 4 as directed arrows.
The results are listed in Table 1. In regard to bi-
directed arrows (latent confounders), the number of
successful inferences by RCD is the highest, and the
precisions of RCD, FCI, and RFCI are all 1.0. In re-
gard to the directed arrows (causality), the numbers of
the successful arrows of RCD, RESIT, and LiNGAM
are the highest. The precisions of RCD and LiNGAM
are also the highest. The causal graph produced by
RCD is shown in Figure 5. The dashed arrow x3 ← x5
is the incorrect inference, but the others are correct.
RCD performs the best among the existing methods
in terms of both identifying the pairs of variables that
are affected by the same latent confounders and identi-
fying the causal direction of the pairs of variables that
are not affected by the same latent confounder.
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occupation
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Number of 
siblings

(x6)

Sonʼs 
education

(x5)

Sonʼs 
occupation

(x4)

Sonʼs 
income

(x2)

Figure 5: Causal graph produced by RCD: The dashed
arrow, x3 ← x5 is incorrect inference, but the other
arrows are reasonable based on Figure 4

5 Conclusion

We developed a method called repetitive causal dis-
covery (RCD) that produces a causal graph where a
directed arrow indicates the causal direction between
the observed variables, and a bi-directed arrow indi-
cates a pair of variables have the same confounder.
RCD produces a causal graph by (1) finding the an-
cestors of each variable, (2) distinguishing the parents
from the indirect causes, and (3) identifying the pairs
of variables that have the same latent confounders.
We confirmed that RCD effectively analyzes data con-
founded by unobserved variables through validations
using simulated and real-world data.
In this paper, we did not discuss the utilization of prior
knowledge. However, it is possible to make use of prior
knowledge of causal relations in practical applications
of RCD. In this study, information about the ances-
tors of each variable was initialized to be an empty
set. If we have prior knowledge about causal relations,
the information about the ancestors of each variable
that RCD retains can be set according to the prior
knowledge.
There is still room for improvement in the RCD
method. The optimal settings of the arguments of
RCD and the extension of RCD for nonlinear causal
relations will be investigated in future studies.
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