
Ashok Vardhan Makkuva∗, Sreeram Kannan†, Sewoong Oh†, Pramod Viswanath∗

A Connection between k-MoE and other popular models

Relation to other mixture models. Notice that if let w∗i = 0 in Eq. (1) for all i ∈ [k], we recover the
well-known uniform mixtures of generalized linear models (GLMs). Similarly, allowing for bias parameters in
Eq. (1), we can recover the generic mixtures of GLMs. Moreover, if we let g to be the linear function, we get
the popular mixtures of linear regressions model. These observations highlight that MoE models are a far more
stricter generalization of mixtures of GLMs since they allow the mixing probability p∗i (x) to depend on each
input x in a parametric way. This makes the learning of the parameters far more challenging since the gating and
expert parameters are inherently coupled.

Relation to feed-forward neural networks. Note that if we let w∗i = 0 and allow for bias parameters in
the soft-max probabilities in Eq. (1), taking conditional expectation on both sides yields

ŷ(x) , E[y|x] =
∑

i∈[k]

w∗i g(〈a∗i , x〉),
∑

i

w∗i = 1, w∗i ∈ [0, 1]. (9)

Thus the mapping x 7→ ŷ(x) is exactly the same as that of a 1-hidden -layer neural network with activation
function g if we restrict the output layer to positive weights. Thus k-MoE can also be viewed as a probabilistic
model for gated feed-forward networks.

B Valid class of non-linearities

We slightly modify the class of non-linearities from Makkuva et al. (2019) for our theoretical results. The only
key modification is that we use a fourth-order derivative based conditions, as opposed to third-order derivatives
used in the above work. Following their notation, let Z ∼ N (0, 1) and Y |Z ∼ N (g(Z), σ2), where g : R→ R. For
(α, β, γ, δ) ∈ R4, define

Q4(y) , Y 4 + αY 3 + βY 2 + γY,

where

S4(Z) , E[Q4(y)|Z] = g(Z)4 + 6g(Z)2σ2 + σ4 + α(g(Z)3 + 3g(Z)σ2) + β(g(Z)2 + σ2) + γg(Z).

Similarly, define

Q2(y) , Y 2 + δY, S2(Z) = E[Q2(y)|Z] = g(Z)2 + δg(Z) + σ2.

Condition 1. E[S ′4(Z)] = E[S ′′4 (Z)] = E[S ′′′4 (Z)] = 0 and E[S ′′′′4 (Z)] 6= 0. Or equivalently, in view of Stein’s
lemma Stein (1972),

E[S4(Z)Z] = E[S4(Z)(Z2 − 1)] = E[S4(Z)(Z3 − 3Z)] = 0, and E[S4(Z)(Z4 − 6Z2 + 3)] 6= 0.

Condition 2. E[S ′2(Z)] = 0 and E[S ′′2 (Z)] 6= 0. Or equivalently,

E[S2(Z)Z] = 0 and E[S2(Z)(Z2 − 1)] 6= 0.

Definition 1. We say that the non-linearity g is (α, β, γ, δ)− valid if there exists a tuple (α, β, γ, δ) ∈ R4 such
that both Condition 1 and Condition 2 are satisfied.

While these conditions might seem restrictive at first, all the widely used non-linearities such as Id, ReLU,
leaky-ReLU, sigmoid, etc. belong to this. For some of these non-linear activations, we provide the pre-computed
transformations below:

Example 1. If g = Id, then S3(y) = y4 − 6y2(1 + σ2) and Q2(y) = y2.

Example 2. If g = ReLU, i.e. g(z) = max{0, z}, we have that for any p, q ∈ N,

E[g(Z)pZq] =

∫ ∞

0

zp+q
(

1√
2π
e−z

2/2

)
dz =

1

2
E[|Z|p+q] =

(p+ q − 1)!!

2

{√
2
π if p+ q is odd

1 if p+ q is even
.

Learning in Gated Neural Networks

Substituting these moments in the linear set of equations E[S4(Z)Z] = E[S4(Z)(Z2−1)] = E[S4(Z)(Z3−3Z)] = 0,
we obtain




1.5 + 1.5σ2
√

2
π + σ2 0.5

3
√

2
π (1 + σ2/2) 1 + σ2 1

2

√
2
π

3
√

2
π + σ2 0






α
β
γ


 = −




√
2
π (4 + 6σ2))

6 + 6σ2
√

2
π (12 + 6σ2)


 .

Solving for (α, β, γ) will yield S4(Z). Finally, we have that δ = −2
√

2
π .

C Proofs of Section 3.1

Remark 2. To choose the parameters in Theorem 1, we follow the parameter choices from Ge et al.
(2018). Let c be a sufficiently small universal constant (e.g. c = 0.01). Assume µ ≤ c/κ∗, and
λ ≥ 1/(ca∗min). Let τ0 = cmin {µ/(κda∗max), λ}σmin(M). Let δ ≤ min

{
cε0

a∗max·m
√
dκ1/2(M)

, τ0/2
}

and ε =

min
{
λσmin(M)1/2, cδ/

√
‖M‖, cε0δσmin(M)

}
.

For any k × d matrix A, let A† be its pseudo inverse such that AA† = Ik×k and A†A is the projection matrix to
the row span of A. Let α∗i , E[p∗i (x)], a∗i = 1

α∗i
and κ∗ =

α∗max

α∗min
. Let M =

∑
i∈[k] α

∗
i a
∗
i (a
∗
i)
>, κ(M) = ‖M‖

σmin(M) .

For the sake of clarity, we now formally state our main assumptions, adapted from Makkuva et al. (2019):

1. x follows a standard Gaussian distribution, i.e. x ∼ N (0, Id).

2. ‖a∗i ‖ = 1 for all i ∈ [k] and ‖w∗i ‖ ≤ R for all i ∈ [k − 1].

3. The regressors a∗1, . . . , a∗k are linearly independent and the classifiers {w∗i }i∈[k−1] are orthogonal to the span
S = span {a∗1, . . . , a∗k}, and 2k − 1 < d.

4. The non-linearity g : R→ R is (α, β, γ, δ)− valid, which we define in Appendix B.

Note that while the first three assumptions are same as that of Makkuva et al. (2019), the fourth assumption is
slightly different from theirs. Under this assumptions, we first give an alternative characterization of L4(·) in the
following theorem which would be crucial for the proof of Theorem 1.
Theorem 5. The function L(·) defined in Eq. (6) satisfies that

L4(A) =
∑

m∈[k]

E[p∗m(x)]
∑

i6=j
i,j∈[k]

〈a∗m, ai〉2〈a∗m, aj〉2 − µ
∑

m,i∈[k]

E[p∗m(x)]〈a∗m, ai〉4

+λ
∑

i∈[k]

(
∑

m∈[k]

E[p∗m(x)]〈a∗m, ai〉2 − 1)2 +
δ

2
‖A‖2F

C.1 Proof of Theorem 5

Proof. For the proof of Theorem 5, we use the notion of score functions defined as Janzamin et al. (2014):

Sm(x) , (−1)m
∇(m)
x f(x)

f(x)
, f is the pdf of x. (10)

In this paper we focus on m = 2, 4. When x ∼ N (0, Id), we know that S2(x) = x⊗ x− I and

S4(x) = x⊗4 −
∑

i∈[d]

sym (x⊗ ei ⊗ ei ⊗ x) +
∑

i,j

sym (ei ⊗ ei ⊗ ej ⊗ ej) .

The score transformations S4(x) and S2(x) can be viewed as multi-variate polynomials in x of degrees 4 and
2 respectively. For the output y, recall the transforms Q4(y) and Q2(y) defined in Section 3.1. The following
lemma shows that one can construct a fourth-order super symmetric tensor using these special transforms.

Ashok Vardhan Makkuva∗, Sreeram Kannan†, Sewoong Oh†, Pramod Viswanath∗

Lemma 1 (Super symmetric tensor construction). Let (x, y) be generated according to Eq. (1) and Assumptions
(1)-(4) hold. Then

T4 , E[Q4(y) · S4(x)] = cg,σ
∑

i∈[k]

E[p∗i (x)] · a∗i ⊗ a∗i ⊗ a∗i ⊗ a∗i ,

T2 , E[Q2(y) · S2(x)] = c′g,σ
∑

i∈[k]

E[p∗i (x)] · a∗i ⊗ a∗i ,

where p∗i (x) = P [zi = 1|x], cg,σ and c′g,σ are two non-zero constants depending on g and σ.

Now the proof of the theorem immediately follows from Lemma 1. Recall from Eq. (6) that

L4(A) ,
∑

i,j∈[k]
i 6=j

E[Q4(y)t1(ai, aj , x)]− µ
∑

i∈[k]

E[Q4(y)t2(ai, x)] + λ
∑

i∈[k]

(E[Q2(y)t3(ai, x)]− 1)
2

+
δ

2
‖A‖2F .

Fix i, j ∈ [k]. Notice that we have t1(ai, aj , x) = S4(x)(ai, ai, aj , aj)/cg,σ. Hence we obtain

E[Q4(y)t1(ai, aj , x)] =
1

cg,σ
E[Q4(y) · S4(x)](ai, ai, aj , aj)

=


 ∑

m∈[k]

E[p∗m(x)](a∗m)⊗4


 (ai, ai, aj , aj)

=
∑

m∈[k]

E[p∗m(x)]〈a∗m, ai〉2〈a∗m, aj〉2.

The simplification for the remaining terms is similar and follows directly from definitions of t2(·, x) and t3(·, x).

C.2 Proof of Theorem 1

Proof. The proof is an immediate consequence of Theorem 5 and Theorem C.5 of Ge et al. (2018).

C.3 Proof of Theorem 2

Proof. Note that our loss function L4(A) can be written as E[`(x, y,A)] where ` is at most a fourth degree
polynomial in x, y and A. Hence our finite sample guarantees directly follow from Theorem 1 and Theorem E.1
of Ge et al. (2018).

C.4 Proof of Lemma 1

Proof. The proof of this lemma essentially follows the same arguments as that of (Makkuva et al., 2019, Theorem
1), where we replace (S3(x),S2(x),P3(y),P2(y)) with (S4(x),S2(x),Q4(y),P2(y)) respectively and letting T3

defined there with our T4 defined above.

D Proofs of Section 3.2

For the convergence analysis of SGD on Llog, we use techniques from Balakrishnan et al. (2017) and Makkuva
et al. (2019). In particular, we adapt (Makkuva et al., 2019, Lemma 3) and (Makkuva et al., 2019, Lemma 4) to
our setting through Lemma 2 and Lemma 3, which are central to the proof of Theorem 3 and Theorem 4. We
now sate our lemmas.
Lemma 2. Under the assumptions of Theorem 3, it holds that

‖G(W,A∗)−W ∗i ‖ ≤ ρσ‖W −W ∗‖.
In addition, W = W ∗ is a fixed point for G(W,A∗).

Learning in Gated Neural Networks

Lemma 3. Let the matrix of regressors A be such that maxi∈[k] ‖A>i − (A∗i)
>‖2 = σ2ε. Then for any W ∈ Ω, we

have that

‖G(W,A)−G(W,A∗)‖ ≤ κε,

where κ is a constant depending on g, k and σ. In particular, κ ≤ (k − 1)

√
6(2+σ2)

2 for g =linear, sigmoid and
ReLU.
Lemma 4 (Deviation of finite sample gradient operator). For some universal constant c1, let the number of
samples n be such that n ≥ c1d log(1/δ). Then for any fixed set of regressors A ∈ Rk×d, and a fixed W ∈ Ω, the
bound

‖Gn(W,A)−G(W,A)‖ ≤ εG(n, δ) , c2

√
d log(k/δ)

n

holds with probability at least 1− δ.

D.1 Proof of Theorem 3

Proof. The proof directly follows from Lemma 2 and Lemma 3.

D.2 Proof of Theorem 4

Proof. Let the set of regressors A be such that maxi∈[k] ‖A>i − (A∗i)
>‖2 = σ2ε1. Fix A. For any iteration t ∈ [T],

from Lemma 4 we have the bound

‖Gn/T (Wt, A)−G(Wt, A)‖ ≤ εG(n/T, δ/T) (11)

with probability at least 1− δ/T . Using an union bound argument, Eq. (11) holds with probability at least 1− δ
for all t ∈ [T]. Now we show that the following bound holds:

‖Wt+1 −W ∗‖ ≤ ρσ ‖Wt −W ∗‖+ κε1 + εG(n/T, δ/T), for each t ∈ {0, . . . , T − 1}. (12)

Indeed, for any t ∈ {0, . . . , T − 1}, we have that

‖Wt+1 −W ∗‖ =
∥∥Gn/T (Wt, A)−W ∗

∥∥
≤
∥∥Gn/T (Wt, A)−G(Wt, A)

∥∥+ ‖G(Wt, A)−G(Wt, A
∗)‖+ ‖G(Wt, A

∗)−W ∗‖
≤ εG(n/T, δ/T) + κε1 + ρσ ‖Wt −W ∗‖ ,

where we used in Lemma 2, Lemma 3 and Lemma 4 in the last inequality to bound each of the terms. From
Eq. (11), we obtain that

‖Wt −W ∗‖ ≤ ρσ ‖Wt−1 −W ∗‖+ κε1 + εG(n/T, δ/T)

≤ ρ2
σ ‖Wt−2 −W ∗‖+ (1 + ρσ) (κε1 + εG(n/T, δ/T))

≤ ρtσ ‖W0 −W ∗‖+

(
t−1∑

s=0

ρsσ

)
(κε1 + εG(n/T, δ/T))

≤ ρtσ ‖W0 −W ∗‖+

(
1

1− ρσ

)
(κε1 + εG(n/T, δ/T)) .

D.3 Proof of Lemma 2

Proof. Recall that the loss function for the population setting, Llog(W,A), is given by

Llog(W,A) = −E log


∑

i∈[k]

e〈wi,x〉
∑
j∈[k] e

〈wj ,x〉 · N (y|g(〈ai, x〉), σ2)


 = −E log


∑

i∈[k]

pi(x)Ni


 ,

Ashok Vardhan Makkuva∗, Sreeram Kannan†, Sewoong Oh†, Pramod Viswanath∗

where pi(x) , e〈wi,x〉∑
j∈[k] e

〈wj,x〉 and Ni , N (y|g(〈ai, x〉), σ2). Hence for any i ∈ [k − 1], we have

∇wiLlog(W,A) = −E
(
∇wi

pi(x)Ni +
∑
j 6=i,j∈[k]∇wi

pj(x)Nj∑
i∈[k] pi(x)Ni

)
.

Moreover,

∇wi
pj(x) =

{
pi(x)(1− pi(x))x, j = i

−pi(x)pj(x)x, j 6= i
.

Hence we obtain that

∇wi
Llog(W,A) = −E

[
pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

]
. (13)

Notice that if z ∈ [k] denotes the latent variable corresponding to which expert is chosen, we have that the
posterior probability of choosing the ith expert is given by

P [z = i|x, y] =
pi(x)Ni∑
i∈[k] pi(x)Ni

,

whereas,

P [z = i|x] = pi(x).

Hence, when A = A∗ and W = W ∗, we get that

∇w∗i Llog(W ∗, A∗) = −E[P [z = i|x, y]− P [z = i|x]] = −E[P [z = i|x] + E[P [z = i|x]] = 0.

Thus W = W ∗ is a fixed point for G(W,A∗) since

G(W ∗, A∗) = ΠΩ(W ∗ − α∇W∗Llog(W ∗, A∗)) = W ∗.

Now we make the observation that the population-gradient updates Wt+1 = G(Wt, A) are same as the gradient-
EM updates. Thus the contraction of the population-gradient operator G(·, A∗) follows from the contraction
property of the gradient EM algorithm (Makkuva et al., 2019, Lemma 3). To see this, recall that for k-MoE, the
gradient-EM algorithm involves computing the function Q(W |Wt) for the current iterate Wt and defined as:

Q(W |Wt) = E


 ∑

i∈[k−1]

p
(i)
Wt

(w>i x)− log


1 +

∑

i∈[k−1]

ew
>
i x




 ,

where p(i)
Wt

= P [z = i|x, y, wt] corresponds to the posterior probability for the ith expert, given by

p
(i)
Wt

=
pi,t(x)N (y|g(a>i x), σ2)∑
j∈[k] pj,t(x)N (y|g(a>j x), σ2)

, pi,t(x) =
e(wt)

>
i x

1 +
∑
j∈[k−1] e

(wt)>j x
.

Then the next iterate of the gradient-EM algorithm is given by Wt+1 = ΠΩ(Wt + α∇WQ(W |Wt)W=Wt). We
have that

∇wi
Q(W |Wt)|W=Wt

= E

[(
p

(i)
Wt
− e(wt)

>
i x

1 +
∑
j∈[k−1] e

(wt)>j x

)
x

]
= −∇wi

Llog(Wt, A).

Hence if we use the same step size α, our population-gradient iterates on the log-likelihood are same as that of
the gradient-EM iterates. This finishes the proof.

Learning in Gated Neural Networks

D.4 Proof of Lemma 3

Proof. Fix any W ∈ Ω and let A =



a>1
. . .
a>k


 ∈ Rk×d be such that maxi∈[k] ‖ai − a∗i ‖2 = σ2ε1 for some ε1 > 0. Let

W ′ = G(W,A), (W ′)∗ = G(W,A∗).

Denoting the ith row of W ′ ∈ R(k−1)×d by w′i and that of (W ′)∗ by (w′i)
∗ for any i ∈ [k − 1], we have that

‖w′i − (w′i)
∗‖2 = ‖ΠΩ(wi − α∇wiLlog(W,A))−ΠΩ(wi − α∇wiLlog(W,A∗))‖2
≤ α ‖∇wiLlog(W,A)−∇wiLlog(W,A∗)‖2 .

Thus it suffices to bound ‖∇wi
Llog(W,A)−∇wi

Llog(W,A∗)‖2. From Eq. (13), we have that

∇wiLlog(W,A) = −E
[(

pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

)
x

]
,

∇wiLlog(W,A∗) = −E
[(

pi(x)N∗i∑
i∈[k] pi(x)N∗i

− pi(x)

)
x

]
,

where,

pi(x) =
ew
>
i x

1 +
∑
k∈[k−1] e

w>j x
, Ni , N (y|g(a>i x), σ2), N∗i = N (y|g((a∗i)

>x), σ2).

Thus we have

‖∇wiLlog(W,A)−∇wiLlog(W,A∗)‖2 =
∥∥∥E[(p(i)(A,W)− p(i)(A∗,W))x]

∥∥∥
2
, (14)

where p(i)(A,W) , pi(x)Ni∑
i∈[k] pi(x)Ni

denotes the posterior probability of choosing the ith expert. Now we observe
that Eq. (14) reduces to the setting of (Makkuva et al., 2019, Lemma 4) and hence the conclusion follows.

D.5 Proof of Lemma 4

Proof. We first prove the lemma for k = 2. For 2-MoE, we have that the posterior probability is given by

pw(x, y) =
f(w>x)N1

f(w>x)N1 + (1− f(w>x))N2
,

where f(·) = 1
1+e−(·) , N1 = N (y|g(a>1 x), σ2) and N2 = N (y|g(a>2 x), σ2) for fixed a1, a2 ∈ Rd. Then we have that

∇wLlog(w,A) = −E[(pw(x, y)− f(w>x)) · x].

Hence

G(w,A) = ΠΩ(w + αE[(pw(x, y)− f(w>x)) · x]), Gn(w,A) = ΠΩ(w +
α

n

∑

i∈[n]

(pw(xi, yi)− f(w>xi)) · xi).

Since 0 < α < 1, we have that

‖G(w,A)−Gn(w,A)‖2 ≤ ‖E[(pw(x, y)− f(w>x))x]− 1

n

∑

i∈[n]

(pw(xi, yi)− f(w>xi))xi‖2

≤ ‖E[pw(x, y)x]−
∑

i∈[n]

pw(xi, yi)xi
n

‖2
︸ ︷︷ ︸

T1

+ ‖E[f(w>x)x]−
∑

i∈[n]

f(w>xi)xi
n

‖2
︸ ︷︷ ︸

T2

.

Ashok Vardhan Makkuva∗, Sreeram Kannan†, Sewoong Oh†, Pramod Viswanath∗

We now bound T1 and T2.

Bounding T2: We prove that the random variable
∑
i∈[n]

f(w>xi)xi

n −E[f(w>x)x] is sub-gaussian with parameter
L/
√
n for some constant L > 1 and thus its squared norm is sub-exponential. We then bound T2 using

standard sub-exponential concentration bounds. Towards the same, we first show that the random variable
f(w>x)x− E[f(w>x)x] is sub-gaussian with parameter L. Or equivalently, that f(w>x)〈x, u〉 − E[f(w>x)〈x, u〉]
is sub-gaussian for all u ∈ Sd.

Without loss of generality, assume that w 6= 0. First let u = ~w , w
‖w‖ . Thus Z , 〈~w, x〉 ∼ N (0, 1). We have

g(Z) , f(w>x)〈x, ~w〉 − E[f(w>x)〈x, ~w〉] = f(‖w‖Z)Z − E[f(‖w‖Z)Z].

It follows that g(·) is Lipschitz since

|g′(z)| = |f ′(‖w‖ z) ‖w‖ z + f(‖w‖ z))| ≤ sup
t∈R
|f ′(t)t|+ 1 = sup

t>0

tet

(1 + et)2
+ 1 , L.

From the Talagaran concentration of Gaussian measure for Lipschitz functions (Ledoux and Talagrand, 1991), it
follows that g(Z) is sub-gaussian with parameter L. Now consider any u ∈ Sd such that u ⊥ w. Then we have
that Y , 〈u, x〉 ∼ N (0, 1) and Z , 〈~w, x〉 ∼ N (0, 1) are independent. Thus,

g(Y, Z) , f(w>x)〈u, x〉 − E[f(w>x)〈u, x〉] = f(‖w‖Z)Y − E[f(‖w‖Z)Y]

is sub-gaussian with parameter 1 since f ∈ [0, 1] and Y, Z are independent standard gaussians. Since any u ∈ Sd
can be written as

u = Pw(u) + Pw⊥(u),

where PS denotes the projection operator onto the sub-space S, we have that f(w>x)〈x, u〉 − E[f(w>x)〈x, u〉] is
sub-gaussian with parameter L for all u ∈ Sd. Thus it follows that

∑
i∈[n]

f(w>xi)xi

n − E[f(w>x)x] is zero-mean
and sub-gaussian with parameter L/

√
n which further implies that

T2 ≤ c2L
√
d log(1/δ)

n
,

with probability at least 1− δ/2.

Bounding T1: Let Z , ‖∑i∈[n]
pw(xi,yi)xi

n − E[pw(x, y)x]‖2 = supu∈Sd Z(u), where

Z(u) ,
∑

i∈[n]

pw(xi, yi)〈xi, u〉
n

− E[pw(x, y)〈x, u〉].

Let {u1, . . . , uM} be a 1/2-cover of the unit sphere Sd. Hence for any v ∈ Sd, there exists a j ∈ [M] such that
‖v − uj‖2 ≤ 1/2. Thus,

Z(v) ≤ Z(uj) + |Z(v)− Z(uj)| ≤ Z ‖v − uj‖2 ≤ Z(uj) + Z/2,

where we used the fact that |Z(u)− Z(v)| ≤ Z ‖u− v‖2 for any u, v ∈ Sd. Now taking supremum over all v ∈ Sd
yields that Z ≤ 2 maxj∈[M] Z(uj). Now we bound Z(u) for a fixed u ∈ Sd. By symmetrization trick (Vaart and
Wellner, 1996), we have

P [Z(u) ≥ t] ≤ 2P

[
1

n

n∑

i=1

εipw(xi, yi)〈xi, u〉 ≥ t/2
]
,

where ε1, . . . , εn are i.i.d. Rademacher variables. Define the event E , { 1
n

∑
i∈[n]〈xi, u〉2 ≤ 2}. Since 〈xi, u〉 ∼

N (0, 1), standard tail bounds imply that P [Ec] ≤ e−n/32. Thus we have that

P [Z(u) ≥ t] ≤ 2P

[
1

n

n∑

i=1

εipw(xi, yi)〈xi, u〉 ≥ t/2|E
]

+ 2e−n/32.

Learning in Gated Neural Networks

Considering the first term, for any λ > 0, we have

E[exp

(
λ

n

n∑

i=1

εipw(xi, yi)〈xi, u〉
)
|E] ≤ E[exp

(
2λ

n

n∑

i=1

εi〈xi, u〉
)
|E],

where we used the Ledoux-Talagrand contraction for Rademacher process (Ledoux and Talagrand, 1991), since
|pw(xi, yi)| ≤ 1 for all (xi, yi). The sub-gaussianity of Rademacher sequence {εi} implies that

E[exp

(
2λ

n

n∑

i=1

εi〈xi, u〉
)
|E] ≤ E[exp

(
2λ2

n2

n∑

i=1

〈xi, u〉2
)
|E] ≤ exp(

4λ2

n
),

using the definition of the event E. Thus the above bound on the moment generating function implies the
following tail bound:

P

[
1

n

n∑

i=1

εipw(xi, yi)〈xi, u〉 ≥ t/2|E
]
≤ exp

(
−nt

2

256

)
.

Combining all the bounds together, we obtain that

P [Z(u) ≥ t] ≤ 2e−nt
2/256 + 2e−n/32.

Since M ≤ 2d, using the union bound we obtain that

P [Z ≥ t] ≤ 2d(2e−nt
2/1024 + 2e−n/32).

Since n ≥ c1d log(1/δ), we have that T1 = Z ≤ c
√

d log(1/δ)
n with probability at least 1− δ/2. Combining these

bounds on T1 and T2 yields the final bound on εG(n, δ).

Now consider any k ≥ 2. From Eq. (13), defining Ni , N (y|g(a>i x), σ2) and pi(x) = ew
>
i x

1+
∑

j∈[k−1] e
w>

j
x
, we have

that

∇wiLlog(W,A) = −E
(

pi(x)Ni∑
i∈[k] pi(x)Ni

− pi(x)

)
x.

Similarly,

∇wi
L

(n)
log (W,A) = −

n∑

j=1

1

n

(
pi(xj)Ni∑
i∈[k] pi(xj)Ni

− pi(xj)
)
xj .

Since ‖Gn(W,A)−G(W,A)‖ = maxi∈[k−1] ‖Gn(W,A)i −G(W,A)i‖2, with out loss of generality, we let i = 1.
The proof for the other cases is similar. Thus we have

‖Gn(W,A)1 −G(W,A)1‖2 ≤
∥∥∥∇w1

Llog(W,A)−∇w1
L

(n)
log (W,A)

∥∥∥
2

≤
∥∥∥∥∥
n∑

i=1

p(1)(xi, yi)xi
n

− E[p(1)(x, y)x]

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

i=1

p1(x)x

n
− E[p1(x)x]

∥∥∥∥∥
2

,

where p(1)(x, y) , p1(x)N1∑
i∈[k] pi(x)Ni

. Since |p(1(x, y)| ≤ 1 and |p1(x)| ≤ 1, we can use the same argument as in the
bounding of T1 proof for 2-MoE above to get the parametric bound. This finishes the proof.

E Additional experiments

E.1 Reduced batch size

In Figure 4 we ran SGD on our loss L4(·) with 5 different runs with a batch size of 128 and a learning rate of
0.001 for d = 10 and k = 3. We can see that our algorithm still converges to zero but with a more variance
because of noisy gradient estimation and also lesser number of samples than the required sample complexity.

Ashok Vardhan Makkuva∗, Sreeram Kannan†, Sewoong Oh†, Pramod Viswanath∗

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
gr

es
so

r e
rro

r:


re
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our L4(⋅)

(a) Regressor error

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.2

0.4

0.6

0.8

Ga
tin

g
er

ro
r:


ga

tin
g

EM algorithm
SGD on ℓ2(⋅)
SGD on our Llog(⋅)

(b) Gating error

Figure 4: Comparison of SGD on our losses (L4, Llog) vs. `2 and the EM algorithm.

