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Abstract

We present Rotated Adaptive Tetra-iterated
Quantizer (RATQ), a fixed-length quantizer
for gradients in first order stochastic opti-
mization. RATQ is easy to implement and
involves only a Hadamard transform computa-
tion and adaptive uniform quantization with
appropriately chosen dynamic ranges. For
noisy gradients with almost surely bounded
Euclidean norms, we establish an informa-
tion theoretic lower bound for optimization
accuracy using finite precision gradients and
show that RATQ almost attains this lower
bound. For mean square bounded noisy gra-
dients, we use a gain-shape quantizer which
separately quantizes the Euclidean norm and
uses RATQ to quantize the normalized unit
norm vector. We establish lower bounds for
performance of any optimization procedure
and shape quantizer, when used with a uni-
form gain quantizer. Finally, we propose an
adaptive quantizer for gain which when used
with RATQ for shape quantizer outperforms
uniform gain quantization and is, in fact, close
to optimal.

1 Introduction

Stochastic gradient descent (SGD) and its variants are
popular optimization methods for machine learning. In
its basic form, SGD performs iterations z;11 = z; —
ng(z¢), where g(x) is a noisy estimate of the subgradient
of the function being optimized at x. Our focus in
this work is on a distributed implementation of this
algorithm where the output §(z) of the first order
oracle must be quantized to a precision of r bits. This
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abstraction models important scenarios ranging from
distributed optimization to federated learning, and is
of independent theoretical interest.

We study the tradeoff between the convergence rate
of first order optimization algorithms and the preci-
sion r available per subgradient update. We consider
two oracle models: the first where the subgradient es-
timate’s Euclidean norm is almost surely bounded and
the second where it is mean square bounded. Our main
contributions include new quantizers for the two ora-
cle models and theoretical insights into the limitations
imposed by heavy-tailed gradient distributions admit-
ted under the mean square bounded oracles. A more
specific description is provided below.

1.1 Prior work and our contributions

SGD and the oracle model abstraction for it appeared
in classic works Robbins and Monro (1951) and Ne-
mirovsky and Yudin (1983), respectively. Recently,
variants of this problem with quantization or communi-
cation constraints on oracle output have received a lot
of attention Acharya et al. (2019); Agarwal et al. (2018);
Alistarh et al. (2017); Basu et al. (2019); De Sa et al.
(2015); Gupta et al. (2015); Karimireddy et al. (2019);
Ramezani-Kebrya et al. (2019); Stich et al. (2018);
Suresh et al. (2017); Wang et al. (2018); Wen et al.
(2017). Our work is motivated by results in Alistarh
et al. (2017); Suresh et al. (2017), and we elaborate on
the connection.

Specifically, Alistarh et al. (2017) considers a problem
very similar to ours. The paper Suresh et al. (2017)
considers the related problem of distributed mean esti-
mation, but the quantizer and its analysis is directly
applicable to distributed optimization. The two pa-
pers present slightly different quantizers that encode
each input using a variable number of bits. Both these
quantizers are of optimal expected precision for al-
most surely bounded oracles. However, their worst-case

The full version of this paper Mayekar and Tyagi (2019)
contains the proofs of all results discussed here, as well as
other additional details.
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(fixed-length) performance is suboptimal. In fact, the
problem of designing fixed-length quantizers for almost
surely bounded oracles is closely related to designing
small-size covering for the Euclidean unit ball. There
has been a longstanding interest in this problem in
the vector quantization and information theory litera-
ture (cf. Csiszar and Narayan (1991); Gersho and Gray
(2012); Hughes and Narayan (1987); Lapidoth (1997);
Wrymner (1967)). We propose a new quantizer that is
merely a factor O(logloglogIn™ d) far from an optimal
information theoretic benchmark which we establish.

In a different direction, for mean square bounded or-
acles, prior works including Alistarh et al. (2017) re-
mains vague about the quantizer. Most of the works
use gain-shape quantizers that separately quantize the
Euclidean norm and the normalized vector. But they
operate under an engineering assumption: “the stan-
dard 32 bit precision suffices for describing the gain.”
We suppose that this folklore wisdom is prescribing
the use of the standard uniform quantizer for gain
quantization. We carefully examine the validity of this
assumption and the design of the gain quantizers for
mean square bounded oracles.

We establish an information theoretic lower bound
which shows (using a heavy-tailed oracle) that the pre-
cision used for gain quantizer must exceed logT" when
the gain is quantized uniformly for T iterations and we
seek O(1/+/T) optimization accuracy. Thus, 32 bits
are good for roughly a billion iterations with uniform
gain quantizers, but not beyond that. Interestingly,
we present a new, adaptive gain quantizer which can
attain the same performance using only loglog T bits
for quantizing gain. Thus, if one has 32 bits to spare for
gain, then by using our quantizer we can handle algo-
rithms with 22° iterations, sufficient for any practical
application.

1.2 Organization

We formalize our problem in the next section, describe
our results for almost surely bounded oracles in Sec-
tion 3 and for mean square bounded oracles in Section 4.
We present application to the primitive of distributed
mean estimation in Section 5.

2 The setup and preliminaries

2.1 Problem setup

We fix the number of iterations T" of the optimization
algorithm (the number of times the first order oracle is
accessed) and the precision r allowed to describe each
subgradient. Our fundamental metric of performance
is the minimum error (as a function of T" and r) with

which such an algorithm can find the optimum value.

Formally, we want to find the minimum value of an
unknown convex function f: X — R using oracle ac-
cess to noisy subgradients of the function (cf. Bubeck
(2015); Nemirovsky and Yudin (1983)). We assume
that the function f is convex over the compact, convex
domain X such that sup, ,c [[* —yll2 < D; we denote
the set of all such X by X. For a query point = € X,
the oracle outputs random estimates of the subgradient
§(x) which for all z € X satisty

E[g(z)lz] € 0f (), (1)
E [lg()]3l2] < B, (2)
where Jf(z) denotes the set of subgradients of f at x.

Definition 2.1 (Mean square bounded oracle). A first
order oracle which upon a query x outputs the subgra-
dient estimate §(z) satisfying the assumptions (1) and
(2) is termed a mean square bounded oracle. We denote
by O the set of pairs (f,O) with a convex function f
and a mean square bounded oracle O.

The variant with almost surely bounded oracles has also
been considered (cf. Agarwal et al. (2012); Nemirovsky
and Yudin (1983)), where we assume for all x € X

P(|l(x)|3 < B*o) = 1. (3)

Definition 2.2 (Almost surely bounded oracle). A
first order oracle which upon a query x outputs only the
subgradient estimate §(z) satisfying the assumptions
(1) and (3) is termed an almost surely bounded oracle.
We denote the class of convex functions and oracle’s
satisfying assumptions (1) and (3) by O.

In our setting, the outputs of the oracle are passed
through a quantizer. An r-bit quantizer consists of
randomized mappings (Q°, Q?) with the encoder map-
ping Q° : RY — {0,1}" and the decoder mapping
Q% : {0,1}" — R?. The overall quantizer is given by
the composition mapping Q = Q% o Q°. Denote by O,
the set of all such r-bit quantizers.

For an oracle (f,O) € O and an r-bit quantizer @, let
QO = Qo0 denote the composition oracle that outputs
Q(g(x)) for each query z. Let 7 be an algorithm with
at most T iterations with oracle access to QO. We will
call such an algorithm an optimization protocol. Denote
by Il the set of all such optimization protocols with
T iterations.

Remark 1 (Memoryless, fixed length quantizers). We
note that the quantizers in @, are memoryless as well as
fixed length quantizers. That is, each new subgradient
estimate at time ¢ will be quantized without using any
information from the previous updates to a fixed length
code of r bits.
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Denoting the combined optimization protocol with
its oracle QO by 79° and the associated out-
put as z*(799), we measure the performance of
such an optimization protocol for a given (f,O) us-
ing the metric £(f,79°) defined as £(f,790) =
E [f(z*(799)) — mingex f(x)]. The fundamental

quantity of interest in this work are minmax errors

E(T,r):=sup inf inf sup &(f,7%°),
0( ) xexmEllr QEQ, (f,0)€0, ( )

sup inf inf sup E(f,79°).

EX(T,r):
xexm€ellr QEQr (r 0ye0

Clearly, (T, r) > &5 (T, r).

Before proceeding further, we recall the results for the
case r = oo (cf. Agarwal et al. (2009); Nemirovski
(1995); Nemirovsky and Yudin (1983)). These bounds
will serve as a basic benchmark for our problem.

Theorem 2.3. For an absolute constant cy, we have
coDB/NT < & (T, 00) < £*(T,00) < DB/VT.

2.2 Quantizer performance for finite
precision optimization

Our overall optimization protocol throughout is the
projected SGD (PSGD) (see Bubeck (2015)). In fact, we
establish lower bound showing roughly the optimality
of PSGD with our quantizers.

In PSGD the standard SGD updates are projected
back to the domain using the projection map I'x given
by Tx(y) := mingex || — y||2. We use the quantized
PSGD algorithm described in Algorithm 1.

1: fort=0toT —1do
Tip1 = La (20 —1nQ(9(2¢)))
2: Output: + - Zthl Tt

Algorithm 1: Quantized PSGD with quantizer @

The quantized output Q(g(z:)), too, constitutes a noisy
oracle, but it can be biased for mean square bounded
oracles. Though biased first-order oracles were consid-
ered in Hu et al. (2016), the effect of quantizer-bias
has not been studied in the past. The performance of
a quantizer (), when it is used with PSGD for mean
square bounded oracles, is controlled by the worst-case
Ly norm «(Q) of its output and the worst-case bias
B(Q) defined as!

a(Q) = 5 Rd'ES[\TEHQ]<BQ E[[QOIE],
B(Q) = sup [EY Q)2 (4)

Y EeRLE[||Y|3]< B2

"We omit the dependence on B and d from our notation.

The corresponding quantities for almost surely bounded
oracles are

ao(Q) := sup E QM)
YER?:||Y||2<B a.s.
Bo(@Q) = sup [EY = Q)2 (5)

YER:|Y||2<B a.s.
Using a slight modification of the standard proof of
convergence for PSGD, we get the following result.

Theorem 2.4. For any quantizer Q, the output xr of
optimization protocol ™ given in Algorithm 1 satisfies

sup E(f,79°) <D (a(\)(fj?) +50(Q)) ;

(f,0)€0Oq
< p(%2 . 5q))
s E(f ><D( 2 +5Q).

when the parameter n is set to D/(ao(Q)VT) and
D/(a(Q)VT), respectively.

Remark 2 (Choice of learning rate). We fix the
parameter 1 of Algorithm 1 to D/(ao(Q)vT) and
D/(a(Q)VT) for all the results in Section 3 and Section
4, respectively.

3 Main results for almost surely
bounded oracles

Our main results will be organized along two regimes:
the high-precision and the low-precision regime. For
the high-precision regime, we seek to attain the optimal
convergence rate of 1/v/T using the minimum precision
possible. For the low-precision regime, we seek to attain
the fastest convergence rate possible for a given, fixed
precision r.

3.1 A precision-dependent lower bound

We begin with a simple refinement of the lower bound
implied by Theorem 2.3 The proof of this result is ob-
tained by appropriately modifying the proof in Agarwal
et al. (2012), along with the strong data processing
inequality in Duchi et al. (2014).

Theorem 3.1. There exists an absolute constant c,
independent of d, T, and r such that

cDB d
(T > EX(T > . .
5( ,7‘)_80( ,’I")_ \/T min{d,r}

As a corollary, we get that there is no hope of getting the
desired convergence rate of 1/+/T by using a precision
of less than d.

Corollary 3.2. For E(T,r) or E*(T,r) to be less than
DB/\T, the precision r must be at least Q(d).
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Require: Input Y € R?, rotation matrix R
1: Compute Y = RY
2: for i € [d/s] do
VI =[Y((i—1)s+1), - Y(min{is, d})]”

3: Output: Q2 (Y) ={Q2,(V1) - Q% (Yiass)}

Algorithm 2: Encoder Qg z(Y) for RATQ

Require: Input {Z;,j;} for i € [[d/s]], rotation
matrix R
YT =[Q%(Z1,41),+, Q%(Zrass), Jrazs))]”
2: Output: Q%,({Z:, ;1“1 = Ry

Algorithm 3: Decoder Q3 z(Z, j) for RATQ

3.2 RATQ: Our quantizer for the /5 ball

We propose Rotated Adaptive Tetra-iterated Quan-
tizer (RATQ) to quantize any random vector Y with
|[Y||3 < B2, which is what we need for almost surely
bounded oracles. RATQ first rotates the input vector,
then divides the coordinates of the rotated vectors into
smaller subvectors of size s each, and finally quantizes
each subvector using a Coordinate-wise Uniform Quan-
tizer (CUQ). However, the dynamic-range used for each
subvector is chosen adaptively from a set of h tetra-
iterated levels. We call this adaptive quantizer Adaptive
Tetra-iterated Uniform Quantizer (ATUQ), and it is the
main workhorse of our construction. The encoder and
decoder for RATQ are given in Algorithm 2 and Algo-
rithm 3, respectively. The details of all the components
involved are described below.

Rotation. RATQ first rotates the input vector by
multiplying it with a random Hadamard matrix. Specif-
ically, denoting by H the d x d Walsh-Hadamard Matrix
(see Horadam (2012))?, define R := ﬁ - HD, where
D is a diagonal matrix with each diagonal entry gen-
erated uniformly from {—1,+1}. The input vector Y
is multiplied by R in the rotation step. The matrix
D can be generated using shared randomness between
the encoder and decoder.

Remark 3 (Advantage of random rotation). While by
almost sure assumption the input vector to the quan-
tizer is inside the Euclidean ball of radius B, to set
the dynamic range®, we need upper bounds for each
coordinate of the vector. After random rotation, each
coordinate of the input vector is a centered subgaus-
sian random variable with a variance of O(B?/d), as
opposed to a variance factor of O(B?), which is all that
can be said for the original input vector.

2We assume that d is a power of 2.
3We mean the interval [—M, M].

Division into subvectors Next, the rotated vector
of dimension d is partitioned into [d/s] smaller sub-
vectors. The *" subvector comprises the coordinates
{(i—1)s+1,--- ;min{is,d}}, for all ¢ € [d/s]. Note
that the dimension of all the sub vectors except the
last one is s, with the last one having a dimension of
d—s|d/s].

CUQ. RATQ uses CUQ as a subroutine; we describe
the latter for d dimensional inputs, but it will only
be applied to subvectors of lower dimension in RATQ.
CUQ has a dynamic range [—M, M] associated with
it, and it uniformly quantizes each coordinate of the
input to k-levels as long as the component is within the
dynamic-range [—M, M]. Specifically, it partitions the
interval [—M, M] into parts Iy := (B k(€), Ba k(£ +
1)], £ €{0,...,k — 1}, where By (¢) are given by

2M

Byr(l) = —M+¢- Rt
Note that we need to communicate k + 1 symbols per
coordinate — k of these symbols correspond to the k
uniform levels and the additional symbol corresponds to
the overflow symbol (). Thus we need a total precision
of? d [log(k + 1)] bits to represent the output of the
CUQ encoder. The encoder and decoders used in CUQ
are given in Algorithms 4 and 5, respectively. In the
decoder, we have set By () to 0.

Vee{0,...,k—1}.

Require: Parameters M € R and input Y € R?
1: for i € [d] do
2: if |[Y(4)| > M then
Z(i)=10
3. else
4: for £€{0,...,k—1} do
5: if Y(Z) € (B]yﬂk(g), BM,k-&-l(e + 1)] then
Y (i) = Bar.i (¢
20) = {+1, w.p. Bﬂéyk((g)ﬂ)fg;,),?(@
L, w.p. M”“(EJFI_%Y(%)
B,k (+1)— B,k ()
6: Output: Q3(Y; M) =2

Algorithm 4: Encoder Q2(Y; M) of CUQ

Require: Parameters M € R*and input Z €
{0,...,k—1,0}¢
1: Set Y (i) = By x(Z(i)), for all i € [d]
2: Output: Q4(Z; M) =Y

Algorithm 5: Decoder Q(Z; M) of CUQ
ATUQ and Adaptive Quantization of subvec-
tors. The quantizer ATUQ is CUQ with its dynamic-
range chosen in an adaptive manner. In order to quan-
tize a particular input vector, it first chooses a dynamic

“We denote by log(-) logarithm to the base 2 and by
In(-) logarithm to the base e.



Prathamesh Mayekar, Himanshu Tyagi

Require: Input Y € R¢
1: if ||Y||co > Mp—_1 then
Set M* = Mh,1
2: else
Set j* =min{j : |Yeo < M,}, M* = M;-
3: Set Z =Q(Y; M* k)
4: Output: Q2.(Y)={Z,5*}

Algorithm 6: Encoder Q2. (Y) for ATUQ

Require: Input {Z,j} with Z € {0,...,k—1,0}¢
and j € {0,...h — 1}
1: Output: Q2,(Z,j) = Q3(Z; M)

Algorithm 7: Decoder Q2,(Z,j) for ATUQ

range from [—M;, M;], 1 < i < h. To describe these
M;s, we first define the i*" tetra-iteration for e, denoted
by e**, recursively as follows:

. w(i—1)
eli=e, e:=¢° ,

1€ N.

Also, for any non negative number b, we define In* b :=
inf{i € N : e* > b}. With this notation, the values
M;s are defined in terms of the starting point m as
follows:

MZ =m +my, Vie[h—1].

ATUQ finds the smallest level M; which bounds the
infinity norm of the input vector; if no such M; ex-
ists, it simply uses Mp_;. It then uses CUQ with
dynamic range [—M;, M;] to quantize the input vector.
In RATQ, we apply ATUQ to each subvector. The
decoder of ATUQ is simply the decoder of CUQ using
the dynamic range outputted by the ATUQ encoder.

M2 =m-e*" +mo,

Note that in order to represent the output of ATUQ for
d dimensional inputs, we need a precision of at most
[log h] + d [log(k + 1)] bits: [logh] bits to represent
the dynamic range and at most d [log(k + 1)] bits to
represent the output of CUQ. The encoder and decoder
for AUTQ are given in Algorithms 6 and 7, respectively.

When ATUQ is applied to each subvector in RATQ,
each of the [d/s]| subvectors are represented using
less than [log h] + s [log(k + 1)] bits. Thus, the over-
all precision for RATQ is less than [d/s] - [logh] +
d [log(k + 1)] bits. The decoder of RATQ is simply
formed by collecting the output of the ATUQ decoders
for all the subvectors to form a d-dimensional vector,
and rotating it back using the matrix R~! (the inverse
of the rotation matrix used at the encoder).

Remark 4 (Mean square error of ATUQ). The per
coordinate mean square error between the input to
ATUQ and its output roughly grows as

) M? - p(M;_4
0 <Eze[h](k 1_ 12)95 )) ’ (6)

where p(M) is the probability of the ¢, norm of the
input vector exceeding M and k denotes the number
of levels of the uniform quantizer. This observation
allows us to relate the mean square error to the tail-
probabilities of the £,, norm of the input vector. In
particular, we exploit it to decide on the dimension s
of subvectors as well as the growth rate of M;s.
Remark 5 (Growth rate of Tetration). A key distin-
guishing feature of RATQ is choosing the set of M;s
to grow as a tetration, roughly as M, = e™i. The
large growth rate of a tetration allows us to cover the
complete range of each coordinate using only a small
number of dynamic ranges, which leads to an unbiased
quantizer and reduces the communication. Also, after
random rotation, each coordinate of the vector is a
centered subgaussian random variable with a variance-
parameter of O(B?/d) (see Remark 3), which, despite
the large growth rate of a tetration, ensures that the
per coordinate mean square error between the quan-
tized output and the input is almost a constant, as can
be seen from (6).

Choice of parameters. Throughout the remainder
of this section, we set our parameters m, mg, and h as
follows

3B2? 2B2%1ns
mo = Y

logh = [log(1+1n*(d/3))]. (7)

In particular, this results in M}_1 > B whereby, for an
input Y with ||Y||3 < B2, RATQ outputs an unbiased
estimate of Y.

3.3 RATQ in the high-precision regime

Theorem 3.3. Let Q.¢ r be the quantizer RATQ with
M;s set by (7). Then, for all s,k € N,

9+ 3Ins
+1

ao(Qat,r) < B W )

Bo(Qat,r) = 0. (8)

Thus, «q is lower when s is small, but the overall
precision needed grows since the number of subvectors
increases. The following choice of parameters yields
almost optimal performance:

s=logh, log(k+1)= [1og(2 +v0+ 3 3)1 . (9)

For these choices, we obtain the following.

Corollary 3.4. The overall precision r used by the
quantizer Q = Qax, g With parameters set as in (7), (9)
satisfies

r S d(l +A1) +A2,

where A1 = [log (24++v9+3InA;)| and Ay =
[log(1+1In*(d/3))].
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Furthermore, the optimization protocol m given
in Algorithm 1 satisfies® sup; oyco, E(f,79°) <

V2DB/VT.

Remark 6. The precision requirement in Corollary 3.4
matches the d bit lower bound of Corollary 3.2 upto a
multiplicative factor of O(logloglogIn®(d/3).

3.4 RATQ in the low-precision regime

Consider the low-precision regime where r is much
smaller than d. Our quantizer in this regime adds an-
other layer called Random Coordinate Sampler (RCS)
to RATQ. RCS requires the encoder and the decoder
to share a random set S C [d] distributed uniformly
over all subsets of [d] of cardinality ud. We use RATQ
with s = 1, namely the subvectors now consist of one-
coordinate each, and obtain the encoded vector Y. The
encoder Q% of RCS only retains the coordinates in S
and outputs the vector Q%(Y) := {Y'(¢),¢ € S}. The
Q%(?) of RCS, when applied to a vector ¥ e R:d,
outputs Q4 (Y) := p~! Yics Y (i)e;, where e; denotes
the ith element of standard basis for R%. This decoded
vector of RCS is then passed through the decoder of
RATQ to obtain the final quantized vector. In effect,
the decoder of RCS substitutes the value 0 for coordi-
nates not included in S. Note that since we need to
retain RATQ encoder output for only ud coordinates,
the overall precision of the quantizer is reduced by a fac-
tor of p. Specifically, the composed quantizer satisfies

ao(@) < 20@er) i 80(G) = Ao(Qur).

We now set parameter s and k to constants and sample
roughly r coordinates. Specifically, we set

s=1, log(k+1)=3,
pd =min{d, |r/(3+ [log(1 +1n*(d/3))])]}. (10)

For these choices, we have the following corollary.

Corollary 3.5. For r > 3 + [log(1+ In*(d/3))],
let @Q be the composition of RCS and RATQ
with parameters set as in (7), (10).  Then, the
optimization protocol m in Algorithm 1 satisfies

sup  E(f,7%9) < V2DB/\/uT.

(£,0)€00

Remark 7. Note that the convergence rate slows down
by a p specified in (10), which matches the lower
bound in Theorem 3.1 upto a multiplicative factor
of O(logIn*(d/3))

5Note that all our quantizers use independent random-
ness across iterations.

4 Main results for mean square
bounded oracles

Moving to oracles satisfying the mean square bounded
assumption, we now need to quantize random vectors
Y such that E [||[Y|3] < B2. We take recourse to the
standard gain-shape quantization paradigm in vector
quantization (cf.Gersho and Gray (2012)). Specifically,
we separately quantize the gain ||Y|2 and the shape®
Y/|Y|l2 of Y, and form the estimate of ¥ by simply
multiplying the estimates for the gain and the shape.
Note that we already have a good shape quantizer:
RATQ. We only need to modify the parameters in (7)
to make it work for the unit sphere; we set

— § e — 2Ins
- da 0 — d )
log h = [log(1 +In*(d/3))] . (11)

We remark that quantizers proposed in most of the
prior work can be cast in this gain-shape framework.
However, most works simply state that gain is a single
parameter which can be quantized using a fixed number
of bits; for instance, a single double precision number is
prescribed for storing the gain. However, the quantizer
is not specified. We carefully analyze this problem
and establish lower bounds when a uniform quantizer
with a fixed dynamic range is used for quantizing the
gain. Further, we present our own quantizer which
significantly outperforms the uniform quantization.

4.1 Limitation of uniform gain quantization

We establish lower bounds for a general class of gain-

shape quantizers Q(y) = Qq(||yl|2)Qs(y/||lyll2) of preci-
sion 7 that satisfy the following structural assumptions:

1. (Independent gain-shape quantization) For
any given y € R?, the output of the gain and the
shape quantizers are independent”.

2. (Bounded dynamic-range) There exists M > 0
such that y € R? such that whenever |y|l2 > M,
Q(y) has a fixed distribution Py.

3. (Uniformity) There exists m € [M/2", M| such
that for every t in [0, m],

(a) supp(Qy(t)) € {0, m};

b) I PQ) = m) > 0
P(Qy(tz) =m) _ 1
P(Qy(tr) =m) = ti’

SFor the event ||Y||2 = 0, we follow the convention that
Y/[[Y |2 = ex.
"This assumption implies that for a random input vec-

tor Y, conditioned on Y, the output of shape and gain
quantizers are independent.

then

V0§t1§t2§m
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The first two assumptions are perhaps clear and hold
for a large class of quantizers. The third one is the true
limitation and is satisfied by different forms of uniform
gain quantizers. For instance, for the one-dimensional
version of CUQ with dynamic range [0, M], which is an
unbiased, uniform gain quantizer with &, levels, it holds
with m = M/(ky — 1) (corresponding to the innermost
level [0, M/(ky—1)]). It can also be shown to include a
deterministic uniform quantizer that rounds-off at the
mid-point. The third condition, in essence, captures
the unbiasedness requirement that the probability of
declaring higher level is proportional to the value. Note
that (t2/t1) on the right-side can be replaced with any
constant multiple of (t2/t1).

Below we present lower bounds for performance of any
optimization protocol using a gain-shape quantizer that
satisfies the assumptions above. We present separate
results for high-precision and low-precision regimes, but
both are obtained using a general construction that
exploits the admissibility of heavy-tail distributions for
mean square bounded oracles. This construction is new
and may be of independent interest.

Theorem 4.1. Consider a gain-shape quantizer @
satisfying the assumptions above. Suppose that for
X =A{z: ||z|2 < D/2} we can find an optimization
protocol ™ which, using at most T iterations, achieves
sup s peo E(f, m90) < %. Then, we can find a uni-
versal constant ¢ such that the overall precision r of
the quantizer must satisfy

r>c(d+1logT).

Theorem 4.2. Consider a gain-shape quantizer
satisfying the assumptions above . Suppose that the
number of bits used by the gain quantizer are fixed in-
dependently of T. Then, for X = {x : ||z|2 < D/2},
there exists (f,0) € O such that for any optimization
protocol ™ using at most T iterations, we must have

o cDB
E(f,79) = =i
where ¢ is a constant depending only on the number of
bits used by the gain quantizer (but not on T ).

4.2 A-RATQ in the high precision regime

Instead of quantizing the gain uniformly, we propose to
use an adaptive quantizer termed Adaptive Geometric
Uniform Quantizer (AGUQ) for gain. AGUQ operates
similar to the one-dimensional ATUQ), except the possi-
ble dynamic-ranges My, ..., My grow geometrically
(and not using tetra-iterations) as follows:

M?. =B?.4]

9,] g’

0<j<hy—1 (12)

Specifically, for a given gain G > 0, AGUQ first iden-
tifies the smallest j such that G < M, ; and then rep-
resents G using the one-dimensional version of CUQ
with a dynamic range [0, M, ;] and k, uniform levels
BA{g,jvkg(g) 126'%, VZE{O,J@—l}

As in ATUQ, if G > M, 1, the overflow ) symbol is
used and the decoder simply outputs 0. The overall
procedure is the similar to Algorithms (6) and (7) for
s =1,h = hg, and M; = My ;, 0 < j < hy — 1; the
only changes is that now we restrict to nonnegative
interval [0, M, ;] for the one-dimensional version of
CUQ with uniform levels as described above.

Remark 8. Note that the mean square error correspond-
ing to AGUQ is similar to one given in (6). But this
time we cannot use a tetration for selecting possible
dynamic-ranges M, ;s, since gain need not be subgaus-
sian. We now only have tail-probability bounds deter-
mined by the Markov inequality (heavy-tails) and can
only increase M, ;s geometrically

Our overall quantizer, termed the adaptive-RATQ (A-
RATQ) is given by Q(Y') := Qa([[Y[|2) - Qac, r(Y/[[Y[|2),
where (), denotes the one dimensional AGUQ and
Qat,r denotes the d-dimensional RATQ. Note that
we use independent randomness for @Q,(]|Y]|2) and
Qat,r(Y/||Y]|2), rendering them conditionally indepen-
dent given Y.

The parameters s, k for RATQ and ag4, k4 for AGUQ
are yet to be set. We first present a result which holds
for all choices of these parameters.

Theorem 4.3. For (Q set to A-RATQ with parameters
set as in (11), (12), we have

1 ag(hg —1)
B2
B(Q) < My 1

where ag j, = ,/g(zilf)‘zs + 1 is the bound in (8).

Note that RATQ yields an unbiased estimator; the bias
in A-RATQ arises from AGUQ since the gain is not
bounded. Further, AGUQ uses a precision of [log hg]+
[log(kg 4+ 1)] bits, and therefore, the overall precision
of A-RATQ is [log h,] + [log(k, + 1)] + [d/s] [log k] +
d [log(k + 1)] bits.

In the high-precision regime, we set
1
ag =2, loghy, = |log(l+ 3 logT) |,

log(ky +1) = {log (2 + ;\/m)-‘ . (13)
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Corollary 4.4. Denote by Q the quantizer A-RATQ
with parameters set as in (11), (9), and (13). Then,
the overall precision r used by Q is less than

d(1+Ay) + Ag + [log (2+ Vd1og T + 1>—‘ ,

where Ay and Ay are as in Corollary 3.4. Furthermore,
the optimization protocol ™ given in algorithm 1 satisfies
SUP(f,0)e0 E(f,m99) < 3DB/\/T-

4.3 A-RATQ in the low precision regime

In order to operate with a fixed precision r, we combine
A-RATQ with RCS. We simply combine RCS with
RATQ as in Section 3.4 to limit the precision. We
divide the total precision 7 in to 7, and r, bits: 4
to quantize the gain, rs to quantize the sub-sampled
shape vector. We set

s, k, and pd as in (10), with 75 replacing r,
1
log hy = log(ky + 1) = <2, ag = (WI)57  (14)

That is, our shape quantizer simply quantizes pd ran-
domly chosen coordinates of the rotated vector using
ATUQ with r, bits, and the remaining bits are used
by the gain quantizer AGUQ. The result below shows
the performance of this quantizer.

Corollary 4.5. For any r with gain quantizer being
assigned vy > 4 bits and shape quantizer being
assigned s > 3 + [log(1+1n*(d/3))], let Q be the
combination of RCS and A-RATQ with parameters
set as in (11), (12), (14). Then for uT > 1, the
optimization protocol w in Algorithm 1 can obtain
sup £(f,790)
(f,0)eO

2"g/2 1

d % org/2 41
<0 |DB : _
T Hlln{d, log ln*s(d/B) }

Remark 9. The precision used in Corollary 4.4 matches
the lower bound in Corollary 3.2 upto an additive
factor of loglogT (ignoring the mild d dependence),
which is much lower than the log7T lower bound
we established for uniform gain quantizers. Our
fixed precision quantizer in Corollary 4.5 establishes
that using only a constant number of bits for gain-
quantization, we get very close to the lower bound in
Theorem 3.1. For instance, given access to a large
enough precision r, if we set ry to be 16 bits, we get

200 < 0 g B
sup ST S DB (> .
(£,0)€O T min{d,r}

Remark 10. We remark that A-RATQ satisfies assump-

tions (1) and (2) in Section 4.1 but not (3), and breaches
the lower bound in Section 4.1.

5 Distributed mean estimation

Our final set of results discuss the performance of
RATQ for the primitive of distributed mean estimation
with limited communication, considered in Suresh et al.
(2017). Formally, consider n vectors {z;}? , with each
x; in R? and vector z; available to client 3. Each client
communicates to a fusion center using r bits to enable
the center to compute the sample mean z = £ 7" | ;.

We measure the performance of a scheme 7 by the
mean square error (MSE) between z and the value
decoded by the center z, for the fixed set of input
vectors z = {z;}7,, given by &(m,z) =E [||z — 23] .
We consider the minmax MSE over the unit Euclidean

ball B¢ given by £(m,BY) = max &(m,2). The
z;EB? Yi€[n]

minimum error attained by variable-length codes

is given by £(IL.(r), BY) = wé{'l[ir%r) 7:<eBmdav)§e[n] E(m,x),

where IL.(r) denote a class of communication proto-
cols, with access to public randomness, in which all the
clients can encode its input vector upto an expected
length of r bits.

The following lower bound is obtained easily from
(Suresh et al., 2017, Theorem 5).

Corollary 5.1. For £(IL.(r), BY) = O(1/n), we must
have 1 to be Q(nd).

The protocol 7., proposed in Suresh et al. (2017)
for this problem achieves & (7,1, BY) = O(1/n) with
r = Q(ndloglog(d)). This scheme uses a quantizer
which randomly rotates a input vector, similar to
RATQ, before quantizing it uniformly. A simpler
quantizer similar to CUQ with a variable-length en-
tropic compression code, denoted by ms,k, achieves
E(Tsors BY) = O(1/n) with r = Q(nd). This estab-
lishes the orderwise optimality of mg,,. Thus, prior to
our work, the best known fixed-length scheme for dis-
tributed mean estimation was 7, which was off from
the optimal performance attained by a variable-length
code by a factor of loglogd.

We now consider performance of a protocol mrarg in
which RATQ with parameters m, h as in (11) and k, s
as in (9) is employed by all the clients, and the center
declares the average of the quantized values as its mean
estimate.

Theorem 5.2. &(Trarq, BY) = O(1/n) when r =
n(d(1+ A1)+ Ag), where Ay and As are as in Corol-
lary 3.4.

Thus, RATQ enjoys the fixed length structure of mg.x,
while being only O(logloglogIn®(d/3)) away from the
expected length of 74,k.
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