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A  Appendix

A.1 Proof of Corollary 4.

Proof. Since (x(*)) ey converges to x*, there exists
ko > 0 such that @®) lies in Be(y)(z*(u)) for all k >
ko. Thus, from the Lipschitz continuity of ¢ on ), we
have:

k+m(u)

[o®, )~ oter,w)| < 0% 03

oo

)

for all £ > kg. O

A.2 Proof of Lemma 6.

Proof. Since f(-,u) is convex and V.f is L(u)-
Lipschitz continuous on Z, therefore, for all u € U and
a < 1/L(u), the first part of the proposition follows
from (Bertsekas, 1999) and Induction. In particular
we have:

F@®,w)~ f*w),u) < 5o [« = 00, ()

for k € N. Thus the sequence (x*))ey lies in X (u)
and from the continuity of f and Assumption Al,
converges to x*(w). This implies that, there exists
d(u) > 0 such that after at most kg ~ O(1/6(u)) iter-
ations of (GD), the sequence (*))en lies in the set
leve p(z+ w)+5(uw) f (s u) © Bow)(x*) and we have for
all k > ko:

e(k+1) _ e(k) _ a(vwf(w(k)7 u) — me(a;*(u)7u))
= Ry(z®)el™.

Because o < 1/L(u) and from Equation (1), the term
given by:

qgep(u) = sup{||Rgp (@, a)|| : @ € Beuy(®" (u))} -
(6)

lies in [0,1) and the inequality follows. O
A.3 Proof of Proposition 8.
Proof. We simplify the term e +1) as:
e+ = R 30 _ 0¥ 4 f(2™® u)i
— REpx™ + aVgy f(z*, u)d

= RiHe™ + (D(Va )@, w)
- D(me)(m*,u))(a:*, S) )

where we assigned Ragp(a*, o) to Rf.p. Rearranging
the expression on the right hand side, taking the norm
and recursive expansion yields the desired inequality
for k > ko and C1 == C||s|| (k + m(w))/m(u). O

A.4 Proof of Proposition 10.

Proof. The difference of the sequence generated by
(GD-FI) with p(z*), u)s can be simplified as:

k1)

:fcg( (x5 u)s = R(GI;) (539;) - Lp(a:(K),u)s) .

After taking the norm, expanding the expression on

the right recursively and using Equation (6), we arrive
at the first inequality. For (GD-RI), we have:

al\rt = a0z K, f

—af) — af Zn: B ) T f

i=0
_ _afz(K)(znj(R;fg)i)vm f
=0

= —ar®(Iy = Rgp) ™ (Iv = (BGD)"™) Vauf

= —rTV2 Y (In — (RED)") Vauf

= rTp(@") u) + rTV2 FHRUY) " Ve f .
By taking the norm of the error term ﬂg?) —

rTo(xX) u) from above equation and using Equa-
tion (6), we get the second inequality. O

A.5 Proof of Corollary 12.

Proof. %) € B, (y)(x* (u)) implies o < 1/L(w) is sat-
isfied for our choice of step size from Equation (1) and
(Boyd and Vandenberghe, 2004). Since the conditions
of Proposition 10 are satisfied, the proof follows. [

A.6 Proof of Lemma 13.

Proof. For all u € U and for given choices of « and 3,
the first part of the proof follows from (1) and (Polyak,
1987). This implies that *) € X(u) for all k € N.
Also the sequence (2®)),cn converges to «*(u) from
the continuity of f and uniqueness of x*(u). There-
fore, there exists kg > 0 such that for all k > kg we
have z(¥) € B, (y)(z*(u)). From mean value theorem,
the error term e*+1) is simplified as:

et = (14 B)z™ — a(Vy f(2™),u)
— Vo f(x*,u) — =1 —
== RHB(Z(k)7a,ﬁ)e(k) - /86(1671) )



Automatic Differentiation of Some First-Order Methods in Parametric Optimization

for some z*) € conv{x®) x*}. We assign y*) =
(x++1) 2(*) and y* == (z*,2*) and compute the er-
ror term for this sequence as:

B g = (el )
= (RHB(Z(k)7a7ﬂ)e(k) - ﬁe(k_l)ae(k)) (7)
=T(z",a,8)(y"* ) —y),

where we define T : RY x R xR — R2V>*2N g matrix-
valued function as:

RHB(CC,O[,,B) _BIN

T(x,a,p) = In on | (8)

Here we use subscripts to denote the order of iden-
itly and zero matrices to avoid any confusion. Let
p(A) be the spectral radius of matrix A, then from
(Polyak, 1987), (1) and the compactness of our e(u)-
neighbourhood, ¢y p(u) defined by:

QHB(U) = Sup{p(T(w,a,ﬁ)) 3K S Bs(u)($*<u))}£9)

lies in [0, 1) for every u € U and given choices of a and
B. From Gelfand’s relation between spectral radius
and the norm of a matrix (Gelfand, 1941), we arrive
at our result by taking the norm of the last identity in
(7) and recursively expanding up to ko. O

A.7 Proof of Proposition 15.

Proof. We assign the expression Ryp(xz*,«,3) to
R} and compute

R¥L &™) — Ry pi* = (14 8)e®
— a(Vif(w(k), u):i:(k) — V2 f(x*, u)w*)
= R%%é(k) — a(Vif(:c(k), u)
— V2 f(z, u))m* ,

from which we obtain the following error term:

e +1) _ R%“J)B:t(k) — Ry pi* — a(unf(:c(k),u)
— Vauf(x*,u))i — geF1)
= [RE), —BIn] "0 — a(D(Vaf) (@), u)
— D(Vgf)(z*,w)) (2", ),

where we similarly define *) — ¢* = (ek+1) eR),
Thus the error term for this sequence is given by:

g -y =T — g (10)
—a(E® - E*)(2*,4),

where we set T*) = T(ac(k)"’"ﬂ,a,ﬂ) and define the
map E: RY x RP — L(RY x RY RN x RY) as:

B(a,u) [D(vmfmu)]

On,N+P

and assign E(z®),u) to E®) and E(z*,u) to E*.
Now taking the norm and recursively expanding the
term on the right hand side of Equation (10), we ar-
rive at our result by using the same argument we made
in the proof of Lemma 13. O

A.8 Proof of Proposition 17.

Proof. We will work through the proof for both se-
quences in a similar fashion as in Proposition 10. We
first consider the forward mode case where the error
for :i:y;) is given by:

aic ™ — p(@®,u)s = Rigp (27 — (@, u)s)
— 5(@(%1) _ @(w(k),u)s) )

We can use it to compute the error term for gﬁ? =

(ig’;“% :i:y;)) as:

NG [@(w(K),U)S} @Y o2, u)s
& — p(@),u)s

_ Rg(B) —BIN :i:y;) — cp(:c(K),u)s
_ @(m(K),u)s

(K)
_ (i) (=1 (@t u)s
r (y [ap(m(K),u)s )

:B(K) u)s
= —(T")* [zgm(m:u%s} ,

where in the last equality we used ¢ =
(37:([8),33;;1)) = 0. Because z® € B.(,)(z*(u)), we
use the argument provided in the proof of Lemma 13
to arrive at the first inequality.

We now define gy = (;E(K—n—l), j;(K—n))T
which is computed for n = 0,..., K — 1 as:

(K—n—1)
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o o T
S 1)}

p(E—n)

- T
B j(K—n)Rg(B) _ 652<K—n+1)
F(K—n)

- T
_ [ 25 VTR, Iy
;E(Kfn+1) _ﬂIN On

= Q(K*n) (T(K))T

5t = @t alhT for n =

We also compute v K

0,...,K —1 as:

T
1) _|age Y
Vg = /&%)

_ 11(]?) — BV 0 f
,'1([7{1*1) _ ai.(K—n-i—l)vmuf

T
= ﬂ’%ﬁ_l) -« i(Kinil) ’ vmuf ON,P
&g?) gK-n) Onp  Vauf

where S : RV xRY — L(RN xRN RF xRF) is defined
as:

vmuf(xv u)

On.p

S(x,u) = { qu?}vﬁg,u) ,

so that S(z5), u) is assigned to S)
~(n+1)

. Putting the ex-

pressions for v and K —"=1 together we notice

that they are equlvalent to those in (GD-RI). We can

~(n+1)

therefore simplify v, as:

ﬁ%ﬁl) _ ~(n) — agE-—m g

=0 —a (zn: (K- n+z> K)
i=0
- (5)")¥) g (F)
03 (L [ ))s

= —a(r,O) (IQN —T( )" )_ (IQN
_ (T(K)T)nH)S(K) 7
where our starting points are ﬁg) = 0 and g&) =

(r,0)T.

Now in order to compute the inverse of the matrix

Vif—-BIn —In
Ly — T = [*Va
2N BIn In

we use the results given in Lu and Shiou (2002)[The-
orem 1. The Schur complement of Iy (bottom
right block in the above matrix) is (aVZf — BIy) —
(—In)(IN)"Y(B)IN = aV2f which is invertible and

we have:

1
(r,0) (Lay = TU) ™ = ~ (V2 TV T

We can substitute this term in the expression obtained

~(n+1)

above for v and obtain

i T2 1"
(@), w)]" | [Tzl

T
= [t ] + LTWW} SR

Since the matrix S(z,u) has same singular values as
Vazuf(2,u), the second inequality follows. O

A.9 Proof of Corollary 19.

Proof. The proof follows from the fact that, in Propo-
sitions 10 and 17, we only assume that the estimate
) lies in Be(u)(z*(u)). We don’t put any constraint
on how it is computed. O





