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Abstract

We aim at computing the derivative of the
solution to a parametric optimization prob-
lem with respect to the involved parameters.
For a class broader than that of strongly con-
vex functions, this can be achieved by au-
tomatic differentiation of iterative minimiza-
tion algorithms. If the iterative algorithm
converges pointwise, then we prove that the
derivative sequence also converges pointwise
to the derivative of the minimizer with re-
spect to the parameters. Moreover, we pro-
vide convergence rates for both sequences. In
particular, we prove that the accelerated con-
vergence rate of the Heavy-ball method com-
pared to Gradient Descent also accelerates
the derivative computation. An experiment
with L2-Regularized Logistic Regression val-
idates the theoretical results.

1 Introduction

For a sufficiently smooth function f : RV x R = R,
with N, P € N, we consider the parametric optimiza-
tion problem:

min f(x,u), (P)

zeRN

for parameters u € R”. We assume that, for any wu,
this problem has a unique solution, which defines the
solution function u — x*(u), mapping a parameter
u onto the solution x*(u) of (P). In this paper, we
seek fast convergent iterative approximations of the
derivative D, x* of the solution function.
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Problems of the form (P) are frequently encountered
as lower (or inner) level problems in bilevel optimiza-
tion (Dempe et al., 2015). The complementing upper
(or outer) level problem often minimizes a loss func-
tion with respect to the parameter and the solution
of the lower level problem. If both levels are suffi-
ciently smooth, gradient based schemes can be used to
solve the bilevel problem, which eventually requires to
compute the derivative of the minimizer D, x* (of the
lower level) with respect to the parameter. This strat-
egy is used in image denoising (Giryes et al., 2008;
Domke, 2012; Kunisch and Pock, 2013), deblurring
(Giryes et al., 2011) and segmentation (Ochs et al.,
2016); data cleaning (Franceschi et al., 2017) and vari-
ous other applications (Deledalle et al., 2014; Maclau-
rin et al., 2015; Pedregosa, 2016) for parameter learn-
ing, otherwise known as hyperparameter optimization
in machine learning literature. Maclaurin et al. (2015)
and Pedregosa (2016) were able to optimize thousands
of hyperparamters using the so-called gradient based
methods.

Another application is in grid search methods
(Bergstra and Bengio, 2012), for which the derivative
value allows for adaptable grid spacing.

In practice, at any wu, the solution * in (P) is ap-
proximated by a sequence (w(k))keN generated by an
iterative optimization algorithm that converges to x*,
for example, by Gradient Descent:

2kt = 20 _ oV, f(x® u),

for k € N. Here we start with (®) € RV and assume a
constant step size a > 0. The above update rule sug-
gests that the iterates are dependent on w and under
suitable conditions, the convergence of the sequence
() (u))ren is guaranteed for a given u. Since the
algorithm relies only on the gradient information, it is
therefore called a first order method. Another exam-
ple of first order algorithms is the Heavy-ball method
(Polyak, 1964), also known as gradient descent with
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momentum or inertial gradient descent. This algo-
rithm often accelerates the convergence of Gradient
Descent and is known to be a so-called optimal algo-
rithm for strongly convex functions (Nemirovsky and
Yudin, 1983; Nesterov, 2004). As we are mainly inter-
ested in large scale problems (e.g. deep learning), the
high dimensionality prohibits the usage of second or-
der algorithms such as Newton’s method (LeCun et al.,
1998).

Since the minimizing sequence depends on u, we con-
sider the derivative sequence (Dy2®) (u))gey for ap-
proximating D, x*. In particular, our contribution is
the following:

e For a sequence (z*)(u))ren generated by Gra-
dient Descent, we prove pointwise convergence
and a convergence rate of the derivative sequence
(Dyz™) (1)) ey to Dyz*(u).

e For the Heavy-ball method, the optimal rate of
convergence for (*) (u)) e is also proved for the
derivative sequence.

e We study memory efficient variants, which turn
out to yield an additional speed ups.

1.1 Related Work

One of the first works on differentiating iterative al-
gorithms for parametric minimization is by Fischer
(1991), who studied a parametric linear system of
equations. For the discussed Jacobi method, the
derivative sequence is shown to converge under the
same conditions as the original sequence. Gilbert
(1992) did the first comprehensive study of the prob-
lem. He considered a parametric iterative process that
approaches a fixed point, and concluded convergence
of the derivative sequence to the derivative of the fixed
point. As an example, he showed that these results
hold for Newton’s method. He also suggested a tech-
nique to improve the convergence speed of the deriva-
tive sequence for forward mode case. This was further
studied in detail by Christianson (1994) who proposed
an efficient method for computing the derivative using
the reverse mode automatic differentiation (AD).

Azmy (1997) performed numerical experiments by us-
ing Gilbert’s efficient strategy for forward mode AD
and found significant improvement in the accuracy
of the derivative with same number of iterations as
well as in computational power used in each iteration.
Bartholomew—Biggs (1998) also used this strategy to
speed up the convergence process. He performed nu-
merical experiments and applied the results to various
practical applications. Schlenkrich et al. (2008) inte-
grated the reverse accumulation technique in ADOL-C

(Griewank et al., 1996) for computing the derivatives
of fixed-point iterations and used the package for anal-
ysis of a problem in Fluid Dynamics.

A question that remained unsolved in (Gilbert, 1992)
was as to how to apply his results to a generalized
fixed-point iterations, for instance, the quasi-Newton
methods. Rosemblun (1993) performed successful ex-
periments on the Broyden’s method. Beck (1994) stud-
ied these iterations and provided theoretical results for
convergence of the derivative sequences for such iter-
ations. The conditions that he imposed on the itera-
tions were similar to those by Gilbert. Griewank et al.
(1993) provided the convergence guarantees for quasi-
Newton methods like Broyden and DFP update rules.
They pointed out that the rate and order of conver-
gence of derivative sequences at best matches that of
original sequences.

Christianson (1998) investigated this problem in a
more general setting. He used reverse accumulation to
compute the derivative of an implicit function when
any eversion process is used to compute the value of
the dependent variable (not just the fixed-point iter-
ations). Griewank and Faure (2002) studied a similar
problem in the context of a dynamic system where the
state vector is given as an implicit function of the input
vector and the derivative of the output vector which
is provided as a function of input and state vector, is
required. Bell and Burke (2008) studied the problem
of computing gradient and Hessian of optimal value
of a parametric objective function which is useful in
saddle point problems or multilevel optimization.

We study AD for a more specialized setting of se-
quences that are derived from a minimization problem.
We explore this additional information and prove that
the derivative sequence generated by a so-called opti-
mal algorithm, in the sense of (Nemirovsky and Yudin,
1983) and (Nesterov, 2004), has the same accelerated
convergence rate as the original sequence.

2 Problem Setting

Given an open, non-empty and bounded set ¢ C R,
we consider (P), where f is twice continuously differ-
entiable on RV x ¢/. We further assume that for all
u € U, the function f(-,u) is convex and a unique so-
lution to (P) exists. This allows us to define a map
x* U — RN as z*(u) = argmingcpn f(, u) which is
equivalently characterized by its optimality condition:

Vaef(x*(u),u) =0.

For differentiation of the left hand side, we require the
following assumption:
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A1l. For allw € U, the matriz V2 f(x
tive definite, and hence invertible.

Example 1. If f(-,u) is strongly convex for all u €
U, then Assumption Al is satisfied. Therefore, our
setting is more general.

Remark 2. The set U can be thought of as a neigh-
borhood of a point for which we want to compute the
derivative.

*(u),u) is posi-

From Assumption Al, we conclude that, for all u €
U, the function f(-,u) is m(u)-strongly convex on a
closed £(u)-neighborhood Be(,,) (m*(u)) of *(u) with

m(w) > 0. This implies that V2 f(z,u) is invertible
onY = {(z,u) € RN xU : © € B.(y)(x*(u))} and
HV% (z,u) 1H < 1/m(u) holds for all (z,u) € V.
Moreover, f : RY xU — R is level bounded in x locally
uniformly in w (Rockafellar and Wets, 1998, Definition
1.16). That is, for all w € U, the function f(-,u) is
lower-level bounded so that for some ﬁxed a E RN
the set X(u) = lev< ia.u)f(- 5\1;
bounded and the set Z := {(:13 u) € RV x Z/{ x €

X(u)} is bounded. Also, from extreme value theorem,
for any u € U, there exists an upper bound, L(u) > 0,
on the maximum eigenvalue of V2 f(-,u) on X(u). In
other words, V4 f(-,u) is locally L(w)-Lipschitz con-
tinuous for every u € U and we have:

m(u)l XV f(x,u) < L(u)l, (1)
for every (x,u) € Y. Similarly, |Vgf]| is bounded
on Z by some x > 0.

We state our second assumption for f which is
motivated from the previous papers (Gilbert, 1992;
Griewank et al., 1993).

A2. The derivative map D(Vgf) of the gradient of f

with respect to x is Lipschitz continuous on Z with
constant C' > 0.

We state following results for the solution map x* and
its derivative.

Lemma 3. Under Assumptions Al and A2, the func-
tion o given by:

80(513, u) = _vif(wa u)ilkuf(wv u) ) (2)
is well-defined for all (x,u) € Y. It is bounded by
k/m(u) and is C(k+m(u ))/ (u)?-Lipschitz Contin-
wous on Y. The function * : U — X is continuously
differentiable with C(k + m(w))?/m(u)3-Lipschitz
Continuous derivative Dyx*(u) = p(x*(u),u) on U.

The above lemma is essentially a restatement of
(Christianson, 1994, Theorem 2.2) with ®(-,u) =

Id — aV,f(-,u). An important consequence of this
lemma is the following result which will be useful later.

Corollary 4. Under the conditions of Lemma 3, for
all w € U, if a sequence (x*))en lies in X(u) and
converges to x*(u) at a linear rate, then the sequence
(o™, u))pen converges to Dyx*(w) with the same
rate.

The proof is in Section A.1.

As discussed in the introduction, the objective of this
paper is to estimate the derivative of the minimizer
Dyx*. In practice, however, direct computation of
D, x* is usually not possible and we have to content
ourselves with approximations. A successful strategy
is provided by automatic differentiation or AD, which
we briefly recap in the following subsection.

2.1 Recap of AD

AD is an algorithmic way of differentiating a function
given by a computer program at a given value of the in-
put variable. It comprises two modes, namely forward
and reverse mode, which we demonstrate in the con-
text of our problem. We refer the reader to (Griewank
and Walther, 2008) for a detailed account on AD and
to (Gilbert, 1992; Beck, 1994) for AD applied to an
iteration mapping.

Let w € U, we approximate x*(u) using the follow-
ing parametrized, continuously differentiable iteration
mapping g : RN x R — RYV:

2D = g(x® ), (IM)
where () € RN and k € N denotes the iteration
counter. We assume that the sequence (x®)(u))pen
generated by (IM) converges to *(u). We break the
algorithm after a fixed number of K € N iterations to
obtain () (u), the suboptimal solution. Assuming
() is independent of w, the map =) : U — RN
is differentiable. We compute its derivative using the
two modes of AD (forward and reverse mode) and use
standard dotted and barred variable notation for these
modes respectively. Also, following AD literature, if
the original variables lie in a space (e.g. RY), then
the dotted variables lie in the same space R whereas
the barred variables lie in the dual space L(RY,R) (of
linear mappings on RY).

The forward mode is straightforward. We start with
1 = s for some s € R” and perform the following
iterations for £k =0,..., K — 1:

&) = Dog(x®, u)2®) + Dyg(z®, w)u, (IM-F)
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to obtain the sequence (2()),cix where [K] :=
{0,..., K} with () = 0, because Dy, z(®) = 0. In for-
ward mode, the original iterates are computed along-
side the derivative iterates without any overhead of
memory.

The reverse mode, although a bit more complicated
than the forward mode, proves to be relatively compu-
tationally efficient when P is significantly larger than
N, for example, in deep learning where it is known
as back-propagation (Rumelhart et al., 1986). In this
mode, we start with ﬁgg) =0 and ) = ¢T for
some 7 € RV and perform the following iterations for
n=0,..., K -1

ﬁg?ﬂ) — ﬁg?) + :i(Kfn)Dug(m(Kfnfl)7u)

IM-R
FIn=D) (Km0 (K1) 4y ( )

to obtain the sequence (17,(1?))716[1(]. In reverse mode,
we perform the original iterations and store the finite
sequence (af:(k))ke[ K] before going to derivative compu-
tation. Therefore memorywise, it is less efficient than
forward mode. Notice that, we use a different index to
denote the derivative sequence in reverse mode because
we move in the opposite direction (backwards) to com-
pute the derivative. The derivative information for for-
ward and reverse mode is contained within the terms
25 = D,z s and aF) = ﬁ(lf) = rT Dy re-

spectively.

Gilbert (1992) showed that for all w € U, if the se-
quence (2 (u))pen lies in X' (u), the map Dy is Lips-
chitz on Z and the spectral radius p(Dgg(x*(u), u)) <
7 for some 7 € [0,1), then (z(®)),cy converges like
O(7%) to x*(u) and (£™)),cy converges like O(kT*)
to &*(u) = Dyx*(u)s.

Similar result holds for reverse mode because of the
equivalence of two modes. Thus, the convergence
of the derivative sequences is slightly slower as com-
pared to that of original sequences. Gilbert (for for-
ward mode) and later Christianson (1994) (for reverse
mode) suggested ways to get past this problem by per-
forming AD of 2(*) in an inexact manner. We briefly
discuss this approach in the following subsection.

2.2 Inexact AD

Consider again, the update rules for forward (IM-F)
and reverse (IM-R) mode AD of our iteration mapping
given by (IM). The idea is to replace the intermediate
iterates &*) (resp. £®~"=1)) on the right side by the
last iterate (%) for forward (resp. reverse) mode case
for all k € [K] (resp. n € [K]). Since this approach is
different from exact AD, we alter our notation slightly.

That is, we denote forward mode derivatives by hat-
ted variables and reverse mode derivatives by tilde’ed
variables for this approach. Therefore, the modified
update rule for forward mode is given by:

CE(I];H) = Dmg(zc(K),u).’fcg?) + Dyug(x"), u)a

(IM-FT)
and for reverse mode, by:

a?t = alP 4 25Dy g(a ) u) (MCRD)
QNS(K_H_l) — i(K_n)Da:g(-’B(K)’u)’ _
where we similarly set 4 := s and a?ﬁg) = 0 for for-
ward mode and &%) := 7 and ﬁ([g) = 0 for reverse

mode. These initializations are important and will be
retained when we move to gradient descent and the
Heavy-ball method in Sections 3 and 4. Note that, it is
possible to perform (IM-FI) and (IM-RI) for k,n > K,
even though we only performed a fixed K iterations of
(IM). This is in contrast with (IM-F) and (IM-R).

Gilbert (1992) argued that under his assump-
tions (Subsection 2.1, last paragraph), the sequence
(:&%))%N converges like O(7%) to p(x®) u)s. The
term (x%) u) — Dyz* like O(TX) as K —
oo (Corollary 4).  Similarly, Christianson (1994)
showed that under the same assumptions, the sequence
(ﬁ%))neN converges like O(7%) to rT (") u).
Remark 5. The reverse accumulation strategy of
Christianson (1994) is slightly different from (IM-RI)
but he also used the last iterate only in his technique.
With little effort it is possible to show that his results
also extend to (IM-RI).

The other advantage of using this approach is that we
do not have any overhead of memory in the reverse
mode so that K can be as large as desired for both
modes. Also, we require less computational power
for both modes because we only need to compute the
derivative Dg(x"), u) once. The above discussion
shows that, as compared to exact AD, the inexact ap-
proach provides better convergence rate and computa-
tional performance and is also memory efficient when
using reverse mode.

In Section 3, we apply these results on gradient de-
scent in the setting of (P). We show convergence of
the sequences generated by exact and inexact AD of
gradient descent for the objective functions that sat-
isfy the assumptions defined at the start of this section.
In Section 4, we show that the sequences computed
by exact and inexact AD of the Heavy-ball method
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also converge to the desired limits for these functions.
We infer from our results that, whenever the Heavy-
ball method accelerates the convergence of original se-
quence, the derivative sequences are also accelerated.
Finally, in Section 5, we show that these results hold
empirically as well.

3 AD of Gradient Descent

The update rule for gradient descent with constant
step size a > 0 applied to (P) is given by:

2R+ . (k) _ avwf(m(k), u), (GD)

which we recognize as the special case of (IM) with
g(x,u) = — aV,f(x,u). We define the map Rgp :
RY x R — RVXN as:

Rep(x,a) =1 - aVy f(z,u) 3)

and use it to summarize some properties of (GD) in the
following lemma. This map will be useful in proving
the results for AD of (GD) as well.

Lemma 6. For any u € U, if the sequence () pen
is generated by (GD), then under Assumptions A1 and
A2 and for a < 1/L(u), the sequence (f(x™), u)ren
is decreasing and converges to f(x*(u),u). Also,
the sequence (£™))en lies in X (u) and converges to
x*(u) and there exists kg > 0 and gap € [0,1), such
that, for all k > ko:

e(Fo)

)

] < aé

where e(F) .= k) _ g*

The proof is in Section A.2.

Remark 7. If f(-,u) is m(u)-strongly convex for all
u € U, then the choice of step size o = afp =
2/(L(u) + m(u)) gives the best convergence rate of
4op = G = (L(w)—m(w))/(L(w)+m(w)) for (GD)
(Polyak, 1987).

To perform AD on (GD), we similarly start with
(9 := @ and break the algorithm after K iterations.
Therefore, the update rule for forward mode AD reads
for k=0,..., K —1 as:

.’i)<k+1) = R(C?)Dm(k) - Oévmuf(m(k)a u)u (GD_F)

and for reverse mode as:

ﬁggﬂ) = ﬁg?) — oz:E(K*”)unf(:c(K*"*l), u)

af:(Kfnfl) — i(Kfn)R(G};—n—l)

7

(GD-R)

where we set Rg% = Rap(x™, o). The convergence

results for exact AD are shown in the following propo-
sition.

Proposition 8. For any u € U, if the sequence
(&) ren is generated by (GD-F), then under Assump-
tions A1 and A2 and for o < 1/L(u), it converges to
z*(u) = Dyx*(u)s and there exists kg > 0, C1 > 0
and qep € [0,1), such that, for all k > ko:

60 || 4 0y (k — ko)gli o [|e®o)

)

oo =

where €F) .= k) _ g*

The proof is in Section A.3.

Remark 9. e The convergence of the exact AD of
(GD) is like O(kgap(u)¥).

o If f(-,u) is m(u)-strongly convezx for all u € U,
then the optimal choice of step size gives the best
convergence rate of qap = q&p for (GD-F) (Re-
mark 7).

Similarly, we apply inexact AD on gradient descent to
obtain the update rule for forward mode as:

i(;“) = R(GKD):)E%) — Vo (@) w)a. (GD-FI)
and for reverse mode as:
~(n+1) . ~(n) _ F(E-n)y (K)
=1u ax zuf (@ u
K K . ft ) (GD-RI)
:i(Kfn 1) . i(Kfn)R(GD)

In the following proposition, we state convergence re-
sults for inexact AD of (GD) and show that it achieves
faster convergence as compared to exact AD. We drop
the argument (%), u) for the maps V2 f and Vg f
for simplicity.

Proposition 10. For any w € U, if the sequences
(:fc%))keN and (’&g?))neN are generated by (GD-FI) and
(GD-RI) respectively with sufficiently large K € N
such that x5 ¢ B.(w)(x*(u)), then under Assump-
tions A1 and A2 and for o < 1/L(u), these sequences
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converge to o(x®),u)s and rTo(x®) u) respectively
and there exists qap € [0,1) such that for all k,n € N,
we have:

Hii%) — (a0 u) H <dq&p

()II sl

and

H _ (n) (K

a) —ro(@,w)| < gt el

The proof is in Section A.4.

Remark 11. e The convergence of the inexact AD
of (GD) is like O(qgap(u)*) which is better than
that of exact AD (Remark 9).

o Again if f(-,u) is strongly convezx for any u €
U, then the optimal choice of step size gives best
convergence rate of qap = q&p for (GD-FI) and
(GD-RI).

e The error bound in the above proposition shows

that, with the estimate ) of the minimizer, the

sequences (m(K))keN and (@ (n ))nEN are quite simi-

lar and difference comes only due to different ini-
tializations of @ and ). This effect is visible
in Figure 1 (bottom row).

When using backtracking line search (Boyd and Van-
denberghe, 2004) for computing the step size «, its
dependence on x*) for every k € N makes (GD) non-
differentiable. But this does not affect the differentia-
bility of the minimizer «*(u). Following consequence
of Proposition 10 shows that the inexact approach is
still usable in this case.
Corollary 12. If %) € B.(y)(z*(u)) is generated
y (GD) wusing backtracking line search, then the se-

quences (ig’;))keN and (ﬁ(I?))neN computed with o set

to the step size evaluated at the last iteration of (GD)
converge to o(x®,u)s and rTo(x™® u) respectively.

The proof is in Section A.5.

4 AD of Heavy-ball Method

We now turn our attention to the Heavy-ball method

applied to (P) whose update rule for k =0,..., K —1,
is given by:
et = 2B _ oV, f(2® u) + g™ — 2V,
(HB)

with initialization &(~1 = 2(©) and constant step size
a > 0 and momentum parameter 5 € [0,1). We sim-
ilarly define the map Ryp : RN x R x R — RNXN
as:

Rpp(z,a,B8) = (1+ ) —aVLf(z,u). (4)

and state the following lemma to outline some proper-
ties of (HB).

Lemma 13. For anyu € U, if the sequence () en
is generated by (HB), then under Assumptions A1 and
A2 and for B € [0,1) and o < 2(1 4+ B)/L(u), the
sequence (f(x™), u)ren is decreasing and converges
to f(z*(u),u). Also, the sequence (x®))en lies in
X(u) and converges to x*(u). In particular for all
v > 0, there exists ¢ such that:

He(’“)H < c(qup +7)F ko,

for some qup € [0,1) and k > kg > 0.

The proof is in Section A.6.

Remark 14. If f(-,u) is m(u)-strongly convez for all

u € U, then the choices of o = afyp = 4/(v/L(u) +
m(u))? and B = Bip (¢ )? provides the

best convergence rate of qHB = ¢y = (VL(u) —

vm(w))/(/L(uw) + /m(w)) for (HB) which is better
than that of (GD) (Polyak, 1987).

We assign Rpp(z®,a,p) to R%)B and start with
(=1 = &0 to get the update rule for forward mode
AD for k=0,...,K —1 as:

&t = R — oV f(@®, wyi — pitD,
(HB-F)
For reverse mode AD we have forn =0,..., K — 1:

1—[4%-‘-1) — ag?) _ OéCE(K_n)Vmuf(w(K_n_l),’u)

j(K—n—l) — j(K—n)Rg(B*nfl) _ BE(K—n—"-l),

(HB-R)
where we set (51 := 0. We state similar results for
the convergence of AD of the Heavy-ball method.

Proposition 15. For any u € U, if the sequence
(")) ren is generated by (HB-F), then under As-
sumptions Al and A2 and for B € [0,1) and a <
2(1 4 B)/L(u), it converges to &* = Dyx*s. In par-
ticular, for all v > 0, there exist c1,co such that:

Hé(k)H <ecilqgup + 7)o+
Cirea(k — ko)(qup + )" ",
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for some qup € [0,1), C1 >0 and k > ko > 0.

The proof is in Section A.7.
Remark 16. Again, If f(-,u) is m(u)-strongly convex
for all w € U, the optimal choices of a and B provides

the best convergence rate of qup = ¢}y for (HB-F)
which is better than that of (GD-F) (Remark 9).

We give similar update rules for inexact AD of the
Heavy-ball method as well. For forward mode, we set
a?:ggl) = :ﬁﬁg) and update the new iterates for k =

0,..., K —1 as:

) = By - Vs,

(HB-FI)
— Bgk=1

and for reverse mode, we set (51 := 0 and perform
following iterations for n =0,..., K — 1:

ﬁ(lgﬂ) = ﬂ(lg) — a2 B, f(2) )

FE-n=1) _ i,(K—n)Rg(B) _ BaE—nt1) (HB-RI)
We show that inexact AD of (HB) also converges to
the desired limits.

Proposition 17. For any w € U, if the sequences
(ii%))keN and (ﬁ%))neN are generated by (HB-FI) and
(HB-RI) respectively with sufficiently large K € N such
that %) e Be(w)(z*(u)), then under Assumptions A1
and A2 and for B € [0,1) and a < 2(14+5)/L(u), these
sequences converge to p(x®) u)s and rTo(x® ) re-
spectively. In particular, for all v > 0, there ezist ¢
such that:

~ K
# — (@, ws| < elams + ) s sl
and
~(n n K
[ " ot@®.w)| < elams +) sl

for some qup € [0,1) and for every k,n € N.

The proof is in Section A.8.

Remark 18. Arguments made for inexact AD of
gradient descent in Remark 11 similarly extend to
(HB-FI) and (HB-RI).

Corollary 19. With the inexact scheme, it is possible
to compute the estimate %) using one algorithm and
compute the derivative iterates using the other.

The proof is in Section A.9.

5 Experiments

Given a feature matrix A € RM*N with rows
ai,...,ay € RY and target vector b € {0,1}M we
consider a regularized logistic regression problem with
objective function fy : RY x RY, — R defined as:

M L
fn(@,u) = Zlog(l +exp(—bi(ai, x))) + 5 Zule ;
j=1

i=1

for w = (uq,...,un) € RY,. Moreover, we define the
scalar variant fi(x,u) that assumes all parameters to
be identical u; = ... = uy, which we identify with a
single parameter v € R, ;.

It can be shown that for a given u (resp. u), f1(-,u)
(resp. fn(:,u)) is m-strongly convex with m = u
(resp. m = minj<yu;) and has L-Lipschitz gradi-
ent with L = [|A]|3 +u (resp. L = || A 4+ max <y u;).
We can also show that the derivative maps D (Vg f1)
and D(Vfn) are Lipschitz continuous with constant
C ~ O(||A||*). This shows that the assumptions stated
in Section 2 are satisfied for both functions.

We compute the derivative of the minimizers of f; and
fn with respect to their regularization parameters us-
ing the algorithms discussed in this paper. The goal is
to validate our theoretical results empirically and, in
particular, emphasize the practical advantage of using
accelerated algorithms and the inexact approach: The
original and the derivative sequence converge faster.

Since we do not have access to the analytical form
for the minimizer, we find a good estimate by first
applying gradient descent. Once we are very close to
the minimizer, we apply Newton’s method. Then (2)
is used to compute a good estimate for the derivative
of the minimizer. All the experiments are performed
on Banknote Authentication Dataset Dua and Graff
(2017) without any feature transformation and data
augmentation.

For fi, we set u = 2 and for fy we choose u; ~ U(0,5)
for all j € [N]. We run the original algorithms
(GD) and (HB) for K = 6000 iterations and evalu-
ate the exact derivative algorithms (GD-F), (GD-R),
(HB-F) and (HB-R) and the inexact derivative algo-
rithms (GD-FI), (GD-RI), (HB-FI) and (HB-RI). Ex-
cept for (GD-F) and (HB-F), which are run alongside
their original counterparts, the derivative algorithms
are executed after the termination of original algo-
rithms for K iterations.

For original iterations, we generate finite sequences
(z")ex) by starting with (® € RN, For for-
ward mode derivative iterations, we start with @ and
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Figure 1: Errors for original (upper row) and deriva-
tive (lower row) sequences computed for f; (left col-
umn) and fxn (right column) using optimal algorithm
parameters. The original and derivative sequences
converge similarly for GD and HB. Moreover, the well-
known advantage of acceleration of HB compared with
GD is also reflected in the derivative sequences.

u set to Iy and generate sequences (dr:(k))ke[K] and

(@) )keix] which lie in We might ask that
these variables were introduced as vectors in previ-
ous sections but it can be seen that, computationally,
this methodology makes sense and we expect the se-
quences to converge to the derivative of the minimizer.
Similarly for reverse mode iterations, we start with

25 and ) set to Iy and generate finite sequences

(ﬁ%))ne[}(] and (fl,g?))ne[K].

RNXN

The importance of optimal step size and momentum
selection is explored by two different choices: af,p
and o, /3 for gradient descent and (aj; 5, 85 5) and
(a4 5/3, Birg/3) for the Heavy-ball method (see Re-
marks 7 and 14). Since suboptimal algorithm param-
eters slow down the convergence process for original
iterations, we expect the same for derivative iterations.

In Figure 1, we plot the error norm against the number
of iterations for optimal algorithm parameters. In Ta-
ble 1, we also list the final accuracy of all the sequences
after K iterations, including the results for suboptimal
algorithm parameters.

The number of iterations required to get to the de-
sired accuracy for the derivative sequences depends on
the original sequence. For gradient descent, the origi-
nal sequence takes time to get to the desired accuracy
and so do the derivative sequences. For the Heavy-ball
method, convergence is much faster for both type of

Table 1: Accuracy of the algorithms after K = 6000
iterations computed for f; and fy using optimal (o)
and suboptimal (s) algorithm parameters.

Algo. filo) 1 fi(s) | fnv(o) | fn(s)

(GD) [ 9x107° | 0.06 | 3x107> | 0.04

(HB) | 4x107% | 0.01 | 3x 107! | 0.006
(GD-F) | 6x107* | 0.1 | 9x107° | 0.04
(GD-R) | 6x107* | 0.1 | 9x107° | 0.04

(HB-F) | 5x107% | 0.03 | 2x107% | 0.01

(HB-R) | 5x 1078 | 0.03 | 2x107° | 0.01
(GD-FI) | 1x107* | 0.06 | 2x107° | 0.02
(GD-RI) | 1x107* | 0.06 | 2x107° | 0.02
(HB-FI) | 5x 1079 | 0.01 | 2x 107! | 0.003
(HB-RI) | 5x107% | 0.01 | 2x 10719 | 0.003

sequences. Notice also the difference between the con-
vergence of the derivative sequences. When perform-
ing the automatic differentiation on the sequences in a
naive way, i.e., by using (GD-F), (GD-R), (HB-F) and
(HB-R), the resulting sequences (Figure 1, lower row)
reach their respective limit points relatively slower
than their original counterparts (Figure 1, upper row).
If we use the faster algorithms however, i.e. those given
by (GD-FI), (GD-RI), (HB-FI) and (HB-RI), to com-
pute the derivative sequences (Figure 1, lower row), we
find that the number of iterations taken by the original
and derivative sequences to get to the desired accuracy
is almost the same.

From the above experiments, we see that the behaviour
of the original sequences is imitated by that of the
derivative sequences. When we use the suboptimal
algorithm parameters, we see that original sequences
converge at a slower rate. This also leads to slower
convergence for the derivative sequences. We also see
that by replacing gradient descent with the Heavy-ball
method, both the original and derivative sequences are
provoked to converge with a better rate.

6 Conclusion

The derivative of the minimizer of a parametric ob-
jective function, under certain conditions, can be ob-
tained by differentiating the estimate of the mini-
mizer obtained through gradient descent or the Heavy-
ball method. The Heavy-ball method accelerates the
convergence of iterates for strongly convex functions.
This acceleration is also reflected in the derivative se-
quences. The derivative computation process can be
optimized in terms of time and memory by using the
final iterate only, which also results in faster conver-
gence.
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