Quentin Mérigot, Alex Delalande, Frédéric Chazal

SUPPLEMENTARY MATERIAL

Proof of Proposition 2.1

If we denote v := (T}, T),)#p, then v € II(,v). The change of variable formula gives

W2(u, )< / lly — /| 2dv(y.¥)
yxy
= [ IT(@) = To@)lp(@)de = T, = ol g,

The continuity of the map p — T}, follows from e.g. Exercise 2.17 in (Villani, 2003). To prove (iii), we use the
following lemma:

Lemma 5.1. Let p be uniform on the unit disc X C R?. Then, there is a curve 0 € [0,27] — pg € P(X) and
C >0 such that [Ty, — Tugll 2, = CWo(pg, 110)*/?.

Proof. Given 0 € R, we denote xy = (cos8,sin(f)) and py = %(519 + 0_gz,). Then, the optimal transport map
between p and g is given by

T,

Heo

@) = {xe if (z]zg) > 0

—xg if not.
One can easily check that for 6 one has Wa(ug, pg) < %. For 6 > 0 we set
Dy = {x € R? | (x|zo) > 0 and (z|zg) < 0}.

Then, on Dy, T}, = x_g and T}, = ¢, giving

2 2 2
s =Tyl > [ -0 = ol da = Dol - = ao]”
]

Moreover, if |§] < 7 one has [|z_g — 2ol > 2, thus giving 1Ty, — T#OHiQ(p) >2|Dy| > %. O

Proof of Theorem [2.2]

The proof of Theorem [2:2]is based on the following lemma.
Lemma 5.2. Under the assumptions of Theorem

I~ Tl < 26 [ (6 = )00 - »)

Proof. From convex analysis, the map T, = V¢,, is K-Lipschitz if and only if ¢, = ¢}, is %—strongly convex. We
denote A = [},4,d(p —v) and B = [},¢,d(v — p).

We use that (V¢,)gp = p (resp. (Voo )xp =v) and Vo, = Vi, (resp. V¢, = Vi;) by convexity of ¢, (resp.
¢,) to do the following change of variable:

A= / (6 (V2) — 0 (V5))dp.
X

We now use the inequality 1, (y) — 1, (z) > (y — z|v), which holds for all v in the subdifferential 94, (z). The
convex functions v, 1, are differentiable p-almost everywhere. Taking z = V5 (z) and y = Vi (z), and using
x € 01, (z), we obtain

A> [ 0.0 - Vui)a.
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Using the strong convexity of 1,,, we get a similar lower bound on B, with an extra quadratic term
B= [ (VD) ~ 6.(T0;))dp
x

> [ (60,905 = V) + 5V - VU1,

Summing up these inequalities we get:

1 * *
[ = vt =0) = [ 190 - vusliap

1
:ﬁHTu—TuHZw(p)- O

Proof of Theorem [2.2 Formula (3)) clearly shows that Lip(t,) < My, where Lip(f) denotes the Lipschitz constant
of f. Combining this with Lemma [5.2

T, = T2, < 2K /y (W — d)d( - v)

<2K max d(p—v
o Lip(f)<2Mx /y f (ﬂ )

=4K My max / d(p —v
XLip(f)gl yf (1 )
:4KMXW1<M7V)3

where we used Kantorovich-Rubinstein’s theorem to get the last equality. O

Proof of Corollary

We first state a simple lemma that links the uniform norm of a Lipschitz function to its L?(p) norm:
Lemma 5.3. If f is L-Lipschitz on X, then

11l < AR,
for some C depending on L, d and X only.

Proof. If || f||sc = 1, then there exists o € X such that for all x € B(z¢, 3+) N X we have |f(z)| > Z. This
implies that
Ba

d
2 > 2qy > n 2 _ d+2
Wlae = [ Pz 8 (5p) 07 = gl 127,

where (34 is the volume of the d-dimensional unit ball. O

Proof of Corollary[2.f} Theorem implies
ST
1V — Vil < /y (1 — )l — ).

and as in Theorem the quantity in the parenthesis can be upper bounded by 2MyWi(u,v). Adding a
constant to 9, if necessary, we can assume that fy Yu(y)dy = fy ¥, (y)dy. The Poincaré-Wirtinger inequality on
Y then implies

1
10 = YullFap) < CWalp, ),

for some C’ depending only on p, X and Y.

We reuse the fact that 1, — 1), is Lipschitz with a constant at most 2My to use Lemma

2
[y — Y lloo < C"Wr(p,v)2?Tat2),



Quentin Mérigot, Alex Delalande, Frédéric Chazal

Since ¢, = 1}, and ¢, = 97, the definition of the Legendre transform yields

2
||¢u — Pulloo < C"Wi(u, V)21 @t) |

We conclude using Proposition and the fact that ¢, is diam())-Lipschitz (as the Legendre transform of the
function ¢, on Y): there exists a constant C' depending only on p, X and ) such that

1
||TM — T,,||L2(p) < CW1 (,u, V) 2(d=1) (a+2) | O

Proof of Lemma [3.2]

For any N > 0, we consider a finite partition ) = ulSiSNyZ.N, we let ey = max; diam()J?) and we assume that
limy 4o eny = 0. Then, we define

1 1
o= X |(1-5) 0N+ 53] b
1<i<N

where ¥V € YN, Then, it is easy to check that the support of the measures p% and pk is the set i, ... ,y%}
Moreover,

[y = B llpy < et = 1|y -

In addition, Wi (i, uF) < ey 2= 0. Combined with the triangle inequality, we deduce

Wi (s i) = Wa(u®, ph)| = [Wa(ply, i) — WalpQe, 1h) + WilpQ, p') = Wa(u®, ph)|
< W, ) — Wa(pde, ph)] + W (R, 1) = W (u®, )|
< Wi(uy, ') + Wi(ud, 1%

< 2oy TS WA (U0, ).

Using the stability of optimal transport maps (Proposition , we finally deduce that

NEE_EOO ||Tu}v - TH?\;HL2(I)) = ||T#1 - Tu°||L2(p)'

Proof of Lemma [3.3]
Let 20 € V;(¢°) and 2! € V;(¢'). Then, for all j € {1,...,N},
{w(yj) >4 (yi) + {yy — wile°)

P (ys) = 0N (wi) + (v — vilat)

Taking the convex combination of these inequalities we get for all j € {1,..., N},
U (ys) = (i) + (yy — wil (1= 8)2° + tat).

This shows that (1 — t)z% + tz! € V;(¢¥*) (note that we use the convexity of X here). Thus,

(1= V(") + tVi(w") C Vi(w').
Taking the Lebesgue measure on both sides and applying Brunn-Minkowski’s inequality we get

G = p(Vi(')H? > p((1 — t)V;(°) + tVi(w')) /¢
> (1= )p(Vi(O) M+ tp(Vi(w')) 1/
> (1= )G (W) +1Gi (1) V4

Vi(y)"
Vi(y°
This inequality directly implies

Gi(¢") > min(G;(4°), Gi(4h)),
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fe.min(Gy (41), G; (1)) > min(Gi(1°), Ga(4"):
Using the following equivalent formulation of the TV distance between probability measures we get :

L6 ~ G, =1~ Y min(@:w), G:(w))
1= Y min(G (), i) = 3 G - GO

To prove @, we first remark that by ,
Gi(¢") = (1= 6)?Gi(¥"),
i.e.min(G;(¥"), Gi(¢°) > (1 — )G, (¢°).

We conclude using the same formula as above:

1 .

5 16 =GO, =1 min(Gi(¥"), Gs(v"))

<1-Y (1-t)'G%) =1-(1-t)"

Proof of Proposition (3.4

This proof is a straightforward adaptation of Lemma 3.7 in (Eymard et al.,|2000), but we include it for completeness.
We consider the function u on X' defined a.e. by uly, ) = vi. Then,

o = wla@iew) = [ ([ ) =1 [ - ) i

so it suffices to control the right hand side of this equality. Given (i, ) and (z,y) € X2, we denote

1 if Vi(y) n V() N[z, y] # 0 and (y; — yily —x) >0
0 if not.

Xij(z,y) = {

Then, u(y) —u(z) = 32, ,;(v(y;) — v(¥i))xi; (2, y). Denoting dij = lly; — will, cij.= = |(F7|2=yq) | and applying
Cauchy-Schwarz’s inequality we get
2
(u(y) — u(@)® = | Y _(0ly;) — v(i)xis (2, y)
i#£]
(v(y;) — v(¥:))?
<« 3 O VIR ) S dieg s (o)
i#j Wy i)

In addition, when x;;(z,y) = 1, we have (y — z|y; — y;) > 0 so that

dijCijy—a = llyj — vill

ly ==l lly; — will
and
Zdijcij,ymeij(xvy) = Z< ”z : :;H lyj — yi)xij(@,y) < diam(Y).
i#£] i)
Therefore,

[ (aty) — ute) sy < diam) [ @) —v@) o y)dady
XXX

wxx i dijCijy—a

= diam()) / > (0(ys) — v(:)* ( /X Xij (T, + z)dx) dz.

B(0.diam(X)) {7 dijCij,=
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Moreover, denoting m;; = HIH(Vi(y) N V;(¢)) we get

[ ot 2o <y 2] s
X

thus giving

/ (u(y) — u(x))?*dzdy < C(d) diam(Y) diam (X)) Z m” —v(y))%
XXX i£]

Define Hij = %:], H“ = 72]»7% H” Then, DG(d)) = H, and

P)vlv) = Z H;jvv;
= Z H;vv; + Z H;jvv4

J#i
= Z Z Hijvi('vj — ’Ui)
e
= ZHij'Ui('Uj — ’Ui) = A.
J#i

And

> Hij(v(yy) —o(w:)? = > Hiyvj(v; —vi) = > Hijoi(v; — v;) = —24.

i#] i#j i#]
We finally obtain
/ / (u(y) — u())2dady < —Cax.y(DC()ulv).



