SUPPLEMENTARY MATERIAL

Proof of Proposition 2.1

If we denote $\gamma := (T_{\mu}, T_{\nu})_{\#} \rho$, then $\gamma \in \Pi(\mu, \nu)$. The change of variable formula gives

$$W_2^2(\mu,\nu) \le \int_{\mathcal{Y}\times\mathcal{Y}} ||y-y'||_2^2 d\gamma(y,y')$$

= $\int_{\mathcal{X}} ||T_\mu(x) - T_\nu(x)||_2^2 \rho(x) dx = ||T_\mu - T_\nu||_{L^2(\rho)}^2.$

The continuity of the map $\mu \mapsto T_{\mu}$ follows from e.g. Exercise 2.17 in (Villani, 2003). To prove (iii), we use the following lemma:

Lemma 5.1. Let ρ be uniform on the unit disc $\mathcal{X} \subseteq \mathbb{R}^2$. Then, there is a curve $\theta \in [0, 2\pi] \to \mu_{\theta} \in \mathcal{P}(\mathcal{X})$ and C > 0 such that $||T_{\mu_{\theta}} - T_{\mu_{0}}||_{L^{2}(\rho)} \ge CW_{2}(\mu_{\theta}, \mu_{0})^{1/2}$.

Proof. Given $\theta \in \mathbb{R}$, we denote $x_{\theta} = (\cos \theta, \sin(\theta))$ and $\mu_{\theta} = \frac{1}{2}(\delta_{x_{\theta}} + \delta_{-x_{\theta}})$. Then, the optimal transport map between ρ and μ_{θ} is given by

$$T_{\mu_{\theta}}(x) = \begin{cases} x_{\theta} & \text{if } \langle x | x_{\theta} \rangle \ge 0 \\ -x_{\theta} & \text{if not.} \end{cases}$$

One can easily check that for θ one has $W_2(\mu_0, \mu_\theta) \leq \frac{|\theta|}{\sqrt{\pi}}$. For $\theta > 0$ we set

$$D_{\theta} = \{x \in \mathbb{R}^2 \mid \langle x | x_0 \rangle \ge 0 \text{ and } \langle x | x_{\theta} \rangle \le 0\}.$$

Then, on D_{θ} , $T_{\mu_{\theta}} \equiv x_{-\theta}$ and $T_{\mu_0} \equiv x_0$, giving

$$||T_{\mu_{\theta}} - T_{\mu_{0}}||_{L^{2}(\rho)}^{2} \ge \int_{D_{\theta}} ||x_{-\theta} - x_{0}||^{2} dx = |D_{\theta}| ||x_{-\theta} - x_{0}||^{2}.$$

Moreover, if $|\theta| \leq \frac{\pi}{2}$ one has $||x_{-\theta} - x_0||^2 \geq 2$, thus giving $||T_{\mu_\theta} - T_{\mu_0}||^2_{L^2(\rho)} \geq 2|D_\theta| \geq \frac{|\theta|}{\pi}$.

Proof of Theorem 2.2

The proof of Theorem 2.2 is based on the following lemma.

Lemma 5.2. Under the assumptions of Theorem 2.2,

$$||T_{\mu} - T_{\nu}||_{L^{2}(\rho)}^{2} \le 2K \int_{\mathcal{Y}} (\psi_{\nu} - \psi_{\mu}) d(\mu - \nu).$$

Proof. From convex analysis, the map $T_{\mu} = \nabla \phi_{\mu}$ is K-Lipschitz if and only if $\psi_{\mu} = \phi_{\mu}^*$ is $\frac{1}{K}$ -strongly convex. We denote $A = \int_{\mathcal{V}} \psi_{\nu} d(\mu - \nu)$ and $B = \int_{\mathcal{V}} \psi_{\mu} d(\nu - \mu)$.

We use that $(\nabla \phi_{\mu})_{\#}\rho = \mu$ (resp. $(\nabla \phi_{\nu})_{\#}\rho = \nu$) and $\nabla \phi_{\mu} = \nabla \psi_{\mu}^{*}$ (resp. $\nabla \phi_{\nu} = \nabla \psi_{\nu}^{*}$) by convexity of ϕ_{μ} (resp. ϕ_{ν}) to do the following change of variable:

$$A = \int_{\mathcal{X}} (\psi_{\nu}(\nabla \psi_{\mu}^*) - \psi_{\nu}(\nabla \psi_{\nu}^*)) d\rho.$$

We now use the inequality $\psi_{\nu}(y) - \psi_{\nu}(z) \geq \langle y - z | v \rangle$, which holds for all v in the subdifferential $\partial \psi_{\nu}(z)$. The convex functions ψ_{ν}, ψ_{μ} are differentiable ρ -almost everywhere. Taking $z = \nabla \psi_{\nu}^{*}(x)$ and $y = \nabla \psi_{\mu}^{*}(x)$, and using $x \in \partial \psi_{\nu}(z)$, we obtain

$$A \geq \int_{\mathcal{X}} \langle \mathrm{id}, \nabla \psi_{\mu}^* - \nabla \psi_{\nu}^* \rangle \mathrm{d}\rho.$$

Using the strong convexity of ψ_{μ} , we get a similar lower bound on B, with an extra quadratic term

$$B = \int_{\mathcal{X}} (\psi_{\mu}(\nabla \psi_{\nu}^{*}) - \psi_{\mu}(\nabla \psi_{\mu}^{*})) d\rho$$

$$\geq \int_{\mathcal{X}} (\langle id, \nabla \psi_{\nu}^{*} - \nabla \psi_{\mu}^{*} \rangle + \frac{1}{2K} ||\nabla \psi_{\nu}^{*} - \nabla \psi_{\mu}^{*}||_{2}^{2}) d\rho.$$

Summing up these inequalities we get:

$$\int_{\mathcal{Y}} (\psi_{\nu} - \psi_{\mu}) d(\mu - \nu) \ge \frac{1}{2K} \int_{\mathcal{X}} ||\nabla \psi_{\nu}^* - \nabla \psi_{\mu}^*||_{2}^{2} d\rho$$

$$= \frac{1}{2K} ||T_{\nu} - T_{\mu}||_{L^{2}(\rho)}^{2}.$$

Proof of Theorem 2.2. Formula (3) clearly shows that $\operatorname{Lip}(\psi_{\mu}) \leq M_{\mathcal{X}}$, where $\operatorname{Lip}(f)$ denotes the Lipschitz constant of f. Combining this with Lemma 5.2,

$$||T_{\mu} - T_{\nu}||_{L^{2}(\rho)}^{2} \leq 2K \int_{\mathcal{Y}} (\psi_{\nu} - \psi_{\mu}) d(\mu - \nu)$$

$$\leq 2K \max_{\text{Lip}(f) \leq 2M_{\mathcal{X}}} \int_{\mathcal{Y}} f d(\mu - \nu)$$

$$= 4KM_{\mathcal{X}} \max_{\text{Lip}(f) \leq 1} \int_{\mathcal{Y}} f d(\mu - \nu)$$

$$= 4KM_{\mathcal{X}} W_{1}(\mu, \nu),$$

where we used Kantorovich-Rubinstein's theorem to get the last equality.

Proof of Corollary 2.4

We first state a simple lemma that links the uniform norm of a Lipschitz function to its $L^2(\rho)$ norm:

Lemma 5.3. If f is L-Lipschitz on \mathcal{X} , then

$$||f||_{\infty} \le C||f||_{L^2(\mathcal{X})}^{\frac{2}{d+2}},$$

for some C depending on L, d and \mathcal{X} only.

Proof. If $||f||_{\infty} = \eta$, then there exists $x_0 \in \mathcal{X}$ such that for all $x \in B(x_0, \frac{\eta}{2L}) \cap \mathcal{X}$ we have $|f(x)| \geq \frac{\eta}{2}$. This implies that

$$||f||_{L^{2}(\mathcal{X})}^{2} \ge \int_{B(x_{0}, \frac{\eta}{2t}) \cap \mathcal{X}} f(x)^{2} dy \ge \beta_{d} \left(\frac{\eta}{2L}\right)^{d} \eta^{2} = \frac{\beta_{d}}{(2L)^{d}} ||f||_{\infty}^{d+2},$$

where β_d is the volume of the d-dimensional unit ball.

Proof of Corollary 2.4. Theorem 2.3 implies

$$||\nabla \psi_{\mu} - \nabla \psi_{\nu}||_{L^{2}(\mathcal{Y})}^{2} \leq C \left(\int_{\mathcal{Y}} (\psi_{\nu} - \psi_{\mu}) \mathrm{d}(\mu - \nu) \right)^{\frac{1}{2^{d-1}}},$$

and as in Theorem 2.2, the quantity in the parenthesis can be upper bounded by $2M_{\mathcal{X}}W_1(\mu,\nu)$. Adding a constant to ψ_{μ} if necessary, we can assume that $\int_{\mathcal{Y}} \psi_{\mu}(y) dy = \int_{\mathcal{Y}} \psi_{\nu}(y) dy$. The Poincaré-Wirtinger inequality on \mathcal{Y} then implies

$$||\psi_{\mu} - \psi_{\nu}||_{L^{2}(\mathcal{Y})}^{2} \le C' W_{1}(\mu, \nu)^{\frac{1}{2^{d-1}}},$$

for some C' depending only on ρ , \mathcal{X} and \mathcal{Y} .

We reuse the fact that $\psi_{\mu} - \psi_{\nu}$ is Lipschitz with a constant at most $2M_{\mathcal{X}}$ to use Lemma 5.3:

$$||\psi_{\mu} - \psi_{\nu}||_{\infty} \le C'' W_1(\mu, \nu)^{\frac{2}{2^{d-1}(d+2)}}.$$

Since $\phi_{\mu} = \psi_{\mu}^{*}$ and $\phi_{\nu} = \psi_{\nu}^{*}$, the definition of the Legendre transform yields

$$||\phi_{\mu} - \phi_{\nu}||_{\infty} \le C'' W_1(\mu, \nu)^{\frac{2}{2^{d-1}(d+2)}}.$$

We conclude using Proposition 3.6 and the fact that ϕ_{μ} is diam(\mathcal{Y})-Lipschitz (as the Legendre transform of the function ψ_{μ} on \mathcal{Y}): there exists a constant C depending only on ρ , \mathcal{X} and \mathcal{Y} such that

$$||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \le CW_{1}(\mu, \nu)^{\frac{1}{2(d-1)(d+2)}}.$$

Proof of Lemma 3.2

For any N > 0, we consider a finite partition $\mathcal{Y} = \bigsqcup_{1 \leq i \leq N} \mathcal{Y}_i^N$, we let $\varepsilon_N = \max_i \operatorname{diam}(\mathcal{Y}_i^N)$ and we assume that $\lim_{N \to +\infty} \varepsilon_N = 0$. Then, we define

$$\mu_N^k = \sum_{1 \leq i \leq N} \left[\left(1 - \frac{1}{N} \right) \mu^k(\mathcal{Y}_i^N) + \frac{1}{N^2} \right] \delta_{y_i^N},$$

where $y_i^N \in \mathcal{Y}_i^N$. Then, it is easy to check that the support of the measures μ_N^0 and μ_N^1 is the set $\{y_1^N, \dots, y_N^N\}$. Moreover,

$$\|\mu_N^1 - \mu_N^0\|_{\text{TV}} \le \|\mu^1 - \mu^0\|_{\text{TV}}.$$

In addition, $W_1(\mu_N^k, \mu^k) \leq \varepsilon_N \xrightarrow{N \to +\infty} 0$. Combined with the triangle inequality, we deduce

$$\begin{split} |W_1(\mu_N^0,\mu_N^1) - W_1(\mu^0,\mu^1)| &= |W_1(\mu_N^0,\mu_N^1) - W_1(\mu_N^0,\mu^1) + W_1(\mu_N^0,\mu^1) - W_1(\mu^0,\mu^1)| \\ &\leq |W_1(\mu_N^0,\mu_N^1) - W_1(\mu_N^0,\mu^1)| + |W_1(\mu_N^0,\mu^1) - W_1(\mu^0,\mu^1)| \\ &\leq W_1(\mu_N^1,\mu^1) + W_1(\mu_N^0,\mu^0) \\ &\leq 2\varepsilon_N \xrightarrow{N \to +\infty} W_1(\mu^0,\mu^1). \end{split}$$

Using the stability of optimal transport maps (Proposition 2.1), we finally deduce that

$$\lim_{N \to +\infty} ||T_{\mu_N^1} - T_{\mu_N^0}||_{L^2(\rho)} = ||T_{\mu^1} - T_{\mu^0}||_{L^2(\rho)}.$$

Proof of Lemma 3.3

Let $x^0 \in V_i(\psi^0)$ and $x^1 \in V_i(\psi^1)$. Then, for all $j \in \{1, \dots, N\}$,

$$\begin{cases} \psi^0(y_j) \ge \psi^0(y_i) + \langle y_j - y_i | x^0 \rangle \\ \psi^1(y_j) \ge \psi^1(y_i) + \langle y_j - y_i | x^1 \rangle \end{cases}.$$

Taking the convex combination of these inequalities we get for all $j \in \{1, ..., N\}$.

$$\psi^t(y_j) \ge \psi^t(y_i) + \langle y_j - y_i | (1-t)x^0 + tx^1 \rangle.$$

This shows that $(1-t)x^0 + tx^1 \in V_i(\psi^t)$ (note that we use the convexity of \mathcal{X} here). Thus,

$$(1-t)V_i(\psi^0) + tV_i(\psi^1) \subseteq V_i(\psi^t).$$

Taking the Lebesgue measure on both sides and applying Brunn-Minkowski's inequality we get

$$G_i(\psi^t)^{1/d} = \rho(V_i(\psi^t))^{1/d} \ge \rho((1-t)V_i(\psi^0) + tV_i(\psi^1))^{1/d}$$

$$\ge (1-t)\rho(V_i(\psi^0))^{1/d} + t\rho(V_i(\psi^1))^{1/d}$$

$$\ge (1-t)G_i(\psi^0)^{1/d} + tG_i(\psi^1)^{1/d}.$$

This inequality directly implies

$$G_i(\psi^t) \ge \min(G_i(\psi^0), G_i(\psi^1)),$$

i.e.
$$\min(G_i(\psi^t), G_i(\psi^0)) \ge \min(G_i(\psi^0), G_i(\psi^1)).$$

Using the following equivalent formulation of the TV distance between probability measures we get (8):

$$\frac{1}{2} \|G(\psi^t) - G(\psi^0)\|_1 = 1 - \sum_i \min(G_i(\psi^t), G_i(\psi^0))$$

$$\leq 1 - \sum_i \min(G_i(\psi^0), G_i(\psi^1)) = \frac{1}{2} \|G(\psi^t) - G(\psi^0)\|_1.$$

To prove (9), we first remark that by (7),

$$G_i(\psi^t) \ge (1-t)^d G_i(\psi^0),$$

i.e. $\min(G_i(\psi^t), G_i(\psi^0)) \ge (1-t)^d G_i(\psi^0).$

We conclude using the same formula as above:

$$\frac{1}{2} \|G(\psi^t) - G(\psi^0)\|_1 = 1 - \sum_i \min(G_i(\psi^t), G_i(\psi^0))$$

$$\leq 1 - \sum_i (1 - t)^d G_i(\psi^0) = 1 - (1 - t)^d.$$

Proof of Proposition 3.4

This proof is a straightforward adaptation of Lemma 3.7 in (Eymard et al., 2000), but we include it for completeness. We consider the function u on \mathcal{X} defined a.e. by $u|_{V_i(\psi)} = v_i$. Then,

$$\langle v^2 - \langle v | G(\psi) \rangle^2 | G(\psi) \rangle = \int_{\mathcal{X}} u^2 - \left(\int_{\mathcal{X}} u \right)^2 = \frac{1}{2} \int_{\mathcal{X} \times \mathcal{X}} (u(x) - u(y))^2 dy dx,$$

so it suffices to control the right hand side of this equality. Given (i,j) and $(x,y) \in \mathcal{X}^2$, we denote

$$\chi_{ij}(x,y) = \begin{cases} 1 & \text{if } V_i(\psi) \cap V_j(\psi) \cap [x,y] \neq \emptyset \text{ and } \langle y_j - y_i | y - x \rangle \ge 0 \\ 0 & \text{if not.} \end{cases}$$

Then, $u(y) - u(x) = \sum_{i \neq j} (v(y_j) - v(y_i)) \chi_{ij}(x, y)$. Denoting $d_{ij} = ||y_j - y_i||$, $c_{ij,z} = \left| \left\langle \frac{z}{||z||} \left| \frac{y_j - y_i}{||y_j - y_i||} \right\rangle \right|$ and applying Cauchy-Schwarz's inequality we get

$$(u(y) - u(x))^{2} = \left(\sum_{i \neq j} (v(y_{j}) - v(y_{i}))\chi_{ij}(x, y)\right)^{2}$$

$$\leq \sum_{i \neq j} \frac{(v(y_{j}) - v(y_{i}))^{2}}{d_{ij}c_{ij,y-x}}\chi_{ij}(x, y)\sum_{i \neq j} d_{ij}c_{ij,y-x}\chi_{ij}(x, y).$$

In addition, when $\chi_{ij}(x,y) = 1$, we have $\langle y - x | y_j - y_i \rangle \ge 0$ so that

$$d_{ij}c_{ij,y-x} = ||y_j - y_i|| \left\langle \frac{y - x}{||y - x||} | \frac{y_j - y_i}{||y_j - y_i||} \right\rangle \ge 0,$$

and

$$\sum_{i \neq j} d_{ij} c_{ij,y-x} \chi_{ij}(x,y) = \sum_{i \neq j} \langle \frac{y-x}{\|y-x\|} | y_j - y_i \rangle \chi_{ij}(x,y) \le \operatorname{diam}(\mathcal{Y}).$$

Therefore,

$$\begin{split} \int_{\mathcal{X} \times \mathcal{X}} (u(y) - u(x))^2 \mathrm{d}x \mathrm{d}y &\leq \mathrm{diam}(\mathcal{Y}) \int_{\mathcal{X} \times \mathcal{X}} \sum_{i \neq j} \frac{(v(y_j) - v(y_i))^2}{d_{ij} c_{ij,y-x}} \chi_{ij}(x, y) \mathrm{d}x \mathrm{d}y \\ &= \mathrm{diam}(\mathcal{Y}) \int_{B(0, \mathrm{diam}(\mathcal{X}))} \sum_{i \neq j} \frac{(v(y_j) - v(y_i))^2}{d_{ij} c_{ij,z}} \left(\int_{\mathcal{X}} \chi_{ij}(x, x + z) \mathrm{d}x \right) \mathrm{d}z. \end{split}$$

Moreover, denoting $m_{ij} = \mathcal{H}^{d-1}(V_i(\psi) \cap V_j(\psi))$ we get

$$\int_{\mathcal{X}} \chi_{ij}(x, x+z) \mathrm{d}x \le m_{ij} \|z\| c_{ij,z},$$

thus giving

$$\int_{\mathcal{X}\times\mathcal{X}} (u(y) - u(x))^2 dx dy \le C(d) \operatorname{diam}(\mathcal{Y}) \operatorname{diam}(\mathcal{X})^{d+1} \sum_{i \ne j} \frac{m_{ij}}{d_{ij}} (v(y_j) - v(y_i))^2.$$

Define $H_{ij} = \frac{m_{ij}}{d_{ij}}$, $H_{ii} = -\sum_{j \neq i} H_{ij}$. Then, $\mathrm{D}G(\psi) = H$, and

$$\langle \mathrm{D}G(\psi)v|v\rangle = \sum_{i,j} H_{ij}v_iv_j$$

$$= \sum_i \left(H_{ii}v_iv_i + \sum_{j\neq i} H_{ij}v_iv_j \right)$$

$$= \sum_i \sum_{j\neq i} H_{ij}v_i(v_j - v_i)$$

$$= \sum_{j\neq i} H_{ij}v_i(v_j - v_i) := A.$$

And

$$\sum_{i \neq j} H_{ij}(v(y_j) - v(y_i))^2 = \sum_{i \neq j} H_{ij}v_j(v_j - v_i) - \sum_{i \neq j} H_{ij}v_i(v_j - v_i) = -2A.$$

We finally obtain

$$\iint (u(y) - u(x))^2 dxdy \le -C_{d,\mathcal{X},\mathcal{Y}} \langle DG(\psi)v|v \rangle.$$