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Abstract

This work studies an explicit embedding of
the set of probability measures into a Hilbert
space, defined using optimal transport maps
from a reference probability density. This
embedding linearizes to some extent the 2-
Wasserstein space and is shown to be bi-
Hölder continuous. It enables the direct use of
generic supervised and unsupervised learning
algorithms on measure data consistently w.r.t.
the Wasserstein geometry.

1 INTRODUCTION

Numerous problems involve the comparison of point
clouds, i.e. sets of points that lie in a metric space and
for which the spatial distribution is of interest. Seeing
the point clouds as discrete probability measures in
a metric space, it is natural to compare them with
Wasserstein distances defined by the optimal transport
theory (Villani, 2003). These distances have indeed
been successfully used in a variety of applications in
machine learning (Canas & Rosasco, 2012; Arjovsky
et al., 2017; Gordaliza et al., 2019; Genevay et al.,
2018; Flamary et al., 2018; Alaux et al., 2018) and
in statistics (Weed & Berthet, 2019; Cazelles, Seguy,
Bigot, Cuturi, & Papadakis, 2017; Bigot, Cazelles, &
Papadakis, 2019; Ramdas, Garcia, & Cuturi, 2015).
In the discrete setting, many efficient algorithms have
been proposed to compute or approximate the Wasser-
stein distances, such as Sinkhorn-Knopp’s algorithm
– see (Peyré & Cuturi, 2019) and references therein.
However efficient these algorithms are, they still repre-
sent high computational costs when dealing with large
databases of point clouds and they do not allow for
the direct use of machine learning algorithms based on
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the Wasserstein geometry. In this work, we leverage
the semi-discrete formulation of OT to build explicit
embeddings of point clouds in Rd (seen as probability
measures) into a Hilbert space. This linear embedding
allows one to directly apply supervised and unsuper-
vised learning methods on point clouds datasets consis-
tently with the Wasserstein geometry, thus alleviating
the non-Hilbertian nature of Wasserstein spaces in di-
mensions greater than 2 (see Section 8.3 in (Peyré &
Cuturi, 2019)).

1.1 Optimal Transport and Monge Maps

Let X , Y be two compact and convex subsets of Rd. Let
ρ be a probability density on X and µ be a probability
measure on Y . We consider the squared Euclidean cost
c(x, y) := ||x− y||22 for all x, y ∈ Rd. Monge’s optimal
transport problem consists in minimizing the transport
cost over all transport maps between ρ and µ, that is

min
T

{∫
X
c(x, T (x))ρ(x)d(x) | T : X → Y, T#ρ = µ

}
, (1)

where T#ρ is the pushforward measure, defined by

∀B ⊆ Y, T#ρ(B) = ρ(T−1(B)).

By the work of Brenier (Brenier, 1991), this problem
admits a solution that is uniquely defined as the gra-
dient T = ∇φ of a convex function φ on X referred to
in what follows as a Brenier potential. Here, we will
refer to the map T as the Monge map. In this work,
the source probability density ρ ∈ P(X ) is fixed once
for all.

Definition 1.1 (Monge embedding). Given any prob-
ability measure µ on Y, we denote Tµ the solution of
the optimal transport problem (1) between ρ and µ.
We call Monge embedding the mapping

P(Y)→ L2(ρ,Rd)
µ 7→ Tµ,

(2)

where P(Y) is the set of probability measures over Y.

An attractive feature of the Monge embedding is that
the map Tµ can be efficiently computed when µ is
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finitely supported on R2 or R3 (Kitagawa, Mérigot,
& Thibert, 2019). In higher dimension, it can also
be estimated using stochastic optimization methods
(Genevay, Cuturi, Peyré, & Bach, 2016). One could
also approximate the source measure with a discrete
measure and resort to map estimation methods for
discrete OT (Perrot et al., 2016; Flamary et al., 2019;
Paty et al., 2019).

Notations. Given a measure µ, we denote Tµ the
Monge map, φµ a (convex) Brenier potential so that
Tµ = ∇φµ, and ψµ on Y the Legendre transform of φµ:

ψµ(y) = max
x∈X
〈x|y〉 − φµ(x). (3)

Remark 1.1 (Uniqueness and Estimates). The two po-
tentials (φµ, ψµ) are closely related to the Kantorovich
potentials associated to the optimal transport problem
(1). In our setting, where the support of ρ is the whole
domain , these potentials are unique up to addition of
a constant (Santambrogio, 2015, Proposition 7.18) that
we fix by enforcing

∫
ψµdµ = 0.

1.2 Contributions

Our main interest in this work is the regularity proper-
ties of the Monge embedding (2), or equivalently the
stability of the optimal transport maps in terms of
the target measure. Our main theorem shows that the
Monge map is a bi-Hölder embedding of P(Y) endowed
with the Wasserstein distance Wp (defined in equation
(5)) into the Hilbert space L2(ρ,Rd). More importantly,
we show that the Hölder exponent does not depend on
the ambient dimension d.

Theorem (Theorem 3.1). Let ρ be the Lebesgue mea-
sure on a compact convex subset X of Rd with unit
volume, and let Y be a compact convex set. Then, for
all µ, ν ∈ P(Y), and all p ≥ 1,

W2(µ, ν) ≤ ||Tµ − Tν ||L2(ρ) ≤ CWp(µ, ν)
2
15 ,

where the constant C depends on d, X and Y.

The upper bound of this theorem should be compared
to Theorem 2.2 (similar to a result of Ambrosio reported
in (Gigli, 2011)), which shows a 1

2 -Hölder behaviour
under a very strong regularity assumption on Tµ, and to
Corollary 2.4 (from Berman, see(Berman, 2018)), which
holds without assumption on µ, ν, but whose exponent
scales exponentially badly with the dimension d. We
conclude the article by illustrations of the behavior of
this embedding, and we showcase a few applications.

Remark 1.2. Similarly to (Wang et al., 2013, Eq. (3))
or (Ambrosio, Gigli, & Savaré, 2008, §10.2), one can
define a distance by the formula

W2,ρ(µ, ν) := ||Tµ − Tν ||L2(ρ),

and our main results reads as a bi-Hölder equivalence
between this distance and the 2-Wasserstein distance:

W2(µ, ν) ≤W2,ρ(µ, ν) ≤ CW2(µ, ν)
2
15 . (4)

1.3 Related Work in Statistics and Learning

The same construction (2) was introduced in (Wang
et al., 2013) in the context of pattern recognition in
images, where the problem of computing a distance
matrix based on transportation metrics over a possi-
bly large dataset of images is tackled. The approach
proposed in (Wang et al., 2013) computes a reference
image as a mean image (for the 2-Wasserstein distance)
of the whole dataset and then computes the OT maps
between this reference image ρ and each image µi of
the training set. Distances between images are then
defined based on Euclidean distances between these
maps.

The geometric idea comes from a Riemannian inter-
pretation of the Wasserstein geometry (Otto, 2001;
Ambrosio et al., 2008). In this interpretation, the tan-
gent space to P(Rd) at ρ is included in L2(ρ,Rd). The
optimal transport map Tµi between ρ and µi can then
be regarded as the vector in the tangent space at ρ
which supports the Wasserstein geodesic from ρ to µi.
Thus Monge’s embedding sends any probability mea-
sure µi in the (curved) manifold P(Rd) to a vector Tµi
belonging to the linear space L2(ρ,Rd), which retains
some of the geometry of the space. In the Riemannian
language again, the map µ 7→ Tµ would be called a
logarithm, i.e. the inverse of the Riemannian exponen-
tial map. This establishes a connection between this
idea and similar strategies used to extend statistical
inference notions (such as PCA) on manifold-valued
data, e.g. (Fletcher et al., 2004; Cazelles et al., 2017).

The work in (Chernozhukov et al., 2017) also proposes
to use OT maps in a statistical context to overcome
the lack of a canonical ordering in Rd for d > 1. No-
tions of vector-quantile, vector-ranks and depth are
defined based on the transport maps (and there in-
verses) between a reference measure defined as the
uniform distribution on the unit hyperball and the
d-dimensional samples of interest.

Monge maps are also studied in (Hütter & Rigollet,
2019) where an estimator for such maps between pop-
ulation distributions is proposed when only samples
from the distributions of interest are available. Mini-
max estimation rates for (very) smooth transport maps
in general dimension are given and the proposed esti-
mator is shown to achieve near minimax optimality.
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2 KNOWN PROPERTIES OF THE
MONGE EMBEDDING

From now on, we fix two compact convex subsets X ,Y
of Rd, and we fix once and for all a probability density
ρ on X . We also denote MX ≥ 0 the smallest positive
real such that X ⊂ B(0,MX )

A first obvious property of the embedding µ 7→ Tµ
is its injectivity: if µ and ν are measures on Y such
that Tµ = Tν , then (Tµ)#ρ = µ = (Tν)#ρ = ν. This
injectivity ensures that the Monge embedding preserves
the discriminative information about the measures it
embeds. A stronger formulation of this injectivity
property can be made using the Wasserstein distance.

Definition 2.1 (Wasserstein distance). The Wasser-
stein distance of exponent p between µ, ν ∈ P(Y) is
defined by

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
Y×Y

||y − y′||dγ(y, y′), (5)

where Π(µ, ν) = {γ ∈M(Y×Y) | ∀A ⊂ Y, γ(A×Y) =
µ(A), γ(Y ×A) = ν(A)}.
Remark 2.1. Jensen’s inequality gives W1 ≤ Wp,
showing that W1 is the weakest Wasserstein distance.

Proposition 2.1. The following properties hold:

(i) The Monge embedding is reverse-Lipschitz:

∀µ, ν ∈ P(Y ), W2(µ, ν) ≤ ||Tµ − Tν ||L2(ρ).

(ii) The Monge embedding is continuous.
(iii) The Monge embedding is in general not better than

1
2 -Hölder.

The proof of this proposition is given in the supple-
mentary material. Note that the general continuity
result (ii) is not quantitative. Our goal in the next two
sections is to study the Hölder continuity of the Monge
map embedding with respect to the 1-Wasserstein dis-
tance (which is the weakest Wasserstein distance) and
to the total variation distance between measures.

2.1 Hölder-continuity Near a Regular
Measure

We state a first result, which is a slight variant of a
known stability result due to Ambrosio and reported
in (Gigli, 2011). While (Gigli, 2011) shows a local 1/2-
Hölder behaviour for regular enough source and target
measures along a curve in the 2-Wasserstein space, we
show the same Hölder behaviour near a probability mea-
sure µ whose Monge map Tµ is Lipschitz continuous,
but with respect to the 1-Wasserstein distance.

Theorem 2.2. Let µ, ν be two probability measures
over Y and assume that Tµ is K-Lipschitz. Then,

||Tµ − Tν ||L2(ρ) ≤ 2
√
MXKW1(µ, ν)1/2.

The proof of this theorem follows from simple
arguments from convex analysis and Kantorovich-
Rubinstein’s duality theorem and is given in the sup-
plementary material.

2.2 Dimension-dependent Hölder Continuity

Here we assume that ρ ≡ 1 on a compact convex
set X with unit volume. With no assumption on the
embedded measures µ and ν, another Hölder-continuity
result for Monge’s embedding can be derived from the
following theorem of Berman (Berman, 2018).

Theorem 2.3 ((Berman, 2018) Proposition 3.4). For
any measures µ and ν in P(Y),

||∇ψµ −∇ψν ||2L2(Y) ≤ C
(∫
Y

(ψν − ψµ)d(µ− ν)
) 1

2d−1

,

where C depends only on ρ, X and Y.

We deduce a global Hölder-continuity result for the
Monge embedding (2), but with a Hölder exponent
that depends on the ambient dimension d. The proof
of this result is in the supplementary material.

Corollary 2.4. For any measures µ and ν in P(Y),

||Tµ − Tν ||L2(ρ) ≤ CW1(µ, ν)
1

2(d−1)(d+2) ,

where C depends only on ρ, X and Y

3 DIMENSION-INDEPENDENT
HÖLDER-CONTINUITY OF THE
MONGE EMBEDDING

This section is devoted to a global stability result for
the Monge map embedding. We again require that the
source measure is the Lebesgue measure ρ ≡ 1 on some
compact convex domain X with unit volume. Unlike
Theorem 2.2, this stability result does not make any
regularity assumption on the measures µ, ν. In addition,
the Hölder exponent does not depend on the ambient
dimension, unlike Corollary 2.4 of the previous section.
This dimension-independent stability thus ensures that
the use of our embedding will not amplify the curse of
dimensionality to which OT-based metrics are subject.
We also report a stability of µ 7→ Tµ with respect to
the total variation (TV) distance. This distance is
much stronger than the Wasserstein distance, but the
exponent is slightly better.

Theorem 3.1. The following inequalities hold for all
probability measures µ, ν on a bounded set Y

‖Tν − Tµ‖L2(X ) ≤ C ‖ν − µ‖
1/5
TV ,

‖Tν − Tµ‖L2(X ) ≤ CW1(µ, ν)2/15,

and the constants only depend on d,X and Y.
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Remark 3.1 (Non-optimality). The Hölder-exponent
2
15 comes up from our proof, but we see no reason
why it should be the optimal exponent. Combining
Theorem 3.1 with Proposition 2.1.(iii), we see that the
best exponent belongs to the range [ 2

15 ,
1
2 ].

Remark 3.2 (Brenier embedding). Instead of working
with the optimal transport maps Tµ, one could also
directly work with the Brenier potentials φµ. Our proof
also shows Hölder-continuity of the map µ ∈ P(Y) 7→
φµ ∈ L2(X ), with slightly improved exponents. The
exponent would be 1/3 with respect to the Wasserstein
distance and 2/9 with respect to the TV distance.

We will establish Theorem 3.1 in the case where both
measures µ0 and µ1 are supported on the same set,
which is finite. The general case follows from a simple
density argument, summarized in the following lemma,
whose proof is in the supplementary material.

Lemma 3.2. Given any µ0, µ1 ∈ P(Y), there exists
sequences (µkN )N≥1 such that

• µ0
N and µ1

N have the same support, which is finite,
• lim supN→+∞ ||µ0

N − µ1
N ||TV ≤ ||µ0 − µ1‖|TV,

• limN→+∞W1(µ0
N , µ

1
N ) = W1(µ0, µ1),

• limN→+∞ ||Tµ1
N
− Tµ0

N
||L2(ρ) = ||Tµ1 − Tµ0 ||L2(ρ).

3.1 Semi-discrete Optimal Transport

When the target probability measure µ is discrete, i.e.
µ =

∑N
i=1 µiδyi , we call the optimal transport problem

between ρ and µ semi-discrete. For the quadratic cost,
the dual problem can be written as (e.g. (Hütter &
Rigollet, 2019, Eq. (2.6))):

min
ψ

∫
X
ψ∗dρ+

∫
Y
ψdµ (6)

= min
ψ

N∑
i=1

∫
Vi(ψ)

(〈x|yi〉 − ψ(yi))dρ(x) +

N∑
i=1

µiψ(yi),

where the minimum is taken among functions ψ on
{y1, . . . , yN}. To simplify notations, we will often con-
flate the function ψ with the vector ψ ∈ RN defined by
ψi = ψ(yi). The function ψ is referred to as a (dual)
potential and defines a partition of the domain X into
so-called Laguerre cells, described for all 1 ≤ i ≤ N by

Vi(ψ) = {x ∈ X | ∀j, ψj ≥ ψi + 〈yj − yi|x〉}

By Theorem 1.1 in (Kitagawa et al., 2019) (see also
(Aurenhammer, Hoffmann, & Aronov, 1998)), a poten-
tial ψ solves the dual problem (6) if and only if

∀i ∈ {1, . . . , N},
∫
Vi(ψ)

ρ(x)dx = µi,

The optimal potential ψ in (6) defines a Monge map
T : X → Y that is piecewise constant, sending each
point x in Vi(ψ) to yi. Alternatively, one can define
T = ∇φ where φ = ψ∗ is the Legendre transform of ψ.

3.2 Stability of Dual Potentials

In this section, we work in the semi-discrete setting,
assuming that all measures are supported on a (fixed)
set {y1, . . . , yN}. Given a potential ψ ∈ RN , we denote

Gi(ψ) = ρ(Vi(ψ)),

G(ψ) = (Gi(ψ))1≤i≤N ∈ RN ,

µψ =
∑

1≤i≤N

Gi(ψ)δyi .

And we will consider the set S+ of potentials such that
all cells Vi(ψ) carry some mass, defined by

S+ = {ψ ∈ RN | ∀i, Gi(ψ) > 0}.

From Theorems 1.3 and 4.1 in (Kitagawa et al., 2019),
we know that the map G is C1 on S+.

Lemma 3.3. Let ψ0, ψ1 ∈ S+ and consider the linear
interpolant ψt = (1− t)ψ0 + tψ1. Then,

∀i, Gi(ψt)
1
d ≥ (1− t)Gi(ψ0)

1
d + tGi(ψ

1)
1
d . (7)

In particular, ψt ∈ S+. Moreover,∥∥G(ψt)−G(ψ0)
∥∥

1
≤
∥∥G(ψ1)−G(ψ0)

∥∥
1
, (8)∥∥G(ψt)−G(ψ0)

∥∥
1
≤ 2(1− (1− t)d). (9)

This lemma follows from Brunn-Minkowski’s inequality,
and is reported in the supplementary material. By
Theorem 1.3 in (Kitagawa et al., 2019), if ψ ∈ S+, then
G is C1 and its partial derivatives are given by{

∂Gi
∂ψj

(ψ) =
Hd−1(Vi(ψ)∩Vj(ψ))

‖yj−yi‖ for i 6= j
∂Gi
∂ψi

(ψ) = −
∑
j 6=i

∂Gi
∂ψj

(ψ)
,

where Hd−1 is the (d− 1)-dimensional Hausdorff mea-
sure. The next proposition gives an explicit lower
bound on the smallest non-zero eigenvalue of the op-
posite of the Jacobian matrix of the map G. Its proof
follows from the stability analysis of finite volumes dis-
cretization of elliptic PDEs, see Lemma 3.7 in (Eymard,
Gallouët, & Herbin, 2000), but it is also reported in
the supplementary material.

Proposition 3.4 (Discrete Poincaré-Wirtinger in-
equality). Consider ψ ∈ S+ and v ∈ RN . Then,

〈v2|G(ψ)〉 − 〈v|G(ψ)〉2 ≤ −Cd,X ,Y〈DG(ψ)v|v〉,

where Cd,X ,Y = C(d) diam(Y) diam(X )d+1 and DG is
the Jacobian of G.

Remark 3.3. In particular, −DG(ψ) is semidefinite
positive, since its smallest non-zero eigenvalue is greater
than a variance. This can also be seen from the defini-
tion of DG(ψ) as a Laplacian matrix.
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With these two results at hand, we show L2 stability
of the dual potentials.

Theorem 3.5. Let ψ0, ψ1 be two potentials in S+,
satisfying 〈ψ1 − ψ0|G(ψ0)〉 = 0. Then, with µk = µψk ,

〈(ψ1 − ψ0)2|G(ψ0)〉 ≤ Cd,X ,Y
∥∥µ1 − µ0

∥∥
TV

,

〈(ψ1 − ψ0)2|G(ψ0)〉 ≤ Cd,X ,YW1(µ1, µ0)
2
3 . (10)

Proof. In this proof, A . B means that A ≤ CB for a
constant C depending only on d and the diameters of
X and Y . Denote ψt = (1−t)ψ0 +tψ1 and v = ψ1−ψ0.
By Taylor’s formula,

〈G(ψ1)−G(ψ0)|v〉 =

∫ 1

0

〈DG(ψt)v|v〉dt.

Moreover, proposition 3.4 gives

〈v2|G(ψt)〉 − 〈v|G(ψt)〉2 . −〈DG(ψt)v|v〉.

Let us restrict to t ∈ [0, 1
4 ]. Then, by Eq. (7), one has

Gi(ψ
t) ≥ (1− t)dGi(ψ0) & Gi(ψ

0).

Thus, on the interval t ∈ [0, 1
4 ],

〈v2|G(ψ0)〉 . 〈v2|G(ψt)〉.

On the other hand, using the assumption 〈v|G(ψ0)〉 = 0
we get ∣∣〈v|G(ψt)〉

∣∣ =
∣∣〈v|G(ψt)−G(ψ0)〉

∣∣
≤ ‖v‖∞

∥∥G(ψt)−G(ψ0)
∥∥

1

.
∥∥G(ψt)−G(ψ0)

∥∥
1
,

where we used that v is 2MX -Lipschitz (as a difference
of dual potentials), and takes positive and negative
values (since its scalar product with a constant sign
function vanishes). Using the fact that v is 2MX -
Lipschitz and Kantorovich-Rubinstein’s theorem, we
also get∣∣〈G(ψ1)−G(ψ0)|v〉

∣∣ .W1(µ0, µ1)

.
∥∥µ0 − µ1

∥∥
TV

.
∥∥G(ψ0)−G(ψ1)

∥∥
1
.

Proposition 3.4 implies that 〈DG(ψt)v|v〉 ≤ 0 for all
t ∈ [0, 1]. We therefore get∫ T

0

(〈v2|G(ψ0)〉 − ‖G(ψt)−G(ψ0)‖21)dt

.W1(µ0, µ1)

.
∥∥G(ψ0)−G(ψ1)

∥∥
1
.

(11)

Combining with (8) and T = 1
4 concludes the proof of

the first stability result of this theorem, with respect
to total variation.

To get the second stability result, with respect to the
Wasserstein distance, we use Lemma 3.3–(9), which
gives for t ∈ [0, T ],∥∥G(ψt)−G(ψ0)

∥∥
1
≤ 2(1− (1− t)d) . T.

Combining this inequality with Eq. (11) gives for T ≤ 1
4

〈v2|G(ψ0)〉 . 1

T
W1(µ0, µ1) + T 2.

IfW1(µ0, µ1)
1
3 ≤ 1

4 , we take T = W1(µ0, µ1)
1
3 to obtain

the desired inequality (10). On the other hand, if

W1(µ0, µ1)
1
3 ≥ 1

4 , then taking T = 1
4 we get

〈v2|G(ψ0)〉 .W1(µ0, µ1)

= D
W1(µ, ν)

D
≤ D

(
W1(µ, ν)

D

)2/3

,

with D := maxµ,ν∈P(Y)W1(µ, ν) ≤ diam(Y) thus also
proving (10) in that case.

3.3 Proof of Theorem 3.1

We need a result from (Chazal et al., 2017), providing
an upper bound on the L2 norm between gradients of
convex functions.

Proposition 3.6 ((Chazal et al., 2017) Theorem 22).
Let f and g be convex functions on a bounded convex
set X , then

||∇f −∇g||L2 ≤ 2CX ||f − g||1/2∞ (||∇f ||1/2∞ + ||∇g||1/2∞ ),

where CX depends only on X .

We now prove Theorem 3.1 assuming that the measures
µ0, µ1 are supported on a finite set {y1, . . . , yN}, which
implies the general case thanks to Lemma 3.2. In
this proof, we will freely use notation introduced from
the previous section. Let ψ0, ψ1 ∈ S+ be the dual
potentials associated to the optimal transport from ρ
to µ0 and µ1 respectively. Adding a constant to ψ0 if
necessary we assume that 〈ψ0 − ψ1|G(ψ0)〉 = 0. The
stability of potentials (Theorem 3.5) implies that

||ψ0 − ψ1||2L2(µ0) . ε

with ε = ||µ0 − µ1||TV or ε = W1(µ0, µ1)
2
3 .

(12)

Defining ψ̃0 = ψ0 − 〈ψ0 − ψ1|G(ψ1)〉 and ψ̃1 = ψ1, we

get 〈ψ̃0 − ψ̃1|G(ψ1)〉 = 0. Applying Theorem 3.5, but
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switching the role of 0 and 1 we get

||ψ0 − ψ1||L2(µ1)

≤
∣∣〈ψ0 − ψ1|G(ψ1)〉

∣∣+ ||ψ̃0 − ψ̃1||L2(µ1)

=
∣∣〈ψ0 − ψ1|G(ψ1)−G(ψ0)〉

∣∣+ ||ψ̃0 − ψ̃1||L2(µ1)

.W1(µ0, µ1) +
√
ε .
√
ε, (13)

where we use the same rescaling of the end of the proof
of Theorem 3.5 if W1(µ0, µ1) ≥ 1. In practice, these
L2 estimates are not sufficient to conclude, and we
need to translate them into a L∞ estimate in order to
apply Proposition 3.6. For this purpose, we consider
α ∈ (0, 1), and we define

Yα = {y ∈ Y |
∣∣ψ0(y)− ψ1(y)

∣∣ ≤ εα}. (14)

By Chebyshev’s inequality, we deduce from (12)–(13)
that for k ∈ {0, 1},

ε2αµk(Y \ Yα) ≤
∥∥ψ0 − ψ1

∥∥2

L2(µk)
. ε,

which gives
1− µk(Yα) . ε1−2α.

We construct the Legendre transform of the functions
ψk on the whole set Y = {y1, . . . , yN}, and of the
restrictions of ψk to the set Yα:

φk(x) = max
i
〈x|yi〉 − ψk(yi), (15)

φk,α(x) = max
y∈Yα

〈x|y〉 − ψk(y). (16)

Comparing Eqs. (15) and (16), one sees that φk,α ≤ φk.
Moreover, if x belongs to the Laguerre cell Vi(ψ

k) for
some yi ∈ Yα, one can check that the maximums in
the definition of φk(x) and φk,α(x) are both attained
at the point yi. This implies that φk ≡ φk,α on the set

X kα =
⋃

yi∈Yα

Vi(ψ
k).

Note also that this set X kα is ”large”, in the sense that

1− ρ(X kα ) = 1−
∑
yi∈Yα

ρ(Vi(ψ
k))

= 1− µk(Yα) . ε1−2α.

The gradients ∇φk,α and ∇φk are bounded by diam(Y)
(by Eqs. (15) and (16)) and they coincide on the ”large”
set X kα . This directly implies that they are close in L2

norm:

||∇φk,α −∇φk||L2(X )

= ||∇φk,α −∇φk||L2(X\Xkα)

≤ (1− ρ(X kα ))(||∇φk,α||∞ + ||∇φk||∞)

. ε1−2α.

(17)

On the other hand, by definition of Yα (see Eq. (14)),
the functions ψ0 and ψ1 are uniformly close on the set
Yα. This implies that the Legendre transforms φ0,α

and φ1,α, defined in (16), are also close. Indeed,

φ0,α(x) = max
y∈Yα

〈x|y〉 − ψ0(x)

≤ max
y∈Yα

〈x|y〉 − ψ1(x) + εα

= φ1,α(x) + εα,

thus giving by symmetry

||φ1,α − φ0,α||∞ ≤ εα.

Combining this inequality with Proposition 3.6, we
obtain

||∇φ1,α −∇φ0,α||L2(X )

. 2(||∇φ0,α||∞ + ||∇φ1,α||∞)1/2||φ1,α − φ0,α||1/2∞

. ε
α
2 .

(18)
Using the triangle inequality and the two previous
estimations (17)–(18), we obtain

||∇φ1 −∇φ0||L2(X )

≤ ||∇φ1 −∇φ1,α||L2(X ) + ||∇φ1,α −∇φ0,α||L2(X )

+ ||∇φ0,α −∇φ0||L2(X )

. ε1−2α + εα/2.

The best exponent is obtained when 1− 2α = α/2 i.e.
1 = 5α/2, α = 2/5, giving

||∇φ1 −∇φ0||L2(X ) . ε
1
5 ,

which gives the desired estimates by replacing ε with
its two possible values (see Eq. 12).

4 EXPERIMENTS

We conclude by illustrating1 our theoretical findings on
the Monge map embeddings and rapidly mentioning po-
tential use of these embeddings in machine learning. In
what follows, we consider that d = 2 and that ρ is the
Lebesgue measure on the unit square X = [0, 1]× [0, 1].
Additionally, we only consider discrete measures µ and
ν on Y ⊂ [0, 1] × [0, 1], for which algorithms readily
give estimates of Wp(µ, ν) and of Tµ or Tν : Wp(µ, ν) is
computed exactly with the network simplex algorithm
implemented in the Python Optimal Transport library
(Flamary & Courty, 2017) while Tµ and Tν are approx-
imated with a damped Newton’s algorithm (Kitagawa
et al., 2019). The embeddings Tµ are infinite dimen-
sional objects that are approximated by their block

1https://github.com/alex-delalande/stability ot
maps and linearization wasserstein space

https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
https://github.com/alex-delalande/stability_ot_maps_and_linearization_wasserstein_space
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Figure 1: W2,ρ vs. W2 between point clouds sampled from Gaussian, Mixture of 4 Gaussian and Uniform
distributions. W2 being approximated with entropic regularization, we may have W2 ≥W2,ρ on certain points.
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Figure 2: (Left) Target measures, push-forwards of the maps Tk = ∇φk where φDisk(x, y) := 0.25(x+y)+0.07(|x+
y|3/2 + |x− y|3/2), φCross(x, y) := 0.5(x+ y) + 0.04 max(4(x+ y − 1)2 + 0.5(2x− 1)2 + 0.5(2y − 1)2, 4(x− y)2 +
0.5(2x− 1)2 + 0.5(2y − 1)2) and φSquare(x, y) := 0.5(x2 + y2) (Right) Sampling distance ||Tµ − TµN ||L2(ρ).

approximation over a uniform block partition on X :
for m a positive integer defining the blocks side 1

m , the
blocks are defined by Xs,t = [ s−1

m , sm ] × [ t−1
m , tm ] for

s, t ∈ {1, . . . ,m} and Tµ is approximated by the vector
Tµ := (

∫
Xs,t Tµdρ)s,t∈{1,...,m} of size 2m2. We can no-

tice that our stability results on the maps Tµ ∈ L2(ρ)
can be directly applied to the vectors Tµ. Indeed these
vectors correspond to the projections of Tµ on a sub-
space of L2(ρ) of piece-wise constant functions on X : as
a projection this mapping is 1-Lipschitz, which allows
to write ||Tµ − Tν ||2 ≤ ||Tµ − Tν ||L2(ρ).

Remark 4.1. We can note that in dimension d, the
approximation Tµ is of size dmd: this limits the use
of this approximation to small values of d. Lighter
representations of the map Tµ could however be con-
sidered, in particular one could leverage the fact that
Tµ is piece-wise constant or that it is defined properly
by the dual potential ψµ that can be seen as a vector
of a size equal to the number of points in the support
of µ.

4.1 Distance Approximation

We first compare W2,ρ(µ, ν) = ||Tµ − Tν ||L2(ρ) against
W2(µ, ν) in specific settings to illustrate Equation (4).
We consider three different settings corresponding to
three different families of distributions. In each setting,
50 point clouds of 300 points are sampled, each from a
random distribution that belongs to the given family,
and pairwise W2 and W2,ρ distances on the 50 point
clouds are computed. The distances ||Tµ − Tν ||L2(ρ)

are approximated with ||Tµ − Tν ||2 with m = 200.

The three families of distributions we consider are:
Gaussian, Mixture of 4 Gaussians and Uniform. Note
that for each point cloud sampling in the two first
settings the parameters of the sampled distribution
are selected randomly. We report in Figure 1 the
comparisons between W2,ρ and W2. We observe that
W2,ρ has a behavior very close from the one of W2.

4.2 Sampling Approximation

In practice, the population distribution µ is often un-
known and one can only access to samples (xi)i=1,...,N

from this distribution, yielding the empirical distribu-
tion µN = 1

N

∑N
i=1 δxi . One can thus wonder how well

TµN represents Tµ in function of the number of sam-
ples N . We illustrate the sampling approximation of
TµN by observing the quantity ||Tµ − TµN ||L2(ρ) as a
function of N in again 3 different settings where the
”ground truth map” Tµ is prescribed. The 3 maps are
chosen as gradients of convex functions and transport
the unit square to measures resembling a disk, a cross
and a square (Figure 2). For the different values of N
the experiments are repeated 25 times and the stan-
dard deviations define the shaded areas surrounding
the curves.

In a more statistical context, we observe in Figure 3
the same quantities when the target measures are a
Gaussian, a Mixture of 4 Gaussians and the uniform
distribution on X . Since the ”ground truth” maps Tµ
are unknown in these case, we approximate them with
the map TµM for M = 10000.
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Figure 3: From left to right: densities of the sampled Gaussian, Mixture of 4 Gaussians and Uniform distributions
and sampling distance ||Tµ − TµN ||L2(ρ) as a function of N

Figure 4: Barycenters of 4 point clouds. Weights (λs)s
are bilinear w.r.t the corners of the square.

4.3 Barycenter Approximation and
Clustering

Computing means and barycenters is often necessary
in unsupervised learning contexts. For point cloud
data, the Wasserstein distance is a natural choice
to define such barycenters. For (µs)s=1,...,S S dis-
crete probability measures (corresponding to S point
clouds), the barycenter of (µs) with non-negative
weights (λs)s=1,...,S is the solution of the following
minimization problem:

min
µ

S∑
s=1

λsW
2
2 (µ, µs).

This problem does not have an explicit solution and its
solution needs to be computed every time the weights
are changed. Using transport maps from a reference
measure ρ, it is natural to consider

µ =

(
S∑
s=1

λsTµs

)
#

ρ

as the barycenter of the (µs), and one can indeed
check that this µ minimizes

∑
s λs||Tµ−Tµs ||2L2(ρ). We

illustrate this idea with the computation of barycenters
of 4 point clouds in Figure 4. Again, operations are
performed on the vectorized Monge maps Tµ.

These barycenters are in general not equal to their
Wasserstein counterparts but they seem to retain the
geometric information contained in the point clouds.
This idea can be used to extend unsupervised learning

Figure 5: Push-forwards of the 20 centroids after clus-
tering of the Monge map embeddings of the MNIST
training set.

algorithms such as k-Means to family of point clouds.
As a toy example, we perform a clustering on the images
of the MNIST dataset (LeCun & Cortes, 2010). We
convert the 60, 000 images of the training set into point
clouds of X = [0, 1]2 using a simple thresholding on the
pixels intensity and we compute for each point cloud its
Monge map embedding. We then perform a clustering
with the k-means++ algorithm (Arthur & Vassilvitskii,
2007) on the vectorized Monge maps, looking for k = 20
clusters. Figure 5 shows the push-forwards of the 20
centroids in L2(ρ,Rd).

5 CONCLUSION

We have shown that measures can readily be embedded
explicitly in a Hilbert space by their optimal trans-
port map between an arbitrary reference measure and
themselves. These embeddings are shown to be injec-
tive and bi-Hölder continuous w.r.t the Wasserstein
distance. They enable the definition of distances be-
tween measures and the use of generic machine learning
algorithms in a computationally tractable framework.
Future work will focus on the extension of the stabil-
ity theorem to more general sources and costs, to the
improvement of the Hölder exponent and to statistical
properties of transport plans, including concentration
bounds and sample complexity of the distance they
define.
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