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A Proofs.

A.1 Proof of Lemma 2.4

Proof. At the optimum,

P (x∗)−D(ν∗) =
1

n

n∑
i=1

fi(a
>
i x) + f∗i (νi)+

λR(x) + λR∗
(
−A

T ν

λn

)
= 0.

Adding the null term 〈x,−A
>ν
n 〉 − 〈x,−

A>ν
n 〉 gives

1

n

n∑
i=1

fi(a
>
i x) + f∗i (νi)− a>i xνi︸ ︷︷ ︸

≥0

+

λ

(
R(x) +R∗

(
−A

>ν

λn

)
−
〈
x,−A

>ν

λn

〉)
︸ ︷︷ ︸

≥0

= 0,

since Fenchel-Young’s inequality states that each term
is greater or equal to zero. We have a null sum of
non-negative terms; hence, each one of them is equal
to zero. We therefore have for each i = 1 . . . n:

f(a>i x) + f∗(νi) = a>i xνi,

which corresponds to the equality case in Fenchel-
Young’s relation, which is equivalent to ν∗i ∈ ∂fi(a>i x∗).

A.2 Proof of Lemma 3.3

Proof. The Lagrangian of the problem writes:

L(x, ν, γ) = a>i x− bi + ν
(
1− (x− z)TE−1(x− z)

)
−

γgT (x− z),

with ν, γ ≥ 0. When maximizing in x, we get:

∂L

∂x
= ai + 2ν(E−1z − E−1x)− γ = 0.

We have ν > 0 since the opposite leads to a con-
tradiction. This yields x = z + 1

2ν (Eai − γEg) and
(x − z)TE−1(x − z) = 1 at the optimum which gives
ν = 1

2

√
(ai − γ)TE(ai − γ).

Now, we have to minimize

g(ν, γ) = ai

(
z +

1

2ν
(Eai − γEg)

)
−

γ>
(

1

2ν
(Eai − γEg)

)
.

To do that, we consider the optimality condition

∂g

∂γ
= − 1

2ν
aiEg −

1

2ν
gTEai +

γ

ν
gTEg = 0,

which yields γ = gTEai
gTEg

. If gTEai < 0 then γ = 0 in
order to avoid a contradiction.

In summary, either gTEai ≤ 0 hence the maxi-
mum is attained in x = z + 1

2νEai and is equal
to aiz +

√
aTi Eai − yi, or gTEai > 0 and the

maximum is attained in x = z + 1
2νE(ai − γEg)

and is equal to ai
(
z + 1

2νE(ai − γg)
)
− bi with ν =

1
2

√
(ai − γ)TE(ai − γ) and γ = gTEai

gTEg
.

A.3 Proof of Lemma 4.1

Proof. We can write P ′1 as

minimize f̃(x̃) + λR̃(x̃)

subject to Ãx̃ = −b (10)

in the variable x̃ = (t, x) ∈ Rn+p with f̃ : x̃ 7→ fµ(t) and
R̃ : x̃ 7→ R(x) and Ã ∈ Rn×(n+p) = (Id,−A). Since the
constraints are linear, we can directly express the dual
of this problem in terms of the Fenchel conjugate of
the objective (see e.g. Boyd and Vandenberghe (2004),
5.1.6). Let us note f0 = f̃ + λR̃. For all y ∈ Rn+p, we
have

f∗0 (y) = sup
x∈Rn+p

〈x, y〉 − f̃(x)− λR̃(x)

= sup
x1∈Rn,x2∈Rp

〈x1, y1〉+ 〈x2, y2〉 − f(x1)− λR(x2)

= f∗µ(y1) + λR∗
(y2

λ

)
.

It is known from Beck and Teboulle (2012) that
fµ = f � Ω∗µ = (f∗ + Ω∗∗µ )∗ with Ω∗µ = µΩ∗( .µ ).
Clearly, Ω∗∗µ = µΩ. If Ω is proper, convex and lower
semicontinuous, then Ω = Ω∗∗ . As a consequence,
f∗µ = (f∗ + µΩ)∗∗. If f∗ + µΩ is proper, convex and
lower semicontinuous, then f∗µ = f∗ + µΩ, hence

f∗0 (y) = f∗(y1) + λR∗
(y2

λ

)
+ µΩ(y1).

Now we can form the dual of P ′1 by writing

maximize −〈−b, ν〉 − f∗0 (−ÃT ν) (11)

in the variable ν ∈ Rn. Since −ÃT ν = (−ν,AT ν) with
ν ∈ Rn the dual variable associated to the equality
constraints,

f∗0 (−ÃT ν) = f∗(−ν) + λR∗
(
AT ν

λ

)
+ µΩ(−ν).

Injecting f∗0 in the problem and setting ν instead of
−ν (we optimize in R) concludes the proof.

A.4 Lemma A.1

Lemma A.1 (Bounding fµ). If µ ≥ 0 and Ω is a norm
then

f(t)− δ(t) ≤ fµ(t) ≤ f(t), for all t ∈ domf
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with δ(t) = max
‖uµ‖∗≤1

gTu and g ∈ ∂f(t).

Proof. If Ω is a norm, then Ω(0) = 0 and Ω∗ is the
indicator function of the dual norm of Ω hence non-
negative. Moreover, if µ > 0 then, ∀z ∈ domf and
∀t ∈ Rn,

fµ(t) ≤ f(z) + µΩ∗
(
t− z
µ

)
.

In particular, we can take t = z hence the right-hand
inequality. On the other hand,

fµ(t)− f(t) = min
z
f(z) + µI‖ z−tµ ‖∗≤1 − f(t)

= min
‖uµ‖∗≤1

f(t+ u)− f(t).

Since f is convex,

f(t+ u)− f(t) ≥ gTu with g ∈ ∂f(t).

As a consequence,

fµ(t)− f(t) ≥ min
‖uµ‖∗≤1

gTu.

A.5 Proof of Lemma 4.4

Proof. The proof is trivial given the inequalities in
Lemma A.1.

A.6 Proof of Screening-friendly regression

Proof. The Fenchel conjugate of a norm is the indicator
function of the unit ball of its dual norm, the `∞ ball
here. Hence the infimum convolution to solve

fµ(x) = min
z∈Rn
{f(z) + 1‖x−z‖∞≤µ} (12)

Since f(x) = 1
2n‖x‖

2
2,

fµ(x) = min
z∈Rn

1

2n
zT z + 1‖x−z‖∞≤µ.

If we consider the change of variable t = x− z, we get:

fµ(x) = min
t∈Rn

1

2n
‖x− t‖22 + 1‖t‖∞≤µ.

The solution t∗ to this problem is exactly the proximal
operator for the indicator function of the infinity ball
applied to x. It has a closed form

t∗ = prox1‖.‖∞≤µ(x)

= x− prox(1‖.‖∞≤µ)
∗(x),

using Moreau decomposition. We therefore have

t∗ = x− proxµ‖.‖1(x).

Hence,

fµ(x) =
1

2n
‖x− t∗‖22 =

1

2n
‖proxµ‖.‖1(x)‖22.

But, proxµ‖.‖1(t) = sgn(t)× [|t| − µ]+ for t ∈ R, where
[x]+ = max(x, 0).

B Additional examples.

Squared hinge loss. Let us consider a problem with
a quadratic loss f : t 7→ ‖1 − t‖22/2 designed for a
classification problem, and consider Ω(x) = ‖x‖1+1x�0.
We have Ω∗(y) = 1y�−1, and

fµ(t) =
n∑
i=1

[1− ti − µ, 0]2+,

which is a squared Hinge Loss with a threshold param-
eter µ and [.]+ = max(0, .).

C Additional experimental results.

Reproducibility. The data sets did not require any
pre-processing except MNIST and SVHN on which
exhaustive details can be found in Mairal (2016). For
both regression and classification, the examples were
allocated to train and test sets using scikit-learn’s train-
test-split (80% of the data allocated to the train set).
The experiments were run three to ten times (depending
on the cost of the computations) and our error bars re-
flect the standard deviation. For each fraction of points
deleted, we fit three to five estimators on the screened
dataset and the random subset before averaging the
corresponding scores. The optimal parameters for the
linear models were found using a simple grid-search.

Accuracy of our safe logistic loss. The accuracies
of the Safe Logistic loss we build is similar to the
accuracies obtained with the Squared Hinge and the
Logistic losses on the datasets we use in this paper thus
making it a realistic loss function.

RCV-1. Table 4 shows additional screening results
on RCV-1 with a `2 penalized Squared Hinge loss SVM.

Epochs 10 20
λ = 1 7 / 84 85 / 85
λ = 10 80 / 80 80 / 80
λ = 100 68 / 68 68 / 68

Table 4: RCV-1 : Percentage of samples screened in
an `2 penalized SVM with Squared Hinge loss (Ellip-
soid (ours) / Duality Gap) given the epochs made at
initialization.
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Dataset MNIST SVHN RCV-1
Logistic + `1 0.997 (0.01) 0.99 (0.0003) 0.975 (1.0)
Logistic + `2 0.997 (0.001) 0.99 (0.0003) 0.975 (1.0)
Safelog + `1 0.996 (0.0) 0.989 (0.0) 0.974 (1e-05)
Safelog + `2 0.996 (0.0) 0.989 (0.0) 0.975 (1e-05)
Squared Hinge + `1 0.997 (0.03) 0.99 (0.03) 0.975 (1.0)
Squared Hinge + `2 0.997 (0.003) 0.99 (0.003) 0.974 (1.0)

Table 3: Averaged best accuracies on test set (best λ in a Logarithmic grid from λ = 0.00001 to 1.0).

Figure 7: Dataset compression for the Lasso trained on
a synthetic dataset. The scores given by the screening
yield a ranking that is better than random subsampling.

Lasso regression. The Lasso objective combines an
`2 loss with an `1 penalty. Since its dual is not sparse,
we will instead apply the safe rules offered by the
screening-friendly regression loss (7) derived in Section
4.3 and illustrated in Figure 2, combined with an `1
penalty. We can draw an interesting parallel with the
SVM, which is naturally sparse in data points. At the
optimum, the solution of the SVM can be expressed
in terms of data points (the so-called support vectors)
that are close to the classification boundary, that is
the points that are the most difficult to classify. Our
screening rule yields the analog for regression: the
points that are easy to predict, i.e. that are close
to the regression curve, are less informative than the
points that are harder to predict. In our experiments
on synthetic data (n = 100), this does consistently
better than random subsampling as can be seen in
Figure 7.

(a) RCV-1 and `1 Safe Logistic

(b) RCV-1 and `2 Squared Hinge

Figure 8: Dataset compression in classification.
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