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LIBRE: Learning Interpretable Boolean Rule Ensembles

A THE BASE METHOD STEP BY
STEP

In this section, we show in detail the main steps of the
base algorithm, by using a concrete example.

Consider the scenario of forecasting the failure condi-
tion of an IT system from two values representing the
CPU and main memory (M EM) utilization, as de-
picted in the first two columns of table 1. We assume
that CPU and M EM are continuous features with
values in the domain [0,100]. The state of the system
is described by a binary Label, where 1 represents a
system failure. The example reports eight records, of
which two are failures.

CPU MEM 1 To String Label
ty 95 10 3 1 110 01 1
to 80 10 1 1 011 01 0
t3 81 85 2 2 101 10 1
ta 10 85 1 2 011 10 0
ts 10 10 1 1 011 01 0
te 82 10 2 1 101 01 0
t7 85 10 2 1 101 01 0
ts 81 10 2 1 101 01 0

Table 1: Original values from C'PU and M EM , their
mappings to discrete ranges (r1,72), binary encoding,
and binary label.

A.1 Discretization And Binarization

The first operation to do is discretization. Assume the
discretization algorithm identifies three intervals for
CPU and two intervals for M EM, as follows. CPU:
[0,81),[81,95),[95, maz). MEM: [0,85),[85, max).
We can now map the original values to integer val-
ues over the ranges (1, 2, 3) and (1, 2), as shown in
columns 7y, 79, respectively. The resulting discretized
records are then mapped to (inverse one-hot encoded)
binary strings of five bits, as recorded in the String col-
umn. We also define a partial order relation between
binary records, such that x < x' +— xAx' = x/.
Moreover, the application of inverse one-hot encoding
ensures that the relation between input features and
labels is monotone, according to definition 2.2 in the
main paper. We can give you an intuition through a
simple example: consider two binary strings 011 and
110; we see that 011 £ 110 and 110 £ 011, so the
relation always holds, independently from the label.

A.2 Learning The Boundary

Consider the first positive sample ¢; with string 110 01.
An exhaustive search strategy would explore all possi-
ble flipping alternatives for the most general conflict-
free binary strings. If, for example, we flip-off the first
bit we obtain 010 01 <= t9: we have therefore a con-
flict. If, for example, we keep the first bit at 1 and
flip-off the second bit, we obtain 100 01, which is in
conflict with tg — tg. Finally, if we flip-off the last
bit, we obtain 110 00, which has no conflict: this is a
candidate boundary point. If we repeat the same pro-
cedure for t3, after flipping-off the third bit, we obtain
another boundary point 100 10.

t1: 110 01t t3: 101 107 ¢ — tg: 101 01~

S\

010 01~ 10001‘%10— 100 10* 101 00~
000 01~ 100 00~
Figure 1: Partially ordered set created from the

records in table 1.

Figure 1 shows the partially ordered set corresponding
to table 1. At the beginning, the nodes at the top are
the ones for which we know the label represented with
a superscript symbol + and — for positive and neg-
ative, respectively. They can be seen as maximally-
specific rules. If we take as target the positive class,
we move inside the Boolean lattice by flipping-off pos-
itive bits, starting from the positive binary samples,
and go down to find binary elements — located on the
boundary — that divide positive and negative samples.
While we navigate the Boolean lattice, nodes are la-
belled according to the cover test against the negative
samples. As soon as a conflict is found, we can avoid
going down from that node, but there is still the possi-
bility to explore that path from another binary sample.
This recursive procedure corresponds to up-and-down
movements in the lattice. However, if at each iteration
we are able to select the best candidate bit and to avoid
conflicts, we only allow steps down in the Boolean lat-
tice. We use the heuristic described in the main paper
to choose the best candidate bit to flip-off.
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A.3 A Practical Example

Consider again the example in table 1. Since at
the beginning & = 7, we will only report |T°|.
For the first positive record t; =110 01, we have:
F9O = {01101,01110}, F? = {10101}, F° = {01110}
We have therefore: d;(t1,FY) = 1, di(t1,F9) = 1,
di(t1, F2) = 2. We already know that flipping-off ei-
ther the first or the second bit to 0 would lead to a
conflict: thus, we directly flip-off the fifth bit to ob-
tain the boundary point 110 00, independently from
the value of |72|. Element 110 00 is added in the set
of boundary points A.

For the second positive record t3 = 101 10, we have:
F) = {o01101,01110}, F§ = 0, F? = {01110}.
We have therefore: dj(t1,FY) = 1, di(t1,F9) =
undefined, and d;(t1, F}) = 1. Although i = 3 in-
duces a distance from an empty set, since we know
that flipping-off other indexes generates conflicts, we
can immediately label 100 10 as boundary point and
add it to A.

A.4 From Boundary Set To Rules

At the end of the previous phase, we obtain the bound-
ary set A = {11000,10010}. In this case, each bound-
ary point covers only one distinct positive sample,
therefore the union of the two points covers all the
set of positive samples and both points are kept after
the regularization. Let’s suppose to follow a positive
set cover strategy, without early stopping condition.
Then, the boundary set can be immediately mapped
to the rule set shown in fig. 2.

IF CPU € [95, max)

OR CPU € [81, max) and MEM € [85, max)
THEN Label =1

ELSE Label =0

Figure 2: Ruleset extracted from the boundary

A.5 Differences with Muselli and Quarati
(2005)

Our base method is similar to Muselli and Quarati
(2005) that we took as a reference since it presents
interesting properties: it is a bottom-up method, eas-
ily parallelizable, incorporating interpretability goals
in the induction process. To better analyze the differ-
ences with our proposal, we refer to a technical report
(Muselli and Quarati, 2004) where the authors provide
more details about their shadow clustering algorithm.
Looking at the pseudo-code (Figure 4 of Muselli and
Quarati (2004)) we can firstly notice that our heuris-
tics Hy and Hy are 3-length tuples (instead of 4-length)

where we avoid to compute what Muselli and Quarati
(2004) indicate as | B} | (we verified experimentally that
it has no impact in practice). The main improvement
is however related to the computation of the distance
di(p(IUJ), DY) which complexity is O(nd). In Muselli
and Quarati (2004), such distance is computed within
a while loop (of length d in the worst case), for every
candidate bit i € I to flip. We instead compute the
distance only once outside the while loop, and update
it iteratively for ipes; only (the complexity of the up-
date is O(n) instead of O(nd)). Indeed, we flip one bit
at a time and there is no need to re-compute the dis-
tance from scratch for the other bits. Thus, we lower
the total complexity from O(n%d?) to O(n%d?).

B PARALLEL AND DISTRIBUTED
IMPLEMENTATION

LIBRE is amenable to parallel and distributed im-
plementations.  Indeed, it processes one positive
sample at a time. An exhaustive version of the
FindBoundaryPoint () procedure is embarrassingly
parallel and it is easily parallelizable on multi-core ar-
chitectures: it is sufficient to spawn a UNIX process
per positive sample, and exploit all available cores.

Instead, the approximate procedure, requires a slightly
more involved approach. Indeed, the approximate
FindBoundaryPoint(.) procedure processes positive
records that have not yet been covered by any bound-
ary point. Hence, a global view on the set S is re-
quired. We experimented with two alternatives. The
first is to place S in a shared, in-RAM datastore, be-
cause UNIX processes — unlike threads — do not have
shared memory access. The second alternative is to
simply let each individual process to hold their own
version of S, thus sacrificing a global view. Our ex-
periments indicate that the loss in performance due to
alocal view only is negligible, and largely out-weighted
by the gain in performance, since the execution time
decreases linearly with the number of spawned UNIX
processes. Moreover, both D, and D_ remain consis-
tent throughout the whole induction phase.

LIBRE can be easily distributed such that it can run
on a cluster of machines, using for example a dis-
tributed computing framework such as Apache Spark
spa. This approach, called data parallelism, splits in-
put data across machines, and let each machine exe-
cute, independently, a weak learner. The data splitting
operation shuffles random subsets of the input features
to each worker machine. Once each worker finishes to
generate the local rule sets, they are merged in the
“driver” machine, which eventually applies the filter-
ing and then executes the rule selection procedure to
produce the final boundary.



C LINK TO THE CODE

https://github.com/grazianomita/LIBRE

D THE IMPACT OF LIBRE’S
PARAMETERS

In this section we investigate how acting on LIBRE’s
parameters allows to obtain specific performance-
interpretability tradeoffs. We will not cover all pos-
sible parameters: in particular, we focus on the dis-
cretization threshold, #estimators, and # features
per estimator. The effects of a and early-stopping in
weighted set cover are not reported here since their
effects are well known from previous studies.

When we vary one parameter, all the others are kept
fix to isolate its impact. We will also give some rules
of thumb to choose them.

D.1 The Effects Of Varying The
Discretization Threshold

The choice of the discretization threshold depends on
the specific dataset: a threshold equal to zero means
no discretization, whereas increasing the threshold is
equivalent to increase the tolerance to combine consec-
utive ranges of values with different label distributions.
In general, a zero threshold gives bad performances
and results in a bigger lattice with a consequent slower
training time; also a too aggressive (high) threshold is
not recommended because it would lead to a huge loss
of information. The most significant effects occur as
soon as we start increasing the threshold: in general,
Fl-score improves (and eventually oscillates) up to a
value after which it can eventually decrease.

The threshold affects also the number of rules and their
size. In general, when there is no discretization, two
extreme cases are possible: i) We might have as many
rules as the number of positive examples (if their bi-
nary representation does not generate conflicts with
the elements in F) with #atoms = #features. It
means that the model simply overfitted the training
data. ii) We might end up with few rules with very
high number of atoms (or no rules at all): the model
tried to generalize positive records but it was not able
to learn something meaningful because too many con-
flicts were present in the dataset.

From our experiments, the second option is more com-
mon (few complex rules). Again, as soon as we start
increasing the threshold, the model starts to learn: the
number of discovered rules increases and the number
of atoms decreases, since the model is able to filter out
useless features. After that, changes tend to stabilize:

in our experiments, this happens when the discretiza-
tion threshold is roughly between 3 and 6.

D.2 The Effects of Varying #estimators And
# features

We analyze how #estimators and # features affect
the predictive performance and interpretability of LI-
BRE, by keeping fixed the remaining parameters. Re-
sults are reported for the HEART UCI dataset, but the
considerations we do are quite general.

Parameter Settings. We fix a discretization thresh-
old = 6. The search procedure optimizes the H1
heuristic, without applying any filtering before run-
ning weighted set cover, for which we set o = 0.7, with-
out applying any early-stopping condition. We vary
#estimators € {1,5,10,15,20} and #features €
{1,2,3,4,5,6,7,8}. We perform up to 50 runs for
each (#estimators,# features), where features used
by each estimator are randomly selected. Please, no-
tice that this is not the optimal set of parameters.

Effects On F1l-score. As shown in fig. 3, if we
fix #estimators, when #estimators is low (one es-
timator), Fl-score improves considerably as long as
# features increases. When enough #estimators are
used, Fl-score stabilizes: we can use less # features
per estimator with almost no effect on Fl-score. From
fig. 4, we can see that, if we fix #features, F1-
score benefits from increasing #estimators. When
# features increases, limiting #estimators to a low
value does not significantly impact the Fl-score. In
other words, for low # features it is convenient to run
more F#estimators: each estimator would work on dif-
ferent subsets of the input features and the union of
rules would be hopefully diverse, with a consequent
higher Fl-score. For the specific case of HEART, we
do not notice any significant difference in F1-score by
passing from 5 to 20 estimators. However, it is gen-
erally convenient to increase #estimators in order to
try as many combinations of features as possible and
reduce the variance of results. For datasets with many
features, this may make the difference.

Effects On #rules. As shown in fig. 5, if we fix
#estimators and increase # features, #rules tends
to increase up to a certain value, and then stabilizes
or get slightly worse. From fig. 6, we notice that, when
# features is low, #rules tends to increase as long as
we increase #estimators. Indeed, the model gener-
ates less rules when there are not enough discriminant
features; increasing the number of estimators, each es-
timator discovers different rules that are combined. As
long as we increase # features per estimator, the prob-
ability that different estimators work with similar sets
of features increases, together with the probability of
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generating the same rules (or very similar rules): that’s
why the size of the rule set tends to stabilize. In this
cases, it is convenient to run less estimators to save
execution time. In general, increasing the number of
estimators considerably reduces the variance of results.

Effects On #atoms. As shown in fig. 7, if we keep
#estimators fixed, #atoms of the rule set increases
as long as the number # features increases. If we
fix #features (fig. 8), #estimators does not seem
to affect #atoms significantly. As usual, increasing
#estimators reduces the variance of the results.

Final Remarks. In conclusion, if we want inter-
pretable rule sets, it is better to use few input features
per estimator and as many estimators as possible.

E SCALABILITY EVALUATION

Here, we extensively test the scalability of LIBRE. We
use up to 50 features and investigate also the impact
of class imbalance on the execution time.

Synthetic Dataset. For the scalability evaluation,
we synthetically generate a dataset with 1’000'000
records and 50 continuous features with randomly gen-
erated values in the domain [0,100]. Then, we ran-
domly generate four sets of binary labels with a class
imbalance ratio of 0.001, 0.01, 0.1, and 0.5 respectively.

Settings. We vary the number of records (10’000,
100’000, 500’000, 1°000°000), features (10, 20, 50), and
class imbalance ratio (0.001, 0.01, 0.1, 0.5): for each
dataset configuration, LIBRE runs up to 100 times with
different randomly generated subsets of features of size
10, 20, and 50; the average execution time in seconds
is reported as a sum of two contributions: rule genera-
tion and simplification times. Times refer to one weak
learner only: if N weak learners run in parallel, the re-
ported time is still a good estimate. Before executing
LIBRE, we discretize the dataset with a discretization
threshold equal to 6, that we empirically find out to
be a good value. The simplification procedure runs on
the top 500 rules, if more are generated.

Results. As shown in fig. 9, the execution time is
dominated by the rule generation term. Given a class
imbalance ratio, execution time increases as long as
we increase the number of records and features. The
generation time also depends on which features are fed
into the model for two main reasons: i) ChiMerge en-
codes bad predictive features with bigger domains, in-
creasing the search space; ii) the generation procedure
will struggle more to generate rules when it runs on
features that are not that useful to predict the target
class. This explains the high variance in the results.
Intuitively, as long as the class imbalance ratio gets

close to 0.5, the number of processed records increases,
together with the execution time. However, we veri-
fied experimentally that this effect is somehow com-
pensated by the higher number of negative records.
As already pointed out in the main paper, we run the
rule generation procedure up to 50 features just for ex-
perimental purposes: for practical applications, if in-
terpretability is a need, it is more convenient to limit
the number of features and train a bigger ensemble
with more learners in order to generate compact rules
in a reasonable time.

F FULL EXPERIMENTS

In this section, we report the full experimental cam-
paign. We use the same methods, training procedure,
preprocessing, and evaluation measures as the main
paper, but results refer to more datasets (table 2). In
all datasets the target class is the positive class.

Data Preprocessing. Before running RBF-SVM, we
apply standardization to the input data to get better
results. The remaining methods have no benefits from
standardization in our experiments. For s-BRL and LI-
BRE, we apply ChiMerge discretization algorithm Ker-
ber (1992) with a discretization threshold in {6,4.6,4};
in BRS, discretization is instead controlled by an in-
ternal parameter. In both cases, discretization is opti-
mized during training. The remaining algorithms have
no explicit need for discretization. For the methods
requiring binarization, we apply one-hot encoding, ex-
cept for LIBRE that uses inverse one-hot encoding.

Results. Table 3 reports a comparison between LIBRE
and the selected methods in terms of F1-score. Table 4
and table 5 reports the average number of rules and
atoms, respectively. We also compare the rule sets
leading to the best F1-scores for RIPPER-K, BRS, and S-
BRL with a few configurations for LIBRE. In fig. 10, we
report the average number of rules and atoms per rule,
as a function of the Fl-score: points at the bottom-
rigth side of each plot correspond to compact and high
predictive rule sets.

G MORE EXAMPLES OF RULE
SETS LEARNED BY LIBRE

In this section, we report additional examples for the
medical UCI datasets described in table 2 !, for which
it might be interesting to understand the relation be-
tween input features and the predicted diseases.

! Different rule sets may be obtained depending on how

folds are randomly built during cross validation.
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Figure 9: Run time on synthetic data.

1000000

Dataset | #records | #features | imbalance ratio | target_class
ApuLt 48’842 14 .23 >50k
AUSTRALIAN 690 14 44 2
BALANCE 625 4 .08 B
BANK 45’211 17 12 yes
HABERMAN 306 3 .26 died
HEART 270 13 .51 presence
ILpD 583 10 .28 liver patient
LIvVER 345 5 .51 drinks>2
Piva 768 8 .35 1
SONAR 208 60 .53 R
TICTACTOE 958 9 .65 positive
TRANSFUSION 748 5 24 yes
‘WISCONSIN 699 9 .34 malignant
SAP-CLEAN 287’031 45 .01 crash
SAap-FuLL 1’554°227 45 .01 crash

Table 2: Characteristics of evaluated datasets.

T
coco coo
Q0

Qw0

100000 500000
num_records

Dataset | RBF-svM | RF | DT | RIPPER-K | MODLEM | S-BRL | BRS | LIBRE | LIBRE3
AbULT .62(.01) 68(.01) | .68(.01) | .59(.02) | .66(.01) | .68(.01) | .61(.01) | .70(.01) | .62(.01)
AUSTRALIAN 83(.02) | .86(.02) | .84(.02) | .85(.02) | .68(.28) | .82(.03) | .83(.03) | .84(.03) .84(.03)
BALANCE .03(.07) 00(.00) | .01(.03) | .00(.00) | .16(.04) | .00(.00) | .00(.00) | .16(.08) | .14(.06)
BANK .46(.01) 50(.01) | .50(.01) | .44(.04) | .50(.03) | .50(.02) | .32(.05) | .55(.01) | .44(.01)
HABERMAN .24(.10) 26(.07) | .36(.08) | .38(.07) | .40(.07) | .17(.21) | .07(.06) | .41(.04) | .41(.04)
HEART 78(.06) | .79(.07) | .71(.01) | .73(.09) | .39(.31) | .74(.05) | .70(.09) | .77(.06) | .75(.02)
ILPD .47(.02) 44(.08) | .42(.10) | .20(.11) | .48(.08) | .14(.13) | .09(.08) | .54(.06) | .52(.04)
LIVER .58(.08) 58(.07) | .56(.10) | .59(.04) | .58(.07) | .54(.03) | .61(.05) | .60(.07) | .63(.06)
Piva 61(.04) 63(.04) | .60(.01) | .60(.03) | .38(.18) | .61(.07) | .03(.03) | .64(.05) | ..64(.05)
SONAR 81(.04) | .83(.05) | .75(.05) | .77(.08) | .70(.06) | .76(.05) | .69(.06) | .79(.03) | .76(.04)
TICTACTOE .99(.01) 99(.01) | .97(.01) | .98(.01) | .55(.10) | .99(.01) | .99(.01) | 1.0(.00) | .68(.04)
TRANSFUSION | .41(.07) 35(.06) | .35(.05) | .42(.10) | .42(.08) | .05(.10) | .04(.05) | .49(.12) | .49(.12)
WISCONSIN .95(.02) | .95(.01) | .91(.04) | .94(.02) | .95(.01) | .94(.02) | .88(.03) | .95(.01) | .93(.02)
Sap-CLEAN 93(.02) | .93(.01) | .85(.03) | .86(.02) | .88(.01) | .90(.01) | .68(.03) | .95(.02) | .72(.03)
SApP-FuLL - - - - - .81(.02) - 89(.03) .68(.04)
Avg Rank | 4.0(1.8) | 3.1(1.9) | 5.5(1.9) | 5.3(1.7) | 5.0(2.8) | 5.3(2.3) | 7.3(2.5) | 1.5(0.9) | 4.0(2.6)
Table 3: Fl-score (st. dev. in parenthesis).

Dataset | DT | RIPPER-K |  MODLEM | S-BRL | BRS | LIBRE | LIBRE 3

ApuLT 287.8(6.5) | 21.4(5.2) | 4957.8(36.3) | 71.4(2.1) | 10.0(3.3) | 14.0(2.1) | 3.0(0.0)

AUSTRALIAN 4.0(0.0) 3.8(1.2) 86.6(3.2) 5.8(0.7) | 1.8(0.4) | 2.4(1.4) | 2.2(0.7)

BALANCE 48.0(12.5) | 0.0(0.0) 76.5(4.6) 0.0(0.0) | 1.0(0.0) | 9.0(3.0) | 1.0(0.0)

BANK 545.4(18.3) | 9.0(1.8) | 3722.6(25.5) | 61.2(5.5) | 4.8(1.2) | 15.0(1.1) | 2.0(0.6)

HABERMAN 37.4(4.13) | 1.0(0.0) 73.6(2.9) 5.4(1.9) | 1.0(0.0) | 1.6(0.8) | 1.6(0.8)

HEART 45.6(9.1) 2.8(0.7) 50.6(2.9) 5.8(0.7) | 2.4(0.5) | 10.6(3.0) | 2.8(0.4)

ILPD 80.6(30.2) | 1.0(0.6) | 128.2(7.8) 4.8(0.7) | 1.0(0.0) | 4.4(2.3) | 2.2(0.4)

LIVER 84.4(15.2) | 1.4(0.8) 98.4(1.6) 4.0(0.6) | 1.0(0.0) | 3.4(1.9) | 2.8(0.4)

Piva 84.8(43.1) | 2.4(2.4) 151.8(7.6) 8.4(0.5) | 1.0(0.0) | 1.6(1.0) | 1.6(1.0)

SONAR 15.0(9.3) 3.6(1.4) 48.8(1.6) 3.2(0.7) | 1.0(0.0) | 6.6(1.2) | 1.1(0.2)

TICTACTOE 60.4(5.2) | 10.6(1.6) 25.8(1.6) 12.2(1.2) | 9.0(1.1) | 9.0(1.1) | 3.0(0.0)

TRANSFUSION | 100.2(48.4) 1.8(0.4) 125.8(6.1) 4.4(0.8) 1.0(0.0) 1.2(0.4) 1.2(0.4)

WISCONSIN 31.4(5.5) 5.0(0.6) 29.2(1.9) 7.0(1.1) | 5.000.6) | 4.2(0.7) | 3.0(0.0)

SaP-CLEAN 622.4(51.9) | 19.3(3.6) | 3944.5(18.8) | 47.7(4.4) | 20.2(3.5) | 13.0(2.4) | 3.0(0.0)

SAP-FULL - - - 56.4(4.6) - 17.5(5.2) | 3.0(0.0)

Avg Rank | 5.9(0.9) | 3.3(1.3) | 6.5(0.9) | 4.8(0.8) | 1.7(1.1) | 3.1(1.1) | 1.7(0.8)

Table 4: #rules (st. dev. in parenthesis).

coco
Q0

1000000



#rules

#rules

Dataset | DT | RIPPER-K | MODLEM | S-BRL | BRS LIBRE | LIBRE 3
ApuLT 9.3(0.0) 4.4(0.3) 4.3(0.1) 87.0(3.2) 3.3(0.1) 7.8(1.0) 6.5(0.7)
AUSTRALIAN 2.0(0.0) 2.4(0.3) 2.3(0.1) 7.1(1.0) 3.5(0.3) 4.4(1.8) 4.4(1.3)
BALANCE 4.4(2.9) 0.0(0.0) 3.5(0.0) 0.0(0.0) 4.0(0.0) 2.1(0.0) 2.1(0.0)
BANK 9.5(0.0) 3.0(0.2) 3.0(0.0) 89.0(7.8) 3.2(0.4) 4.7(0.5) 2.0(0.1)
HABERMAN 4.6(3.3) 1.8(0.4) 2.2(0.1) 3.7(1.0) 3.2(0.7) 2.1(0.3) 2.1(0.3)
HEART 6.2(0.3) 2.1(0.3) 2.3(0.1) 8.1(1.3) 3.3(0.2) 7.7(0.7) 6.1(2.7)
ILpD 8.5(1.6) 2.1(1.3) 2.1(0.0) 4.4(0.4) 2.8(0.4) 3.3(1.5) 3.0(0.6)
LIVER 8.7(1.0) 1.3(0.4) 2.1(0.1) 3.0(0.3) 3.4(0.5) 2.5(1.0) 1.3(0.4)
Piva 6.9(2.5) 2.4(0.5) 2.1(0.1) 6.3(0.8) 3.6(0.5) 2.5(0.7) 2.5(0.7)
SONAR 3.8(1.5) 2.1(0.2) 1.4(0.0) 8.2(2.1) 4.0(0.0) 3.7(1.0) 2.2(0.8)
TICTACTOE 6.7(0.1) 2.1(0.2) 3.5(0.0) 21.8(1.6) 3.5(0.1) 3.8(0.8) 3.0(0.0)
TRANSFUSION 6.9(2.5) 2.8(0.4) 2.3(0.0) 3.8(0.6) 3.0(0.6) 2.8(0.7) 2.8(0.7)
WISCONSIN 6.1(0.4) 2.0(0.2) 2.2(0.1) 5.9(1.0) 3.3(0.3) 3.2(1.0) 2.8(1.0)
SAP-CLEAN 15.2(1.0) 3.8(0.3) 3.4(0.1) 75.4(4.0) 3.9(0.4) 3.3(0.2) 3.0(0.1)
SAP-FULL - - - 85.6(9.7) - 4.7(0.3) 4.2(0.2)
Rank | 5.8(1.6) | 2.3(1.4) | 2.3(1.0) | 6.2(1.0) | 4.2(1.3) | 3.7(1.5) | 2.5(1.7)
Table 5: #atom (st. dev. in parenthesis).
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Figure 10: Fl-score vs. #rules and #atoms
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IF (
number_of_positive_axillary_nodes € [2, maz]

IF (
glucose € [158, max] AND
blood_pressure € [56, max]

)
THEN died within 5 years
ELSE survived 5 years or longer

)
OR (
Figure 11: Example of rules learned by LIBRE for glucose € [110, 158] AND
HABERMAN. BMI € [30.7, max)
OR (
IF ( pregnancies € [4, max] AND

slope_of_the_peak_exercise € {flat, downsloping} diabetes_predigree func € [0.529, maz]

AND

)
number_of_major_vessels € [1, 3] THEN diabetes = True

) ELSE diabetes = False

OR (

chest_pain_type € {asymptomatic} AND

thal € {reversable_defect} Figure 15: Example of rules learned by LIBRE for
) Pima.

OR (

sex € {male}, AND
fasting_blood_sugar_>120mg/dl € {False} AND
number_of_major_vessels € [1, 3]

THEN class = presence
ELSE class = absence

IF (
months_since_last_donation € [0, 8) AND
Figure 12: Example of rules learned by LIBRE for total_blood_donated € [1250, mazx)
HEART.
THEN transfusion = Yes
ELSE transfusion = No
IF (
TB € [min,2) AND )
sgbp € [min, 42) ) Figure 16: Example of rules learned by LIBRE for
TRANSFUSION.
TB € [min,2) AND
alkphos € [min, 184)
)
OR (
age € [35,39),[56,57) AND
sgbp € [42,148)
THEN class = liver patient IF (
ELSE class = non liver patient uniformity_of_cell_shape € [5, max]
OR (
Figure 13: Example of rules learned by LIBRE for ILPD. clump._thickness € [2, maz] AND

bare_nuclei € [8, max)

)
IF ( OR (
clump_thickness € [7, max] AND
) marginal_adhesion € [1,2), [4, maz)
OR ( )

gamma._glutamyl_transpeptidase € [20, maz] EESEEN;;EEFESEEH_:NY:S

mean_corpuscular_volume € [90, 96)

)
THEN liver_disorder = True
ELSE liver_disorder = False

Figure 17: Example of rules learned by LIBRE for Wis-
CONSIN.

Figure 14: Example of rules learned by LIBRE for

LIVER.
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