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Abstract

We prove that the marginal densities of a
global probability mass function in a primal
normal factor graph and the corresponding
marginal densities in the dual normal factor
graph are related via local mappings. The
mapping depends on the Fourier transform
of the local factors of the models. Details
of the mapping, including its fixed points,
are derived for the Ising model, and then ex-
tended to the Potts model. By employing the
mapping, we can transform simultaneously
all the estimated marginal densities from one
domain to the other, which is advantageous if
estimating the marginals can be carried out
more efficiently in the dual domain. An exam-
ple of particular significance is the ferromag-
netic Ising model in a positive external field,
for which there is a rapidly mixing Markov
chain (called the subgraphs-world process) to
generate configurations in the dual normal
factor graph of the model. Our numerical
experiments illustrate that the proposed pro-
cedure can provide more accurate estimates
of marginal densities in various settings.

1 Introduction

In any probabilistic inference problem, one of the main
objectives is to compute the local marginal densities
of a global probability mass function (PMF). Such a
computation in general require a summation with an
exponential number of terms, which makes its exact
computation intractable [Dagum and Luby, 1993].

Our approach for estimating marginal densities hinges
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on the notions of the normal realization (in which
there is an edge for every variable) [Forney, 2001],
the normal factor graph (NFG), and the dual NFG.
The NFG duality theorem states that the partition
function of a primal NFG and the partition function
of its dual are equal up to some known scale fac-
tor [Al-Bashabsheh and Mao, 2011, Forney, 2011]. It
has been demonstrated that, in the low-temperature
regime, Monte Carlo methods for estimating the
partition function converge faster in the dual NFG
than in the primal NFG of the two-dimensional (2D)
Ising model [Molkaraie and Loeliger, 2013] and of the
q-state Potts model [Al-Bashabsheh and Mao, 2014,
Molkaraie and Gómez, 2018].

In this paper, we prove that marginal densities of a
global PMF of a primal NFG and the corresponding
marginals of the dual NFG are related via local map-
pings. Remarkably, the mapping is independent of the
size of the model, of the topology of the graph, and of
any assumptions on the parameters of the model.

Each marginal density can of course be expressed as a
ratio of two partition functions. In non-homogeneous
models, each ratio needs to be estimated separately
via variational inference algorithms or via Monte Carlo
methods. However, our proposed mapping allows a
simultaneous transformation of estimated marginal den-
sities from one domain to the other.

The mapping is practically advantageous if computing
such estimates can be done more efficiently in the
dual NFG than in the primal NFG. Indeed, for the
ferromagnetic Ising model in a positive external field
there is a rapidly mixing Markov chain (called the
subgraphs-world process) to generate configurations
in the dual NFG of the Ising model. As models, we
mainly focus on binary models with symmetric pairwise
interactions (e.g., the Ising model). However, we will
briefly discuss extensions of the proposed mappings to
non-binary models (e.g., the q-state Potts model).

Next, we will describe our models in the primal and in
the dual domains.
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2 THE PRIMAL MODEL

Suppose variables X1, X2, . . . , XN are associated with
the vertices (sites) of a connected graph G = (V, E) with
|V| = N vertices and |E| edges (bonds). Two variables
(Xi, Xj) interact if their corresponding vertices are
connected by an edge in G. Each variable takes values
in A = Z/2Z, i.e., the set of integers modulo two. We
will mainly view A as a group with respect to addition.

In the primal domain, the probability of a configuration
x ∈ AN is given by

π(x) ∝
∏

(i,j)∈E

ψi,j(xi, xj)
∏
v∈V

φv(xv). (1)

Furthermore, we assume that each pairwise potential
factor ψi,j(·) is only a function of yi,j = xi − xj . To
lighten notations we denote the index pair (i, j) ∈ V2

by a single index e ∈ E . In the primal domain, we
express the global probability mass function (PMF) as

πp(x) = 1
Zp

∏
e∈E

ψe(ye)
∏
v∈V

φv(xv). (2)

Here, the normalization constant Zp is the partition
function, {ψe : A → R≥0, e ∈ E} are the edge-weighing
factors, and {φv : A → R≥0, v ∈ V} are the vertex-
weighing factors [Molkaraie, 2017, Forney, 2018].

The factorization in (2) can be represented by an NFG
G = (V, E), where vertices represent the factors and
edges represent the variables. The edge that represents
some variable ye is connected to the vertex representing
the factor ψe(·) if and only if ye is an argument of ψe(·).
If a variable appears in more than two factors, it is repli-
cated using an equality indicator factor [Forney, 2001].

For a 2D lattice, the NFG of (2) is depicted in Fig. 1,
in which the unlabeled boxes represent ψe(·), small un-
labeled boxes represent φv(·). In Fig. 1, boxes labeled
“+” are instances of zero-sum indicator factors I+(·),
which impose the constraint that all their incident vari-
ables sum to zero, and boxes labeled “=” are instances
of equality indicator factors I=(·), which impose the
constraint that all their incident variables are equal.

E.g., the equality indicator factor involving x1, x
′
1, and

x′′1 is given by

I=(x1, x
′
1, x
′′
1) = δ(x1 − x′1) · δ(x1 − x′′1) (3)

and the zero-sum indicator factor involving x1, x2, and
y1 is as in

I+(y1, x1, x2) = δ(y1 + x1 + x2), (4)

where δ(·) is the Kronecker delta function. (Note that
all arithmetic manipulations are modulo two.)
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Figure 1: Primal NFG of the factorization (2).

In the primal NFG, variables include X = {Xv : v ∈ V}
and Y = {Ye : e ∈ E}. However, these variables are not
independent. Indeed, we can freely choose X and there-
from fully determine Y [Molkaraie and Gómez, 2018,
Forney, 2018]. E.g., if we take G to be a d-dimensional
lattice, we can compute each component Ye of Y by
adding two components of X that are incident to the
corresponding zero-sum indicator factor (see Fig. 1).

The number of configurations in the primal domain is
thus |A|N , and

Zp =
∑

x∈AN

∏
e∈E

ψe(ye)
∏
v∈V

φv(xv). (5)

The Ising model can be easily formulated via (2). In
an Ising model the energy of a configuration x is given
by the Hamiltonian1

H(x) = −
∑

(i,j)∈E

Ji,j ·
(
2δ(xi − xj)− 1

)
−∑

v∈V
Hv ·

(
2δ(xv)− 1

)
, (6)

which can be expressed as

H(x) = −
∑
e∈E

Je ·
(
2δ(ye)− 1

)
−∑

v∈V
Hv ·

(
2δ(xv)− 1

)
. (7)

Here Je is the coupling parameter associated with the
bond e ∈ E and Hv is the external field at site v ∈
V. The model is called homogeneous if couplings are
constant and ferromagnetic if Je ≥ 0 for all e ∈ E .

The probability of x is given by the Gibbs-Boltzmann
distribution [Yeomans, 1992]

πB(x) ∝ e−βH(x), (8)
1In the bipolar case (i.e., when X = {−1,+1}), the

Hamiltonian isH(x) = −
∑

(i,j)∈E Ji,jxixj−
∑

1≤i≤N Hixi.
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where β ∈ R≥0 denotes the inverse temperature.

From (7) and (8), it is straightforward to obtain the
edge-weighing factors of the Ising model as

ψe(ye) =
{
eβJe , if ye = 0
e−βJe , if ye = 1 (9)

and the vertex-weighing factors as

φv(xv) =
{
eβHv , if xv = 0
e−βHv , if xv = 1. (10)

The Gibbs-Boltzmann distribution in (8) can therefore
be expressed via the factorization (2).

3 THE DUAL MODEL

The dual NFG has the same topology as the primal
NFG, but with factors replaced by the discrete Fourier
transform (DFT) or the inverse DFT of corresponding
factors in the primal NFG.

We can obtain the dual NFG of our binary models
by replacing factors by their one-dimensional (1D)
DFT, equality indicator factors by zero-sum indica-
tor factors, and zero-sum indicator factors by equal-
ity indicator factors [Al-Bashabsheh and Mao, 2011,
Molkaraie and Loeliger, 2013, Molkaraie, 2016].

We will use the tilde symbol to denote variables in the
dual NFG, which also take values in A.

The dual NFG of Fig. 1 is illustrated in Fig. 2, in which
the unlabeled boxes represent ψ̃e : A → R, the 1D DFT
of ψe(·), given by

ψ̃e(ỹe) =
{
ψe(0) + ψe(1), if ỹe = 0
ψe(0)− ψe(1), if ỹe = 1 (11)

and for v ∈ V the small unlabeled boxes are φ̃v : A → R,
the 1D DFT of φv(·), as in

φ̃v(x̃v) =
{
φv(0) + φv(1), if x̃v = 0
φv(0)− φv(1), if x̃v = 1. (12)

The set of variables in the dual domain consist of
Ỹ = {Ỹe : e ∈ E} and X̃ = {X̃v : v ∈ V}. Again, these
variables are not independent as we can freely choose
Ỹ and therefrom fully determine X̃. E.g., if we take
G to be a d-dimensional lattice and assume periodic
boundaries, each component X̃v of X̃ can be computed
by adding 2d components of Ỹ that are incident to the
corresponding zero-sum indicator factor (see Fig. 2).

In the dual NFG, the number of configurations is |A||E|,
and its the partition function Zd is given by

Zd =
∑

ỹ∈A|E|

∏
e∈E

ψ̃e(ỹe)
∏
v∈V

φ̃v(x̃v). (13)
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Figure 2: The dual of the NFG in Fig. 1.

On condition that factors (11) and (12) are nonnegative,
we can define the global PMF in the dual NFG as

πd(ỹ) = 1
Zd

∏
e∈E

ψ̃e(ỹe)
∏
v∈V

φ̃v(x̃v). (14)

The dual Ising model can be expressed via (14). Indeed

ψ̃e(ỹe) =
{

2 cosh(βJe), if ỹe = 0
2 sinh(βJe), if ỹe = 1, (15)

in agreement with (9) and (11), and

φ̃v(x̃v) =
{

2 cosh(βHv), if x̃v = 0
2 sinh(βHv), if x̃v = 1, (16)

in agreement with (10) and (12).

If the model is ferromagnetic (i.e., Je ≥ 0 ) and in a
nonnegative external field (i.e., Hv ≥ 0), factors (15)
and (16) will be nonnegative. In this case, the global
PMF of the dual Ising model is given by (14).

Throughout this paper, we assume that each edge con-
nects two distinct vertices of the NFG (i.e., there are
no dangling edges with one end attached to a vertex
and the other end free). In this setting, according to
the NFG duality theorem, the partition functions Zp
and Zd are equal up to some scale factor α(G). Indeed

Zd = α(G) · Zp, (17)

where α(G) only depends on the topology of G.

For more details, see [Al-Bashabsheh and Mao, 2011],
[Molkaraie, 2017, Appendix],[Forney, 2018, Thm 8].

4 THE DUAL ISING MODEL AND
HIGH-TEMPERATURE SERIES
EXPANSIONS

In [Jerrum and Sinclair, 1993], the authors proposed
a rapidly mixing Markov chain (called the subgraphs-
world process) which evaluates the partition function
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of an arbitrary ferromagnetic Ising model in a positive
external field to any specified degree of accuracy.

The mixing time of the process is polynomial in
the size of the model at all temperatures. Indeed,
the expected running time of the generator of the
subgraphs-world process is O

(
|E|2N8(log δ−1 + |E|)

)
,

where δ is the confidence parameter. For more details,
see [Jerrum and Sinclair, 1993, Section 4].

The subgraphs-world process employs the following
expansion of Z defined on the set of edges W ⊆ E in
powers of tanh(H) and tanh(Je) as

Z ∝
∑
W⊆E

tanh(H)|odd(W)|
∏
e∈W

tanh(Je), (18)

where odd(W) denotes the set of all odd-degree vertices
in the subgraph of E induced byW . The expansion (18)
is known as the high-temperature series expansion
of the partition function [Newell and Montroll, 1953,
Yeomans, 1992, Grimmett and Janson, 2009].

Proposition 1. The configurations that arise in the
high-temperature series expansion of the partition func-
tion (which are the configurations of the subgraphs-
world process) coincide with the valid configurations
in the dual NFG of the Ising model.

See [Molkaraie and Gómez, 2018, Section VIII] and
[Forney, 2018, Section III-E] for the proof.

Following Proposition 1, we can employ the subgraphs-
world process (as a generator for the subgraphs-world
configurations) to generate configurations in the dual
NFG of the Ising model. The process is rapidly mixing
and therefore converges in polynomial time. However,
under reasonable complexity assumptions, there is no
generalization of this approximation scheme to the (non-
binary) Potts model or to spin glasses. For more details,
see [Goldberg and Jerrum, 2012, Galanis et al., 2016].

Next, we will present local (edge-based) mappings that
transform marginal densities from the dual NFG to the
primal NFG, or vice versa. The mappings depend on
the DFT of the local factors of the models.

5 MARGINAL DENSITIES IN THE
PRIMAL AND DUAL DOMAINS

The edge marginal PMF of e ∈ E in the primal NFG
can be computed as

πp,e(a) = Zp,e(a)
Zp

, a ∈ A, (19)

where

Zp,e(a) =
∑

x∈AN
δ(ye − a)

∏
e′∈E

ψe′(ye′)
∏
v∈V

φv(xv).

. . . = + = . . . −−−→
dual

. . . + = + . . .

ξe ξ̃e

Figure 3: The edge e ∈ E in the intermediate primal
NFG (left) and in the intermediate dual NFG (right).
The unlabeled box (left) represents (22) and the unla-
beled box (right) represents (23).

Hence
Zp,e(a) = ψe(a)Se(a), (20)

with

Se(a) =
∑

x∈AN
δ(ye − a)

∏
e′∈E\e

ψe′(ye′)
∏
v∈V

φv(xv).

(21)
Here, Zp,e(a) ≥ 0 and Zp =

∑
a∈A Zp,e(a) =∑

a∈A ψe(a)Se(a), hence (19) is a valid PMF over AN .

In coding theory terminology, {ψe(a), a ∈ A} is called
the intrinsic message vector and {Se(a), a ∈ A} is
called the extrinsic message vector at edge e ∈ E .
According to the sum-product message passing up-
date rule, the edge marginal PMF vector is com-
puted as the dot product of the intrinsic and extrin-
sic message vectors up to scale. The scale factor
is equal to the partition function Zp [Forney, 2001,
Kschischang et al., 2001].

In our setup, Se(a) is the partition function of an inter-
mediate primal NFG with all factors as in the primal
NFG, excluding the factor ψe(ye), which is replaced by

ξe(ye; a) = δ(ye − a). (22)

Fig. 3 (left) shows the corresponding edge in the inter-
mediate primal NFG. The intermediate dual NFG is
shown in Fig. 3 (right), in which the factor ψ̃e(ỹe) is
replaced by

ξ̃e(ỹe; a) =
{
δ(a) + δ(1− a), if ỹe = 0
δ(a)− δ(1− a), if ỹe = 1,

(23)

which is the 1D DFT of (22). According to the NFG
duality theorem (17), the partition function of the
intermediate dual NFG is α(G) · Se(a).

Similarly, in the dual NFG the edge marginal PMF of
e ∈ E is

πd,e(a′) = Zd,e(a′)
Zd

, a′ ∈ A. (24)

Hence

Zd,e(a′) = ψ̃e(a′)·( ∑
ỹ∈A|E|

δ(ỹe − a′)
∏

e′∈E\e

ψ̃e′(ỹe′)
∏
v∈V

φ̃v(x̃v)
)

= ψ̃e(a′)S̃e(a′). (25)
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Proposition 2. The vectors {Se(a), a ∈ A} and
{S̃e(a′), a′ ∈ A} are DFT pairs.

Proof. For a ∈ A, the partition function of the
intermediate dual NFG is the dot product of message
vectors {ξ̃e(a′; a), a′ ∈ A} and {S̃e(a′), a′ ∈ A}. Thus

α(G) · Se(a) =
∑
a′∈A

ξ̃e(a′; a)S̃e(a′), (26)

which gives

α(G) · Se(a) =
(
S̃e(0) + S̃e(1)

)
· δ(a)+(

S̃e(0)− S̃e(1)
)
· δ(1− a). (27)

After setting a = 0 and a = 1 in (27), we obtain[
Se(0)

Se(1)

]
= 1
α(G)

[
1 1

1 −1

]
·

[
S̃e(0)

S̃e(1)

]
(28)

which is an instance of the two-point DFT. �

Proposition 3. The vectors {πp,e(a)/ψe(a), a ∈ A}
and {πd,e(a′)/ψ̃e(a′), a′ ∈ A} are DFT pairs.

Proof. From (19) and (21) we have

Se(a) = Zp ·
πp,e(a)
ψe(a) , a ∈ A. (29)

But (17), (24), and (25) yield

S̃e(a′) = Zd ·
πd,e(a′)
ψ̃e(a′)

(30)

= α(G) · Zp ·
πd,e(a′)
ψ̃e(a′)

, a′ ∈ A. (31)

Putting (31) and (29) in (28), and after a little rear-
ranging, we obtain the following mapping[

πp,e(0)/ψe(0)

πp,e(1)/ψe(1)

]
=
[

1 1

1 −1

]
·

[
πd,e(0)/ψ̃e(0)

πd,e(1)/ψ̃e(1)

]
(32)

in matrix-vector format via the two-point DFT. �

By virtue of Proposition 3, it is possible to estimate
edge marginal densities in one domain, and then trans-
form them to the other domain all together. The
mapping is fully local, and is independent of the size
of the graph N and of the topology of G. (Indeed, the
relevant information regarding the rest of the graph is
incorporated in the estimated edge marginal densities.)

We state without proof that

Proposition 4. The vectors {πp,v(a)/φv(a), a ∈ A}
and {πd,v(a′)/φ̃v(a′), a′ ∈ A} are DFT pairs.

6 DETAILS OF THE MAPPING
FOR THE ISING MODEL

For the general Ising model substituting factors (9)
and (15) in (32) yields

[
πp,e(0)

πp,e(1)

]
=


eβJe

2 cosh(βJe)
eβJe

2 sinh(βJe)
e−βJe

2 cosh(βJe)
− e−βJe

2 sinh(βJe)

·
[
πd,e(0)

πd,e(1)

]

(33)
for βJe 6= 0.

Let us consider a homogeneous and ferromagnetic Ising
model. A straightforward calculation shows that the
fixed points of the mapping (33) are given by[

π∗p,e(0) π∗p,e(1)
]

=[
eβJ cosh(βJ)
1 + sinh(2βJ)

e−βJ sinh(βJ)
1 + sinh(2βJ)

]
(34)

Fig. 4 shows the fixed points (34) as a function of βJ .

Proposition 5. The min of π∗p,e(0) and the max of
π∗p,e(1) are attained at the criticality of the 2D homo-
geneous Ising model without an external field.

Proof. In the thermodynamic limit (i.e., as N →∞)
the 2D Ising model undergoes a phase transition at
βJc = ln(1 +

√
2)/2 ≈ 0.44 [Onsager, 1944].

In the absence of an external field and for βJ = 1, the
Hamiltonian (7) can be expressed as

H(y) = −
∑
e∈E

(
2δ(ye)− 1

)
(35)

= −
∑
e∈E

(1− 2ye), (36)

where ye = xi − xj for e = (i, j) ∈ E .

The average energy is equal to

H(y) =
∑
y∈A

πp(y)H(y) (37)

= −|E| · (1− 2 E[Ye]) (38)
= −|E| · (1− 2πp,e(1)). (39)

In the 2D Ising model with periodic boundaries |E| =
2N , thus the average energy per site is given by

H(y)/N = −2(1− 2πp,e(1)). (40)

From Onsager’s closed-form solution

lim
N→∞

lnZ
N

= 1
2 ln(2 cosh2 2βJ)+

1
π

∫ π
2

0
ln
(
1 +

√
1− κ2 sin2 θ

)
dθ (41)
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Figure 4: The fixed points (34) as a function of βJ .
The filled circles show the fixed points at criticality of
the 2D Ising model given by (46).

and the average (internal) energy per site is given by

U(βJ) = lim
N→∞

− 1
N
· ∂ lnZ
∂βJ

(42)

= − coth(2βJ)·(
1− 1

2π (1− κ sinh 2βJ)
∫ π

2

0

dθ√
1− κ2 sin2 θ

)
(43)

with
κ(βJ) = 2 sinh 2βJ

cosh2 2βJ
· (44)

See [Onsager, 1944], [Baxter, 2007, Chapter 7] for more
details.

A routine calculation shows that κ(βJc) = 1, thus

U(βJc) = −
√

2. (45)

From (40) and (45), we obtain π∗p,e(1) = (2 −
√

2)/4.
Therefore, at criticality[

π∗p,e(0) π∗p,e(1)
]

=[
(2 +

√
2)/4 (2−

√
2)/4

]
, (46)

which coincides with the min of π∗p,e(0) and the max
of π∗p,e(1). We emphasize that in the 2D homogeneous
Ising model in zero field and in the thermodynamic
limit (i.e., as N →∞), edge marginal densities in the
primal and dual domains are equal at criticality. �

The fixed points π∗p,e(0) and π∗p,e(1) at criticality in (46)
are illustrated by filled circles in Fig. 4.

Proposition 6. In an arbitrary ferromagnetic Ising
model in a nonnegative external field, it holds that

πp,e(0) ≥ 1
1 + e−2βJe

(47)

and
πd,e(0) ≥ 1 + e−2βJe

2 . (48)

0 1 2 3
0.5

0.6

0.7

0.8

0.9

1

βJc

βJe

Lower bound on πp,e(0) in (47)
Lower bound on πd,e(0) in (48)

Figure 5: For a ferromagnetic Ising model in a nonneg-
ative external field, the solid black plot and the dashed
blue plot show the lower bound on πp,e(0), given by
(47), and the lower bound on πd,e(0), given by (48),
as a function of βJe, respectively. The lower bounds
intersect at the criticality of the 2D homogeneous Ising
model in zero field, denoted by βJc.

Proof. Since the Ising model is ferromagnetic and in
a nonnegative external field, we can define the global
PMF πd,e(·) in the dual domain as in (14). From (33),
we have

πp,e(0)
eβJe

= πd,e(0)
2 cosh(βJe)

+ πd,e(1)
2 sinh(βJe)

(49)

= 1
2 sinh(βJe)

− e−βJe

sinh(2βJe)
πd,e(0). (50)

We conclude from (50) that πp,e(0) achieves its mini-
mum when πd,e(0) = 1. After substituting πd,e(0) = 1
in (50), and after a little rearranging, we obtain

πp,e(0) ≥ eβJe

2 cosh(βJe)
(51)

= 1
1 + e−2βJe

· (52)

The proof of (48) follows along the same lines. �

Proposition 6 is valid for arbitrary ferromagnetic Ising
models in a nonnegative external magnetic field, i.e.,
the bonds do not depend on N (the size of the graphical
model G) and on the topology of G.

Fig. 5 shows the lower bounds in (47) and (48) as a
function of βJe. The lower bounds intersect at βJc, i.e.,
at the criticality of the 2D homogeneous Ising model
in the absence of an external field.

Remark 1. From (47) and (48) we conclude that in an
arbitrary ferromagnetic Ising model in a nonnegative
external field

πp,e(0)πd,e(0) ≥ 1
2 , (53)

which is in the form of an uncertainty principle.
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7 GENERALIZATION TO
NON-BINARY MODELS

We briefly discuss extensions of our mapping to non-
binary models, in particular to the q-state Potts
model [Wu, 1982, Baxter, 2007]. Accordingly, we let
A = Z/qZ for some integer q ≥ 2. (The binary Ising
model is recovered as the special case q = 2.)

In the absence of an external field, the Hamiltonian of
the model is given by

H(x) = −
∑
e∈E

Je · δ(ye). (54)

From (8) and (54), we obtain that in the primal NFG

ψe(ye) =
{
eβJe , if ye = 0
1, otherwise, (55)

and in the dual NFG, factors are equal to the 1D DFT
of (55) given by

ψ̃e(ỹe) =
{
eβJe − 1 + q, if ỹe = 0
eβJe − 1, otherwise, (56)

which is nonnegative if the model is ferromagnetic
(i.e., Je ≥ 0). See [Al-Bashabsheh and Mao, 2014,
Molkaraie and Gómez, 2018] for more details on con-
structing the primal and the dual NFG of the Potts
model, with or without an external field.

A straightforward generalization Proposition (3) gives
the mapping between {πp,e(a)/ψe(a), a ∈ A} and
{πd,e(a′)/ψ̃e(a′), a′ ∈ A} via Wq = {wk,`, k, ` ∈ A}
with wk,` = e

−2πi
|A| k`, where Wq is the q-point DFT

matrix (i.e., the Vandermonde matrix for the roots of
unity) and i =

√
−1 (see [Bracewell, 1999]).

However, due to symmetry in the factors of the pri-
mal (55) and the dual Potts model (56), we have

πp,e(1)/ψe(1) = . . . = πp,e(q − 1)/ψe(q − 1) (57)

and

πd,e(1)/ψ̃e(1) = . . . = πd,e(q − 1)/ψ̃e(q − 1). (58)

Thus, e.g., for q = 3, the mapping yields
πp,e(1)
ψe(1) = πd,e(0)

ψ̃e(0)
+ πd,e(1)

ψ̃e(1)
e
−2πi

3 + πd,e(2)
ψ̃e(2)

e
−4πi

3

= πd,e(0)
ψ̃e(0)

− πd,e(1)
ψ̃e(1)

, (59)

which is real-valued.

For a homogeneous and ferromagnetic Potts model, the
fixed points of π∗p,e(0) can be derived as

π∗p,e(0) = eβJ(eβJ − 1 + q)
e2βJ − 2(1− q)eβJ + 1− q · (60)
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1

π∗p,e(0) in (60)

βJ

q = 3
q = 4
q = 5
q = 10
q = 100

Figure 6: The fixed points (60) as a function of βJ for
different values of q. The filled circles show the fixed
points at criticality of the 2D Potts model located at
βJc = ln(1 +√q).

Fig. 6 shows the fixed point (60) as a function of βJ .
Like the Ising model, the minimum of π∗p,e(0) is attained
at the criticality of the 2D Potts model located at βJc =
ln(1+√q) [Wu, 1982]. In a similar way, one can obtain
the fixed points of π∗p,e(t), for t ∈ {1, 2, . . . , q − 1}.

Remark 2. Transforming marginals from one do-
main to the other requires a matrix-vector multiplica-
tion with computational complexity O(|A|2). However,
when there is symmetry in the factors, as in (9) and (55),
the complexity can be reduced to O(|A|).

Remark 3. In binary models, factors in the dual NFG
can in general take negative values, and in nonbinary
models, the factors can be complex-valued. In such
cases a valid PMF can no longer be defined in the dual
domain. The mappings remain nevertheless valid; but
for marginal functions (instead of marginal densities)
of a global function with a factorization given by (14).

8 NUMERICAL EXPERIMENTS

In both domains estimates of marginal densities can be
obtained via Monte Carlo methods or via variational
algorithms [Robert and Casella, 2004, Murphy, 2012].
We only consider the subgraphs-world process (SWP)
and two variational algorithms, the belief propagation
(BP) and the tree expectation propagation (TEP), for
the Ising model. Estimated marginals in the dual
domain are then transformed all together to the primal
domain via (32) and(59). In all experiments, the exact
marginal densities are computed via the junction tree
algorithm implemented in [Mooij, 2010].

The choice of methods and the models is far from
exhaustive – our goal is to show the advantage of using
the mappings in approximating marginal densities in
similar settings. Additional numerical experiments are
reported in the Supplementary Material.
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external field βH = 0.15, with periodic boundaries,
and with size N = 6× 6.

In our first experiment, we consider a 2D homogeneous
Ising model, in a constant external field βH = 0.15,
with periodic boundaries, and with size N = 6 × 6.
For this model, BP and TEP in the primal and in
the dual domains give virtually indistinguishable ap-
proximations. We also apply SWP using 105 samples.
Fig. 7 shows the relative error in estimating πp,e(0) as
a function of βJ , where SWP (which operates in the
dual NFG) gives good estimates in the whole range.

Compared to variational algorithms, convergence of the
SWP is slow; moreover, SWP is only applicable to fer-
romagnetic Ising models in a positive field. (Indeed, in
order to have an irreducible Markov chain in the SWP
the external field needs to be non-zero [Welsh, 1993,
Chapter 8]). In the rest of the experiments, we consider
Ising models in the absence of an external field, and
only compare the efficiency of variational algorithms
employed in the primal and in the dual domains.

In the second experiment, we consider a 2D Ising model
with size N = 6 × 6 and with periodic boundaries.
Couplings are chosen randomly according to a half-
normal distribution, i.e., βJe = |βJ ′e| with βJ ′e

i.i.d.∼
N (0, σ2). Fig. 8 shows the average relative error in
estimating the marginal density πp,e(0) as a function of
σ2, where the results are averaged over 200 independent
realizations. We consider a fully-connected Ising model
with N = 10 in our last experiment. Couplings are
chosen randomly according to βJe

i.i.d.∼ U [0.05, βJx],
i.e., uniformly between 0.05 and βJx denoted by the
x-axis. The average relative error over 50 independent
realizations is illustrated in Fig. 9.

In both experiments, BP and TEP provide close approx-
imations in the dual domain, therefore only BP results
are reported. Figs. 8 and 9 show that for σ2 > 0.25
and βJx > 0.20, BP in the dual NFG can significantly
improve the quality of estimates – even by more than
two orders of magnitude in terms of relative error.
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Figure 8: Average relative error in estimating πp,e(0) of
an Ising model with periodic boundaries and with size
N = 6× 6. Couplings are chosen randomly according
to a half-normal distribution with variance σ2.
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Figure 9: Average relative error in estimating πp,e(0) in
a fully-connected Ising model with N = 10. Coupling
parameters are chosen uniformly and independently
between 0.05 and βJx denoted by the x-axis.

9 CONCLUSION

We proved that marginals densities of a primal NFG
and the corresponding marginal densities of its dual
NFG are related via local mappings. The mapping pro-
vides a simple procedure to transform simultaneously
the estimated marginals from one domain to the other.
Furthermore, the mapping relies on no assumptions
on the size or on the topology of the graphical model.
Our numerical experiments show that estimating the
marginals in the dual NFG can sometimes significantly
improve the quality of approximations in terms of rel-
ative error. In the special case of the ferromagnetic
Ising model in a positive external field, there is indeed
a rapidly mixing Markov chain (the subgraphs-world
process) to generate configurations in the dual domain.
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