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Abstract

We propose Gaussian optimal transport for
image style transfer in an Encoder/Decoder
framework. Optimal transport for Gaussian
measures has closed forms Monge mappings
from source to target distributions. More-
over, interpolating between a content and
a style image can be seen as geodesics in
the Wasserstein Geometry. Using this in-
sight, we show how to mix different target
styles, using Wasserstein barycenter of Gaus-
sian measures. Since Gaussians are closed
under Wasserstein barycenter, this allows
us a simple style transfer and style mixing
and interpolation. Moreover we show how
mixing different styles can be achieved us-
ing other geodesic metrics between gaussians
such as the Fisher Rao metric, while the
transport of the content to the new interpo-
late style is still performed with Gaussian
OT maps. Our simple methodology allows
to generate new stylized content interpolat-
ing between many artistic styles. The metric
used in the interpolation results in different
stylizations. A demo is available on https:
//wasserstein-transfer.github.io.

1 Introduction

Image style transfer consists in the task of modify-
ing an image in a way that preserves its content and
matches the artistic style of a target image or a collec-
tion of images. Defining a loss function that captures
this content/style constraint is challenging. A big
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progress in this field was made since the introduc-
tion of the neural style transfer in the seminal work
of Gatys et al (Gatys et al., 2016, 2017). Gatys et
al showed that by matching statistics of the spatial
distribution of images in the feature space of deep
convolutional neural networks (spatial Grammian),
one could define a style loss function. In Gatys et
al method, the image is updated via an optimization
process to minimize this “network loss". One short-
coming of this approach is that is slow and that it
requires an optimization per content and per style
images. Many workarounds have been introduced to
speedup this process via feedforward networks opti-
mization that produce stylizations in a single forward
pass (Johnson et al., 2016; Ulyanov et al., 2016; Li
& Wand, 2016a; Wang et al., 2017). Nevertheless
this approach was still limited to a single style im-
age. (Ulyanov et al., 2017) introduced Instance Nor-
malization (IN) to improve quality and diversity of
stylization. Multiple styles neural transfer was then
introduced in (Dumoulin et al., 2017) thanks to Con-
ditional Instance Normalization(CIN). CIN adapts the
normalized statistics of the transposed convolutional
layers in the feedforward network with learned scaling
and biases for each style image for a fixed number of
style images. The concept of layer swap in (Chen &
Schmidt, 2016) resulted in one of the first arbitrary
style transfer. Adaptive instance Normalization was
introduced in (Huang & Belongie, 2017) by making
CIN scaling and biases learned functions from the
style image, which enabled also arbitrary style trans-
fer . The Whitening Coloring Transform (WCT) (Li
et al., 2017a) which we discuss in details in Section
2 developed a simple framework for arbitrary style
transfer using an Encoder/Decoder framework and op-
erate a simple normalization transform (WCT) in the
encoder feature space to perform the style transfer.

Our work is the closest to the WCT transform, where
we start by noticing that instance normalization layers
(IN,CIN, adaIN and WCT) are performing a trans-
port map from the spatial distribution of a content
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image to the one of a style image, via matching statis-
tics of the distributions in a deep CNN feature space.
First and second order statistics matching can be
cast as Gaussian optimal transport. The Wasserstein
geometry of Gaussian measures is very well studied
in optimal transport (Takatsu, 2011) and Gaussian
Optimal Transport (OT) maps have closed forms. We
show in Section 3 that those normalization transforms
are approximations of the OT maps. Linear interpola-
tions of different content or styles at the level of those
normalization feature transforms have been success-
fully applied in (Huang & Belongie, 2017; Dumoulin
et al., 2017) we show in Section 4 that this can be
interpreted and improved as Gaussian geodesics in the
Wasserstein geometry . Furthermore using this insight,
we show in Section 5 that we can define novel styles
using Wasserstein barycenyter of Gaussians (Agueh &
Carlier, 2011). We also extend this to other Fréchet
means in order to study the impact of the ground
metric used on the covariances in the novel style ob-
tained via this non linear interpolation. Experiments
are presented in Section 7.

2 Universal Style Transfer In the
Lens of Optimal Transport

We review in this Section the approach of universal
style transfer of WCT (Li et al., 2017a).

Encoding Map. Given a content image Ic and a
style image Is and a Feature extractor Fj : Rd →
Rm, j = 1 . . . n, where n is the spatial output of F , m
is its feature dimension . Define the following Encoding
map: E : I ∈ Rd → νI = 1

n

∑n
j=1 δFj(I) ∈ P(Rm)

where P(Rm) is the space of empirical measures on
Rm. For example F is a VGG (Simonyan & Zisserman,
2014) CNN that maps an image to RC×(H×W )(C is
the number of channels, H the height and W the
width). In other words the CNN defines a distribution
in the space of dimension m = C, and we are given
n = H ×W samples of this distribution. We note
ν = E(I) this empirical distribution, i.e the spatial
distribution of image Ic in the feature space of a deep
convolutional network F .

Decoding Map. We assume that the encoding E is
invertible , i.e exists: D : ν ∈P(Rm)→D(ν) ∈ Rd,
such that D(E(I)) = I. (E,D) is a VGG image
Encoder/ Decoder for instance trained from the pixel
domain to a spatial convolutional layer output in VGG
and vice-versa.

Universal Style Transfer in Feature Space. Uni-

versal style transfer approach (Li et al., 2017a) works
in the following way: WCT (Whitening Coloring
Transform) defines a transform Tc→s in the feature
space Rm: Tc→s : x ∈ Rm → Tc→s(x) ∈ Rm , the
style transfer Transform Tc→s operates in the feature
space and defines naturally a push forward map on the
spatial distribution of the features of content image
Ic:

Tc→s,#(ν(Ic)) :=
1

n

n∑
j=1

δTc→s(Fj(Ic)).

Tc→s is defined so that the style transfer happens
in the feature space i.e Tc→s,#(ν(Ic)) = ν(Is). We
obtain the stylized image Ĩc→s by decoding back to
the image domain :

Ĩc→s = D(T c→s,#(E(Ic))).

From this formalism we see that the universal style
transfer problem amounts to finding a transport map
Tc→s from the spatial distribution of a content image
in a feature space ν(Ic) to the spatial distribution of a
target image in the same feature space ν(Is). We show
in the next section how to leverage optimal transport
theory to define such maps. Moreover we show that
the WCT transform and Adaptive instance normal-
ization are approximations to the optimal transport
maps.

3 Wasserstein Universal Style
Transfer

Given νc = E(Ic) and νs = E(Is), we formulate the
style transfer problem as finding an optimal Monge
map:

inf
T

∫
‖x− T (x)‖22 dνc(x), such that T#(νc) = νs

(1)
the optimal value of this problem is W 2

2 (νc, νs), the
Wasserstein two distance between νc and νs. Under
some regularity conditions on the distributions, the
optimal transport exists and is unique and Tc→s is the
gradient of a convex potential (Benamou & Brenier,
2000).

Wasserstein Geometry of Gaussian Measures.
Computationally Problem (1) can be solved using for
example entropic regularization of the equivalent Kan-
torovich form of W 2

2 (Cuturi, 2013; Peyré & Cuturi,
2017) or in an end to end approach using automatic
differentiation of a Sinkhorn loss (Frogner et al., 2015;
Feydy et al., 2018) . We take here another route, and
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find the transport map that allows moment match-
ing between the two distributions νc and νs. Using
first and second moments of νc and νs, this amounts
to computing the Wasserstein distance between the
Gaussian approximation of νc and νs:

W 2
2 (N (mµc ,Σµc),N (mνs ,Σνs))

where mµc ,Σµc are means and covariance of νc, and
mνs ,Σνs of νs. The Wasserstein geometry of Gaussian
measures is well studied and have many convenient
computational properties (Takatsu, 2011), we summa-
rize them in the following:

1) Closed Form W 2
2 . Given two Gaussians distri-

butions ν = N (mµ,Σµ), and µ = N (mν ,Σν) we
have: W 2

2 (N (mµ,Σµ),N (mν ,Σν)) = ||mν −mν ||2 +
d2

B(Σµ,Σν), where

d2
B(Σµ,Σν) = trace

(
Σµ + Σν − 2

(
Σ

1
2
µΣνΣ

1
2
µ

) 1
2

)
is the Bures metric between covariances. The Bures
metric is a goedesic metric on the PSD cone. (In
Section 5.2 we discuss properties of this metric).

2) Closed Form Monge Map. The optimal transport
map between two Gaussians with non degenerate co-
variances (full rank) has a closed-form: Tµ→ν : x →
mν+A(x−mµ), where A = Σ

− 1
2

µ

(
Σ

1
2
µΣνΣ

1
2
µ

) 1
2

Σ
− 1

2
µ =

A>, i.e Tµ→ν,#(µ) = ν and Tµ→ν is optimal in theW 2
2

sense. If the Gaussian were degenerate we can replace
the square root matrices inverses with pseudo-inverses
(Xia et al., 2014).

Gaussian Wasserstein Style Transfer. Using the
Gaussian approximation we obtain a closed form op-
timal map from the content distribution to the style
distribution as follows:

TWνc→νs(x) = µs +Ac→s(x− µc), (2)

where µc = 1
n

∑n
j=1 Fj(Ic), µs = 1

n

∑n
j=1 Fj(Is) , and

Σc = 1
n

∑n
j=1(Fj(Ic) − µc)(Fj(Ic) − µc)>, and Σs =

1
n

∑n
j=1(Fj(Is) − µs)(Fj(Is) − µs)

> are means and
covariances of νc and νs resp. and

Ac→s = Σ
− 1

2
c

(
Σ

1
2
c ΣsΣ

1
2
c

) 1
2

Σ
− 1

2
c .

Finally the Universal Wasserstein Style Transfer can
be written in the following compact way, that is sum-
marized in Figure 1:

Ĩc→s = D(TWνc→νs,#(E(Ic))). (3)

Relation to WCT and to Adaptive Instance
Normalization. We consider two particular cases:
1) Commuting covariances and WCT (Li et al.,
2017a). Assuming that the covariances Σc and Σs

commute meaning that ΣcΣs = ΣsΣc (Σs and Σc

have a common orthonormal basis ) it is easy to see
that the optimal transport map reduces to :

TWνc→νs(x) = µs + Σ
1
2
s Σ
− 1

2
c (x− µc) = TWCT

c→s (x)

which is exactly the Whitening and Coloring Trans-
form (WCT). Hence we see that WCT (Li et al.,
2017a) is only optimal when the covariances commute
(a particular case is diagonal covariances).

2) Diagonal Covriances and AdaIN, Instance Normal-
ization (IN) and Conditional Instance Normalization
(CIN)(Huang & Belongie, 2017; Ulyanov et al., 2017;
Dumoulin et al., 2017). Let σs be the diagonal of Σs
and σc be the diagonal of Σc. In case the covariances
were diagonal it is easy to see that:

TWνc→νs(x) = µs +
√
σs �

(x− µc)√
σc

= AdaIN(x),

this is exactly the expression of adaptive instance
normalization AdaIN. We conclude that AdaIN, IN
and CIN implement a diagonal approximation of the
optimal Gaussian transport map ((µs, σs), are learned
constant scaling and biases in IN and CIN , and are
adaptive in adaIN).

4 Wasserstein Style/Content
Interpolation with McCann
Interpolates

One shortcoming of the formulation in problem (1)
is that it does not allow to balance the content/style
preservation as it is the case in end to end style trans-
fer. Let t ∈ [0, 1] we formulate the style transfer
problem with content preservation as follows:

min
ν

(1− t)W 2
2 (ν, νc) + tW 2

2 (ν, νs), (4)

The first term in Equation (4) measure the usual
"content loss" in style transfer and the second term
measures the "style loss". t balances the interpolation
between the style and the content. In optimal trans-
port theory, Problem (4) is known as the McCann
interpolate (McCann, 1997) between νc and νs and
the solution of (4) is a Wasserstein geodesic from νc
to νs and is given by:

νt = [(1− t)Id + tTνc→νs ]#(νc)
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Figure 1: Wasserstein Style Transfer

Using again Gaussian optimal transport, we find a
Gaussian distribution N (µ,Σ) that interpolates be-
tween the Gaussian approximations of source and
target distributions as follows:

min
ν∼N (µ,Σ)

L (ν), (5)

where L (ν) = (1 − t)W 2
2 (N (µ,Σ),N (µc,Σc)) +

tW 2
2 (N (µ,Σ),N (µs,Σs)). Fortunately this problem

has also a closed form (McCann, 1997):

νt = N (µt,Σt) = [(1− t)Id + tTWνc→νs ]]#(νc),

where TWνc→νs is given in Equation (2). {νt}t∈[0,1] is a
geodesic between νc and νs. Finally the Wasserstein
Style/Content Interpolation can be written in the
following compact way:

νt = (1− t)E(Ic) + tTWνc→νs,#(E(Ic)), (6)

Ĩtc→s = D(νt). (7)

In practice both WCT and AdaIN propose similar
interpolations in feature space, we give here a formal
justification for this approach. This formalism allows
us to generalize to multiple styles interpolation using
the Gaussian Wasserstein barycenters.

5 Wasserstein Style Interpolation

Given {(Ijs , λj)}j=1...S , S target styles images, and a
content image (Ic, λS+1),where λj are interpolation
factors such that

∑S+1
j=1 λj = 1. A naive approach to

content/S styles interpolation can be given by:

νλ =

S∑
j=1

λjT
W
c→sj ,#(E(Ic))+λS+1E(Ic), I

λ
s = D(νλ),

this approach was proposed in both WCT and AdaIn
by replacing TW by TWCT and AdaIN respectively.
We show here how to define a non linear interpolation
that exploits the Wasserstein geometry of Gaussian
measures.

5.1 Interpolation with Wasserstein
Barycenters

Similarly to the content /style interpolation, we for-
mulate the content / S styles interpolation problem as
a Wasserstein Barycenter problem (Agueh & Carlier,
2011) as follows. Let νjs = E(Ijs ), and νc = E(Ic), we
propose to solve the following Wasserstein Barycenter
problem:

νsλ = arg min
ν

S∑
j=1

λjW
2
2 (ν, νjs) + λS+1W

2
2 (ν, νc)

and then find the optimal map from νc to the barycen-
ter measure νsλ Tνc→νsλ . The final stylized image is
obtained as follows: Ĩλs = D(Tνc→νsλ(E(Ic))).

Again we resort to Gaussian optimal transport, and
solve instead the following problem:

νsλ = arg min
ν∼N (µ,Σ)

L (ν), (8)

where L (ν) =
∑S
j=1 λjW

2
2 (N (µ,Σ),N (µjs,Σ

j
s)) +

λS+1W
2
2 (N (µ,Σ),N (µc,Σc)). As shown by Agueh

and Carlier (Agueh & Carlier, 2011) the Wasser-
stein Barycenter of Gaussians is itself a Gaussian
νsλ = N (µ̄λ, Σ̄λ), where µ̄λ =

∑S
j=1 µ

s
j + λS+1µc, and

Σ̄λ is a Bures Mean. Noting ΣS+1
s = Σc we have:

Σ̄λ = arg min
Σ

S+1∑
j=1

λjd
2
B(Σ,Σjs)

Agueh and Carlier showed that Σ̄λ is the unique pos-
itive definite matrix solution of the following fixed

point problem: Σ̄ =
∑S+1
j=1 λj

(
Σ̄

1
2 ΣjsΣ̄

1
2

) 1
2

. In order
to solve this problem we use an alternative fixed point
strategy proposed in (Álvarez Esteban et al.), since it
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Figure 2: Wasserstein Barycenter Interpolation between a content image and two target styles images. The
weights {λj} used are given above the two examples.

converges faster in practice. For ` = 0 . . . L− 1:

Σ̄` =

S+1∑
j=1

λjΣ̄
− 1

2

`−1

(
Σ̄

1
2

`−1ΣjsΣ̄
1
2

`−1

) 1
2

Σ̄
− 1

2

`−1, (9)

and we initialized as in (Xia et al., 2014): Σ̄0 =
Σj0
s , j0 = arg maxj=1...S+1 λj , we found that L = 50

was enough for convergence, i.e we set Σ̄λ = Σ̄L. Ma-
trix square root and inverses were computed using
SVD which gives an overall complexity of O(Lm3)
and we used truncated SVD to stabilize the inverses.
Finally since the Barycenter is a Gaussian , the opti-
mal transport map from the Gaussian spatial content
distribution N (µc,Σc) to the barycenter (mix of styles
and content) N (µ̄λ, Σ̄λ) is given in closed form as in
Equation (2):

TW
νc→νsλ

(x) = µ̄λ + Σ
− 1

2
c

(
Σ

1
2
c Σ̄λΣ

1
2
c

) 1
2

Σ
− 1

2
c .(x− µc) .

(10)
Finally to obtain the stylized image as a result of
targeting the mixed/style νsλ we decode back:

Ĩλcs = D(TW
νc→νsλ

(νc)).

Figures 2 and 3 give an example of our approach for
mixing content images with style images. We see
that the Wasserstein barycenter captures not only the
color distribution but also the details of the artistic
style (for instance Frida Kahlo’s unibrow is well cap-
tured smoothly in the transition between Picasso self
portrait and Frida Kahlo).

Figure 3: Wasserstein barycenters for Style Mixing
and Transfer. The content image on the right corner
of the triangle is mixed with the two styles images.
Each image in the triangle correspond to a set of inter-
polation weights defined by proximity to the content
or style images in the triangle.
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5.2 Style Interpolation with Fréchet Means

In the previous section we defined interpolations be-
tween the content and the styles images. In this
section we define a "novel style" via an interpolation
of style images only, we then map the content to the
novel style using Gaussian optimal transport.

From Wasserstein Barycenter to Fréchet
Means on the PSD manifold. As discussed
earlier the Wasserstein Barycenter of the Gaussian
approximations of the spatial distribution of style
images in CNN feature spaces can be written as:

min
µ,Σ

S∑
j=1

λj
(
d2
µ(µ, µjs) + d2

cov(Σ,Σjs)
)
, (11)

for d2
µ(µ, µ′) = ‖µ− µ′‖22 the euclidean metric ,

d2
cov(Σ,Σ

′) = d2
B(Σ,Σ′), the Bures metric.

The Bures Metric is a geodesic metric on the positive
definite cone and and has another representation as a
procrustes registration metric (Masarotto et al., 2018):

d2
B(Σ,Σ′) = min

U∈Rm×m,UU>=I

∥∥∥√Σ−
√

Σ′U
∥∥∥2

F
.

From this we see the advantage of Wasserstein barycen-
ter on for example using d2

cov(Σ,Σ′) = ‖Σ− Σ′‖2F
the Frobenius norm. Bures Metric aligns the the
square root of covariances using a rotation. From
this we see that by defining a new metric on covari-
ances we can get different form of interpolates, we
fix d2

µ(µ, µ′) = ‖µ− µ′‖22, and hence on µ we use al-
ways the arithmetic mean µarth =

∑S
j=1 λjµ

j
s. We

give here different metrics d2
cov that defines different

Fréchet means on the PSD manifold (see (Bhatia,
2013) and references there in):

1) Arithmetic Mean: Solving Eq. (11) for
d2
cov(Σ,Σ′) = ‖Σ− Σ′‖2F , we define the target style
νλ,arths = N (µarth,Σarth), where Σarth =

∑S
j=1 λjΣ

s
j .

2) Harmonic Mean: Solving Eq. (11) for
d2
cov(Σ,Σ′) =

∥∥Σ−1 − Σ′−1
∥∥2

F
, we define the

target style νλ,Harm
s = N (µarth,ΣHarm), where

ΣHarm =
(∑S

j=1 λj(Σ
s
j)
−1
)−1

.

3) Fisher Rao Mean (Karcher or Geometric

Mean). For d2
cov(Σ,Σ

′) =
∥∥∥log(Σ−

1
2 Σ′Σ−

1
2 )
∥∥∥2

F
=

2F 2(N (0,Σ),N (0,Σ′)), that is the Riemannian nat-
ural metric or the Fisher Rao metric between Cen-
tered Gaussians. log here refers to matrix logarithm.

The Fisher Rao metric is a geodesic distance and
its metric tensor is the Fisher information matrix
. Solving Eq. (11) with the Fisher Rao metric we
obtain the so called Karcher Mean between PSD
matrices ΣFisherRao, and we define the target style
νλ,FisherRao
s = N (µarth,ΣFisherRao).
In order to find the Karcher mean we use manifold
optimization techniques of (Zhang & Sra, 2016) as
follows. The gradient manifold update is :

Σ` = Σ
1
2

`−1 exp

−η S∑
j=1

log
(

Σ
1
2

`−1(Σsj)
−1Σ

1
2

`−1

)Σ
1
2

`−1,

(12)
we initialize Σ0 as in the Wasserstein case and iterate
for L = 50 iterations with η the learning rate set to
0.01.

Remark 1. While we defined here the barycenter style
of each metric as a Gaussian, Wasserstein Barycenter
is the only one that guarantees a Gaussian barycenter
(Agueh & Carlier, 2011).

Mapping a content image to a target novel
style. Given now the new style νλ,mean

s , where mean
is in {arth, harm,Fisher Rao,Wasserstein}, we stylize
a content image Ic using Gaussian Optimal transport
as described in the paper:

Ĩc→s = D(TWνc→νλ,mean
s ,#(E(Ic))).

Our approach is summarized in Algorithms 1 and 2 .

Algorithm 1 Frechet Mean Style Interpola-
tion and Content Stylization(dcov)

Inputs: {Ijs}j=1...S style images, content Image Ic
, interpolations weights {λj}j=1...S+1, Encoder/De-
coder (E,D),.
Encode: νc = E(Ic), ν

j
s = E(Ijs ), j = 1 . . . S

Statistics: (µc,Σc), (µ
j
s,Σ

j
s), j = 1 . . . S

Content/Style or Style only: if content/style
µsS+1 = µc,Σ

s
S+1 = Σc, , S ← S + 1 , else pass.

Target Bary Mean: µ̄λ =
∑S
j=1 λjµj .

Target Bary Covariance: Σ̄λ =Frechet
mean({λj ,Σjs}, dcov)
Novel Style: νλs = N (µ̄λ, Σ̄λ)
Gaussian OT Content to Target: Compute
νcs = TW

νc→νsλ,#
(νc) given in Eq. (10)

Decode: D(νcs)
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Algorithm 2 FRECHET MEAN({λj ,Σjs}, dcov)

Initialize: Σ̄0 = Σj0s , j0 = arg maxj=1...S λj
if dcov = dBures find Σ̄λ solve using iterations in Eq
(9)
if dcov = dFisher Rao find Σ̄λ solve using iterations
in Eq (12)
if dcov = dFrobeinus Σ̄λ =

∑
j λjΣ

s
j

if dcov = dHarmonic Σ̄λ = (
∑
j λj(Σ

s
j)
−1)−1

6 Related works
OT for style Transfer and Image coloring.
Color transfer between images using regularized op-
timal transport on the color distribution of images
(RGB for example) was studied and applied in (Fer-
radans et al., 2013). The color distribution is not
gaussian and hence the OT problem has to be solved
using regularization. Optimal transport for style trans-
fer using the spatial distribution in the feature space
of a deep CNN was also explored in (Marron, 2018;
Kolkin et al., 2019; Lu et al., 2019). Marron (2018)
uses W 2

2 for Gaussians as content and style loss and
optimizes it in an end to end fashion similar to (Gatys
et al., 2016, 2017). (Kolkin et al., 2019) uses an ap-
proximation of the Wasserstein distance as a loss that
is also optimized in an end to end fashion. Both ap-
proaches don’t allow universal style transfer and an
optimization is needed for every style/content image
pairs. Lu et al. (2019) is closely related to our work
and uses a form of Gaussian optimal transport but
does not extend to the interpolation case using OT
barycenters.

Wasserstein Barycenter for Texture Mixing.
Similar to our approach for Wasserstein mixing in
an encoder/decoder framework, (Rabin et al., 2012)
uses the wavelet transform to encode textures, applies
Wasserstein barycenter on wavelets coefficients, and
then decodes back using the inverse wavelet transform
to synthesize a novel mixed texture. The wasserstein
barycenter problem there has to be solved exactly and
the Gaussian approximation can not be used since
the wavelet coffecient distribution is not Gaussian. A
special model for Gaussian texture mixing was devel-
oped in (Xia et al., 2014) and (Wang et al., 2018).
Interpolating different styles was also addressed in
(Wynen et al., 2018) based on archetypal analysis.

Other approaches to style Transfer. While our
focus in this paper was on OT metrics for style transfer
other approaches exist (see (Jing et al., 2017) for a

review) and have used different type of losses such as
MRF loss (Li & Wand, 2016b) , MMD loss (Li et al.,
2017b), GAN loss (Li & Wand, 2016a) and cycle GAN
loss (Zhu et al., 2017).

7 Experiments

In order to test our approach of geometric mixing of
styles we use the WCT framework (Li et al., 2017a),
where we use a pyramid of 5 encoders (Er, Dr), r =
1 . . . 5 at different spatial resolutions, where (E5, D5)
corresponds to the coarser resolution, and (E1, D1)
the finer resolution. Following WCT we use a coarse
to fine approach to style transfer as follows. Given
interpolation weights {λj , j = 1 . . . S}, we start with
r = 5 and with νc = E5(Ic):

1. We encode all style images at resolution r,
Er(I

j
s ), j = 1 . . . s. We define the mixed style νλ,rs

at resolution r using one of the mixing strategies
(Frechet Mean) in Section 4, using Algorithms 1
and 2.

2. We find the Wasserstein Transport map at res-
olution r between the content νc and the novel
style νλ,rs and compute the transformed features:
νrcs = TW

νc→νλ,rs ,#
(νc).

3. We decode the novel image at resolution r : Irc =
Dr(ν

r
cs).

4. We set νc = Er−1(Irc ), then set r to r− 1 and go
to step 1 until reaching r = 1.

The stylized output of this procedure is I1
c . We also

experimented in the Appendix with applying the same
approach but in fine to coarse way starting from the
higher resolution r = 1 to the lower resolution encoder
r = 5. We show in Figure 4 the output of our mixing
strategy using two of the geodesic metrics namely
Wasserstein and Fisher Rao barycenters. We give as
baseline the AdaIn output for this (this same example
was given in (Huang & Belongie, 2017) we reproduce
it using their available code). We show that using
geodesic metrics to define the mixed style successfully
capture the subtle details of different styles. More
examples and comparison to literature and other types
of mixing can be found in the Appendix.

8 Conclusion

We showed in this paper that universal style trans-
form, that performs moment matching of source and
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Table 1: Wasserstein Barycenter Mixing and Wasserstein Transport
{}
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Table 2: Karcher (Fisher Rao) Barycenter Mixing and Wasserstein Transport
{}

8

Content Image Style Images

Table 3: Adaptive Instance Normalization Mixing Baseline
{}

9

Figure 4: (Table 1): Wasserstein Barycenter Interpolation between a content image given above and four
target styles images given at the corner of the square. Each image in the square is for an interpolation weight
(λ1, . . . λ4), that are defined on a grid on the square. (Table 2): Fisher Rao Interpolation between the same
content image given above and the same four target styles images given at the corner of the square. In both
cases Gaussian Wasserstein transport plans are used to obtain the transformed image to the novel mixed
style in the feature space, and the final image is obtained using the decoder. (Table 3): the AdaIn baseline
that we showed that it does a diagonal approximation fails at capturing the subtle details of the style of the
target images. Both Wasserstein and Fisher Rao approaches are successful, we notice that while Wasserstein
barycenter is color dominant in defining the new style, the Fisher Rao barycenter capture more the strokes
and captures better color variations in the novel artistic styles. We note that the Wasserstein is smoother as
we change the interpolation weights then the Fisher Rao. (Figure is better seen in color and zooming in; See
Appendix for a full resolution).

target distribution in a feature space, can be cast
as an optimal transport problem between Gaussian
measures. The transport maps of Gaussian OT have
closed forms and allow simple and efficient style trans-
fer. Moreover, we showed how to mix different styles

using Wasserstein barycenters between Gaussian mea-
sures. Mixing different styles using geodesic distances
such as Wasserstein and the Fisher Rao metric al-
low better non linear interpolation, and gives rise to
different stylizations of content images.
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