
Mojmír Mutný†, Michał Dereziński†, Andreas Krause

Supplementary Material:
Convergence Analysis of Block Coordinate Algorithms

with Determinantal Sampling

A PROOFS

A.1 DPPs

Proof of Theorem 1. First, assume that α = 1. Since M � 0, we have det(MSS) > 0 for all S ⊆ [d]. We will
next use the following standard determinantal formula which holds for any v ∈ Rd and any invertible matrix M:

det(M)v>M−1v = det(M + vv>)− det(M). (13)

Applying this formula to the submatrices of M and denoting by vS the sub-vector of v indexed by S, we show
that for any v ∈ Rd:

v>E
[
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]
v =
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S⊆[d]

det(MSS)

det(I + M)
v>SM

−1
SSvS

(13) =
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>
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=

∑
S det([M + vv>]SS)−

∑
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(Lemma 1) =
det(I + M + vv>)− det(I + M)

det(I + M)

(13) =
det(I + M) v>(I + M)−1v

det(I + M)

= v>(I + M)−1v.

Since the above holds for all v, the equality also holds for the pd. matrices. To obtain the result with α 6= 1, it
suffices to replace M with 1

αM.

Proof of Lemma 3. The eigenvalues of M(αI + M)−1 are λi

λi+α
so

E[|S|] =

d∑
i=1

λi
λi + α

=
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i=1
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λi +

∑
j≥k λj

=

d∑
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+
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< (k − 1) + 1 = k,

which concludes the proof.

A.2 Convergence Analysis

Proof of Theorem 2.
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where µ = λmin(M).

Proof of Proposition 1. By definition,

1

σ(k + 1)
= 1 +

∑d
i>k λi

λd
= 1 +

∑d
i>k−1 λi − λk

λd
=

1

σ(k)
− λk
λd

Rearranging,
1

σ(k)
=

1

σ(k + 1)
+
λk
λd

=⇒ σ(k) =
σ(k + 1)λd

λd + λkσ(k + 1)

Dividing the denominator and the numerator by λd finishes the proof.

A.3 Dual convergence rate

The dual convergence rate established in Qu et al. (2016) relies on the notion of expected separable over-
approximation. Namely, the existence of v ∈ Rd s.t. E[MS ] � D(p ◦ v), where p is the vector of marginal
probabilities. In case of DPP sampling, one can choose v = diag(M) ◦ diag(M(M + αI)−1)−1, and apply dual
convergence results established in this literature. By ◦ we denote element-wise product.

B LEVERAGE SCORE SAMPLING VS DPP SAMPLING

We perform a simple experiment on the Gaussian Mixtures dataset where the matrix has a sparse spectrum. In
Figure 5 we see that the optimization process is influenced minimally.

Figure 5: Comparison of leverage score sampling and DPP

C RELATIVE SMOOTHNESS AND RELATIVE STRONG CONVEXITY

Recent works such as (Gower et al., 2019) and (Karimireddy et al., 2018) introduce the concepts of relative-
smoothness, relative strong convexity and c-stability. These are weaker conditions than assumed in this paper.
With these conditions, the proof techniques used to analyze coordinate descent algorithms are applicable to
Newton-like algorithms, where instead of a fixed matrix M, the actual Hessian H(x) can be used. The extension
to c−stability is done trivially in Theorem 2 of Karimireddy et al. (2018), here we focus on a slightly more
elaborate connection with relative smoothness and relative strong-convexity.
Assumption 3 (Gower et al. (2019)). There exists a constant L̃ ≥ µ̃ such that for all x, y ∈ Q ⊆ Rd, where
Q := {x ∈ Rd : f(x) ≤ f(x0)}:

f(x) ≤ f(y) + 〈∇f(y), x〉+
L̃

2
‖x− y‖H(y) (19)

and

f(x) ≥ f(y) + 〈∇f(y), x〉+
µ̃

2
‖x− y‖H(y) . (20)
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Now the task is to analyze the algorithm with the following update rule, which is identical to general Newton
rule when S = [d],

xk+1 = xk − γ(H(xk)Sk
)+∇f(xk). (21)

We fix a particular choice of γ = 1/L̃. This should be contrasted with the update rule (3).

Now given these assumption, we are able to show that the constant akin to σ(Ŝ) appears in the analysis of this
algorithm by utilizing the notions from (Gower et al., 2019). We sacrifice generality for the sake of brevity, and
assume that range of H(x) spans whole Rd for each x ∈ Q. Then, the following quantities resembling σ(Ŝ) appear
in the convergence analysis of the update rule (21)

σ̂(Ŝ, x) = λmin

(
EŜ
[
H1/2(x)(H(x)Ŝ)+H(x)1/2

])
(22)

and
σ̂(Ŝ) = min

x∈Q
σ̂(Ŝ, x)

Theorem 3 (Theorem 3.1 of Gower et al. (2019), modified). Let f satisfy Assumption 3, and let H(x) be the
Hessian at x having range that spans whole Rd for all x. Then

EŜ [f(xk+1)− f(x∗)] ≤

(
1− σ̂(Ŝ, xk)µ

L

)
(f(xk)− f(x∗),

and

EŜ [f(xk)− f(x∗)] ≤

(
1− σ̂(Ŝ)µ

L

)k
(f(x0)− f(x∗),

where σ̂(Ŝ) = minx∈Q σ̂(Ŝ, x) as in Equation (22).

Proof. Minimizing the upper bound in (19) restricted to coordinates in Sk, we arrive at,

f(xk+1)− f(xk)
(2)
≤ − 1

2L̃
〈∇f(xk), (H(xk)Sk

)+∇f(xk)〉

E[f(xk+1)− f(xk)] ≤ − 1

2L̃
〈∇f(xk),EŜ [(H(xk)Sk

)+]∇f(xk)〉

(20),(22)
≤ −µ

L
σ̂(Ŝ, x)(f(xk)− f(x∗))

≤ −µ
L
σ̂(Ŝ)(f(xk)− f(x∗))

rearranging finishes the proof.

The following corollary states that with DPP sampling, the update rule in (21) can have a more interpretable
convergence rate than stated in the Theorem 3.
Corollary 1 (of Theorem 3). Under the assumption of Theorem 3, let additionally Sk be a sample from sampling
Ŝk ∼ DPP( 1

αH(xk)), then

EŜk
[f(xk+1)− f(x∗)] ≤

(
1−

(
λ(xk)

λ(xk) + α

)
µ

L

)
(f(xk)− f(x∗),

where λ(xk) = λmin(H(xk)).

The following lemma relates the complexity quantity defined above to the definition of σ(Ŝ) used in the main
body of this paper. Note that σ̂ is larger than σ, even if the fixed over-approximation exists, as previously we
assumed the over-approximation to be valid globally not just in Q.
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Lemma 7. If for all x ∈ Q, M � H(x) � κM � 0, then

σ̂(Ŝ) ≥ κσ(Ŝ).

The relative smoothness, and strong-convexity can be chosen to be L̃ = 1, and µ̃ = 1, respectively.

Proof.

σ̂(Ŝ) = min
x∈Q

min
v∈Rd

〈v,EŜ
[
H1/2(x)(H(x)Ŝ)+H(x)1/2

]
v〉

‖v‖22
= min
v∈Rd

min
x∈Q

〈v,EŜ
[
H1/2(x)(H(x)Ŝ)+H(x)1/2

]
v〉

‖v‖22

≥ min
v∈Rd

〈v,EŜκ
[
M1/2(MŜ)+M1/2

]
v〉

‖v‖22
= κσ(Ŝ)

D OTHER SAMPLINGS

The convergence properties of RNM with determinantal sampling depend solely on the spectral properties of M.
This is not true of other common samplings such as τ -nice. Indeed we can improve or worsen the performance of
τ -nice sampling when M is transformed via spectrum preserving operation such as unitary transformation

M← R>MR, where R>R = I.

Suppose that we are given an eigenvalues of the matrix M, for any sampling Ŝ is it possible to find a spectrum
preserving rotation such that σ(Ŝ) is at least as small as σ(ŜDPP) which corresponds to DPP sampling with the
same expected cardinality? The answer turns out to be negative, and we show counter-example.
Remark 2 (Counter-example). Let Ŝ1 be a sampling such that [n] is sampled with 1/2 probability and ∅ and 1/2
probability. The expected size of the subset E[|Ŝ1|] = d/2 and σ(Ŝ1) = 1

2 irrespective of the matrix M.

Suppose matrix M has degenerate spectrum such that λ is eigenvalue with multiplicity d/2 and µ is eigenvalue
with d/2 multiplicity where λ < µ. In order s.t. E[|SDPP|] = d

2 , α =
√
λµ, then σ(ŜDPP) < 1

2 .

In what circumstances does DPP sampling perform better than a uniform sampling? First, we consider
circumstances where uniform sampling is optimal.

D.1 Uniform sampling

It is important to allow for variation in the off-diagonal of M. If we consider only diagonal M, the optimal
sampling is uniform sampling.
Lemma 8. Let M be diagonal. The quantity σ(Ŝ) of a sampling over a power set P ([d]) constrained by E[|Ŝ|] = k
is maximized for uniform samplings.

Proof of Lemma 8 . We want to maximize the minimum eigenvalue of a matrix M1/2E[(MS)−1]M1/2. For a
diagonal M we know that (MS)−1 = (M−1)S . Hence, M1/2E[(MS)−1]M1/2D(p), where p is a vector of marginals
pi = P (i ∈ Ŝ). Hence, the minimum eigenvalue is the minimum marginal probability subject to a constraint that
E[|S|] =

∑d
j=1 P (j ∈ Ŝ) ≤ k. This leads to an optimum where P (i ∈ Ŝ) = P (j ∈ Ŝ) for all i, j ∈ [d]. Hence the

optimal sampling distribution is uniform.

D.2 Parallel Sampling

The parallel extension of the update method 3 has been considered in Mutný and Richtárik (2018) and Karimireddy
et al. (2018). Namely, the authors consider a case, when the updates with c machines are aggregated together to
form a single update in the form ≈ 1

b

∑c
j=1(MSj )+, where b is the aggregating parameter. It is known that for

parallel disjoint samplings the convergence rate increases linearly with the number of processors. For independent
samplings the aggregating parameter b depends on the quantity,

θ(Ŝ) = λmax(M1/2E[(MŜ)+]M1/2)
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which in the case of DPP sampling is equal to θ = λ1

λ1+α
. The quantity θ(Ŝ) ∈ [σ(Ŝ), 1], and as θ → 1, the

aggregation operation becomes averaging b→ c. For DPP sampling, we can see an inverse relationship between
increasing σ(Ŝ) by increasing block size, which inherently makes the parallelization problem more difficult by
increasing θ(Ŝ).


