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Abstract

We analyze the convergence rate of the ran-
domized Newton-like method introduced by
Qu et al. (2016) for smooth and convex objec-
tives, which uses random coordinate blocks
of a Hessian-over-approximation matrix M
instead of the true Hessian. The convergence
analysis of the algorithm is challenging be-
cause of its complex dependence on the struc-
ture of M. However, we show that when the
coordinate blocks are sampled with proba-
bility proportional to their determinant, the
convergence rate depends solely on the eigen-
value distribution of matrix M, and has an
analytically tractable form. To do so, we de-
rive a fundamental new expectation formula
for determinantal point processes. We show
that determinantal sampling allows us to rea-
son about the optimal subset size of blocks in
terms of the spectrum of M. Additionally, we
provide a numerical evaluation of our analy-
sis, demonstrating cases where determinantal
sampling is superior or on par with uniform
sampling.

1 INTRODUCTION

We study unconstrained optimization of the form:

min f(x
rcRd f( )’

where we assume that the function f : R? — R is
smooth, convex, and potentially high dimensional. This
problem commonly arises in empirical risk minimiza-
tion (ERM, see Shalev-Shwartz and Ben-David, 2014).
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State-of-the-art approaches for minimization of con-
vex ERM objectives with large numbers of data points
include variants of stochastic gradient descent (SGD)
such as SVRG (Johnson and Zhang, 2013), SARAH
(Nguyen et al., 2017) and a plethora of others. Al-
ternatively, one can approach the ERM problem via
a dual formulation, where fast coordinate minimiza-
tion techniques such as SDCA (Shalev-Shwartz and
Zhang, 2013), or parallel coordinate descent (Richtarik
and Takac, 2016, 2015) can be applied. This is espe-
cially desirable in distributed and parallel environments
(Richtarik and Takac¢, 2016; Ma et al., 2015; Diinner
et al., 2016). These approaches are closely related to
methods that subsample the Hessian (Pilanci and Wain-
wright, 2015; Roosta-Khorasani and Mahoney, 2016;
Roosta-Khorasani and Mahoney, 2016).

We study a block coordinate descent algorithm first
introduced by Qu et al. (2016). In each iteration of
this algorithm, we sample a block of coordinates and
then solve a Newton step on the chosen coordinate
subspace. However, in place of the true Hessian, a
fixed over-approximation matrix M is used for the
sake of efficiency. The Newton step is computed on a
sparsified version of this matrix with all but the selected
coordinates set to zero, denoted Mg (see Section 1.2
for the complete notation). Originally, Qu et al. (2016)
called this method Stochastic Dual Newton Ascent
(SDNA), appealing to the fact that it operates in a dual
ERM formulation. Later, it was also called a Stochastic
Newton method (Mutny and Richtéarik, 2018), while
we use the name Randomized Newton Method (RNM)
following Gower et al. (2019)*.

The sampling strategy for the coordinate blocks has
a dramatic impact on the convergence rate (Qu and
Richtarik, 2016). Gower and Richtarik (2015) demon-
strate that by optimizing the sampling probabilities one
can obtain very significant speedups, however this opti-

*Gower et al. (2019) consider a more general algorithm,
relying on the novel assumptions of relative smoothness
and convexity. We discuss this setting in Appendix C.
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mization is a semidefinite program which may be even
more challenging than the original optimization prob-
lem itself. Even when using a basic sampling strategy
(such as uniform), the convergence analysis of RNM is
challenging because it hinges on deriving the expected
pseudoinverse of Mg, henceforth denoted E[(Mg)*].
Prior to this work, no simple closed form expression
was known for this quantity.

To overcome this challenge, we focus on a strategy of
randomly sampling blocks of coordinates proportion-
ally to the determinant of the corresponding submatrix
of M, which we call determinantal sampling. Similar
sampling schemes have been analyzed in the context of
stochastic optimization before (Zhang et al., 2017; Bor-
sos et al., 2019). Recently, Rodomanov and Kropotov
(2019) analyzed determinantal sampling for randomized
block coordinate descent, however they imposed cardi-
nality constraints on the block size, and as a result were
unable to obtain a simple expression for E[(Mg)"].

We use determinantal sampling with randomized block
size, which allows us to obtain a simple closed form
expression for the expected pseudoinverse:

E[(Mg)*] = (ol + M)~

where « is a tunable parameter that is used to control
the expected block size. With the use of this new
expectation formula, we establish novel bounds on the
convergence rate of RNM depending on the spectral
properties of the over-approximating matrix M. For
many instances of the problem, the matrix coincides
with the data covariance, and spectral decays of such
covariances are well understood (Blanchard et al., 2007).
This allows us to predict the decay-specific behavior
of RNM with determinantal sampling and recommend
the optimal block size.

The cost of each iteration of RNM scales cubically
with the size of the block due to matrix inversion. Qu
et al. (2016) demonstrate numerically that for small
blocks the optimization time decreases but at some
point it starts to increase again. They surmise that the
improvement is obtained only as long as the inversion
cost is dominated by the other fixed per-iteration costs
such as fetching from memory. However, whether the
only possible speedup stems from this has remained
unclear. We answer this question for determinantal
sampling by deriving the optimal subset size in the
case of kernel ridge regression. We show that when the
eigenvalue decay is sufficiently rapid, then the gain in
convergence rate can dominate the cost of inversion
even for larger block sizes.

1.1 Contributions

The main contributions of this paper can be summa-
rized as follows:

e We obtain a novel and remarkably simple expec-
tation formula for determinantal sampling that
allows us to derive a simple and closed form expres-
sion for the convergence rate of the Randomized
Newton Method.

e This allows us to improve the previous bounds on
the theoretical speedup of using coordinate blocks
of larger sizes. For example, we show that in the
case of kernel regression with a covariance operator
that has exponentially decreasing spectrum, the
theoretical speedup is exponential.

e We take into account the actual per iteration cost,
and analyze not only the convergence rate of the
algorithm, but also its numerical effort to solve a
problem up to some relative precision. This allows
us to classify the problems into categories where
the optimal block size is one, the full matrix, or
somewhere in between.

e We numerically validate the discovered theoretical
properties of determinantal sampling, and demon-
strate cases when it improves over uniform sam-
pling, and when it performs similarly. If the two
perform similarity, our analysis serves as a more
interpretable proxy for the convergence analysis
of uniform sampling.

1.2 Notation

Let S be a non-empty subset of [d] := {1,2,...,d}.
We let I.g be the d x |S| matrix composed of columns
i € S of the d x d identity matrix I. Note that I5I.¢
is the |S| x |S] identity matrix. Given an invertible
matrix M € R?*?  we can extract its principal |S| x | S|
sub-matrix with the corresponding rows and columns
indexed by S via Mgg def IEMI;S, and additionally
keeping the sub-matrix in its canonical place we can
define the following operation,

def
Mg = LsMgsLk. (1)

Note that Mg is the n X n matrix obtained from M
by retaining elements M;; for ¢ € S and j € S; and all
the other elements set to zero. By (-)* we denote the
Moore-Penrose pseudoinverse. The matrix (Mg)" can
be calculated by inverting Mgg € RISIXIS| and then
placing it back into the d x d matrix.
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2 ALGORITHM

The key assumption that motivates RNM is a smooth-
ness condition that goes beyond the standard assump-
tions in the optimization literature, where smoothness
would be characterized by a symmetric quadratic with
the radius L. Instead, Assumption 1 below is tighter,
allowing for more refined analysis, and can be related
to the standard assumption by L = Apax(M).
Assumption 1 (Smoothness). There exists a symmet-
ric p.d. matriz M € R4*? such that Yo, h € R?,

Fla+h) < F@)+ (TFE)LR) + 5 (MR (2)

This assumption is satisfied for quadratic problems such
as ridge regression with squared loss, y = ATw + e,
where A € R"*4 is the data matrix, and y is the vector
of responses, which is corrupted via the noise € € R"™.
In this case, Assumption 1 holds with M being the
offset covariance matrix AT A + A, where \ is the
regularization parameter. Beyond quadratic problems,
it holds for many common problems such as logistic
regression, where M = iATA. Section 5.1 provides
examples in the dual formulation.

2.1 Randomized Newton Method

Let k be the iteration count and xg be the initial point.
The Randomized Newton Method algorithm is defined
via the following update rule:

Thi1 =k — (Ms,)" Vf(21), (3)

where Si, C [d] is a subset of coordinates chosen at iter-
ation k from random sampling S to be defined. Notice
that since Mg, is a sparse d x d matrix with only a
|Sk| x |Sk| principal submatrix that is non-zero, its in-
version costs O(|Sy|?) arithmetic operations. Moreover,
only |S| elements of V f(xy) are needed for the update.
Note that if |Sk| = 1 then we are in the classical case
of coordinate descent, while if S = [d], then we are
performing a Newton step (with M in place of the true
Hessian).

2.2 Sampling

The strategy with which one chooses blocks S, C [d] in
(3) is of great importance and it influences the algorithm
significantly. This strategy, called a sampling and
denoted S, is a random set-valued mapping with values

being subsets of [d]. A proper sampling is such that

i dZEfP(i € 5') > 0 for all 4.

The most popular are uniform samplings, i.e., those
for which the marginal probabilities are equal:

P(ieS)=P(jel) Vijeld.

This class includes 7-nice and 7-list samplings (Qu and
Richtarik, 2016). The 7-nice sampling considers all
elements of a power set of [d] with a fixed cardinality
s.t. |S| = 7. There are (f_l) of such subsets and each of
them is equally probable. Consequently, the probability
P(ieS) = ~. On the other hand, the 7-list sampling
is restricted to ordered and consecutive subsets of the
power set, with cardinality fixed to 7.

Data dependent (and potentially non-uniform) sam-
plings, which sample according to the diagonal ele-
ments of M, have been analyzed in the context of
coordinate descent (Qu and Richtarik, 2016; Allen-Zhu
et al., 2016; Hanzely and Richtérik, 2018; Richtarik
and Takag, 2015).

3 DETERMINANTAL SAMPLING

Our proposed sampling for the Randomized Newton
Method is based on a class of distributions called Deter-
minantal Point Processes (DPPs). Originally proposed
by Macchi (1975), DPPs have found numerous applica-
tions in machine learning (Kulesza and Taskar, 2012) as
well as optimization (Zhang et al., 2017; Borsos et al.,
2019), for their variance reduction properties and the
ability to produce diverse samples.

Definition 1. For a d x d p.s.d. matriz M, we define
DPP(M) as a distribution over all subsets S C [d], so
that

P(S) x det(Mss). (4)

Even though this is a combinatorial distribution, the
normalization constant can be computed exactly. We
state this well known fact (e.g., see Kulesza and Taskar
(2012)) separately because it is crucial for proving our
main result.

Lemma 1 (Normalization). For a d X d matriz M,

Z det(Mss) = det(I + M)
SCl[d]

Note that the distribution samples out of a power set
of [d]. While cardinality constrained versions have also
been used, they lack certain properties such as a simple
normalization constant. Even though the subset size of
DPP(M) is a random variable, it is highly concentrated
around its mean, and it can also be easily adjusted by
replacing the matrix with a rescaled version §M7 where
« > 0. This only affects the distribution of the subset
sizes, with the expected size given by the following
lemma (see Kulesza and Taskar, 2012).

Lemma 2 (Subset Size). If $ ~ DPP (1M), then

1
e

E[|S]] = Trace(M(al + M)™1). (5)
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By varying the value of «, we can obtain any desired
expected subset size between 0 and d. As we increase
a, the subset size decreases, whereas if we take o — 0,
then in the limit the subset size becomes d, i.e., always
selecting the [d]. While the relationship between «
and E[|S|] cannot be easily inverted analytically, it still
provides a convenient way of smoothly interpolating
between the full Newton and coordinate descent. To
give a sense of what o can be used to ensure subset
size bounded by some k, we give the following lemma.
Lemma 3. Let {\;}&, be the eigenvalues of M in a
decreasing order. If =735, A;, then E[|S]] < k.

3.1 New expectation formula

We are now ready to state our main result regarding
DPPs, which is a new expectation formula that can be
viewed as a matrix counterpart of the determinantal
identity from Lemma 1.

Theorem 1. If M >~ 0 and S ~ DPP (1M), then

E[(Mg)*] = (aI+M)". (6)

Remark 1. If we let M = 0, then the equality in (6)
must be replaced by a p.s.d. inequality <.

We postpone the proof to the appendix. The remark-
able simplicity of our result leads us to believe that it
is of interest not only in the context of the Random-
ized Newton Method, but also to the broader DPP
community. While some matrix expectation formulas
involving the pseudoinverse have been recently shown
for some special DPPs (e.g., Derezinski and Warmuth,
2018), this result for the first time relates an unregu-
larized subsampled pseudoinverse with a al-regularized
inverse of the full matrix M. Moreover, the amount of
regularization that appears in the formula is directly
related to the expected sample size.

3.2 Efficient sampling

Efficient DPP sampling has been an active area of
research over the past decade. Several different ap-
proaches have been developed, such as an algorithm
based on the eigendecomposition of M (Hough et al.,
2006; Kulesza and Taskar, 2012) as well as an approxi-
mate MCMC sampler (Anari et al., 2016) among others.
For our problem, it is important to be able to sample
from DPP(M) without having to actually construct
the entire matrix M, and much faster than it takes
to compute the full inverse M~!. Moreover, being
able to rapidly generate multiple independent samples
is crucial because of the iterative nature of the Ran-
domized Newton Method. A recently proposed DPP
sampler satisfies all of these conditions. We quote
the time complexity of this method (the bounds hold

with high probability relative to the randomness of the
algorithm).

Lemma 4 (Derezinski et al. (2019)). For a d x d
p.s.d. matriz M let k = E[|S|] where § ~ DPP(M).
Given M, we can sample

1. the first S in: d - poly(k) polylog(d) time,

2. each next sample of S in: poly (k) time.

Note that the time it takes to obtain the first sample
(i.e., the preprocessing cost) is o(d?), meaning that
we do not actually have to read the entire matrix M.
Moreover, the cost of producing repeated samples only
depends on the sample size k, which is typically small.
The key idea behind the algorithm of Derezinski et al.
(2019) is to produce a larger sample of indices drawn
i.i.d. proportionally to the marginal probabilities of
DPP(M). For any i € [d], the marginal probability of
i in S ~DPP(1M) is:

1
«

P(ieS) = [M(al+M)'],.
In the randomized linear algebra literature, this quan-
tity is often called the ith a-ridge leverage score (Alaoui
and Mahoney, 2015), and sampling i.i.d. according to
ridge leverage scores is known to have strong guarantees
in approximating p.s.d. matrices.

Approximate ridge leverage score sampling incurs a
smaller preprocessing cost compared to a DPP (Calan-
driello, 2017), and basically no resampling cost. Mo-
tivated by this, we propose to use this sampling as
a fast approximation to DPP(1M) and our experi-
ments demonstrate that it exhibits similar convergence
properties for Randomized Newton. We numerically
compare the sampler from Lemma 4 against leverage

score sampling in Appendix B.

4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties
of the update scheme (3) with determinantal sampling
defined by (4). In order to establish linear rate of
convergence, we need to assume strong convexity.
Assumption 2 (Strong Convexity). Under Assump-
tion 1, there exists a k > 0 such that Va,h € R?,

F(@) + (VI (), 1) + 2 (b Mh) < f(a+h)

Intuitively, the parameter x € (0, 1] measures the de-
gree of accuracy of our quadratic approximation. For
a quadratic function x = 1.

Lemma 5 (Qu et al. (2016)). Under Assumptions 1
and 2, let {z¥}r>0 be a sequence of random vectors
produced by the Algorithm with a proper sampling 5',
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and let =* be the optimum of f. Then,

E[f(z"*h) = fa)] < (1 - 0(8)E[f(«*) — f(z7)],
where

o(8) kA (MVPE[(Mg)FIM2). (1)

Strong convexity is not necessary to run RNM (3). In
the cases where the function is only convex, we recover
the standard sublinear rate depending on o.
Lemma 6 (Karimireddy et al. (2018)). Let f be con-
vex and satisfy Assumption 1. Then using the update
scheme in (3) with any proper sampling,

2D

E[f(a") - f(z")] < S

where o(S) is as in (7), and D = max,{(z* —
) TM(z* — z)|f(z) < f(2°)} is the set diameter in
M geometry at the initial level sets.

The preceding two lemmas introduced the quantity
O’(S ) characterizing the theoretical convergence rate of
the method. By applying our new expectation formula
(Theorem 1) we obtain a simple form for this quantity
under DPP sampling.

Theorem 2. Under Assumption 1, given a > 0:

Ad
Ad +

where \g = Amin(M).

o(S) =k for S~ DPP (1M), (8)

1
et

Note that o(S) depends solely on the smallest eigen-
value and the parameter a controlling the expected
size. This is not the case for other samplings, and
other closed forms are not known in general (Qu et al.,
2016).

Recall that the smaller the o the bigger the subsets.
The closed form expression from Theorem 2 combined
with Lemma 3 allows us to formulate a recurrence
relation between the convergence rates with different
expected set sizes.
Proposition 1 (Recurrence relation). Let {\;}%, be
the eigenvalues of M in a decreasing order. Let k < d
be a positive integer, a(k) = Y ,_ ;1 Ni, and o(k) =
/\di\igc(k)' Then,
o(k) = 1 U/\(Z::+ 1)

+ SEo(k+1)

and o(d) = 1 while E[|S]] < k.

This result allows us to further improve the theoret-
ical bounds from Qu et al. (2016) on the parameter
o. Namely, it has been previously established that o
grows at least linearly with the increasing subset size

of T-uniform sampling, i.e., 70(1) < o(7). We can
establish more informative bounds depending on the
eigenvalue decay. Specifically, for a decreasing sequence
of eigenvalues {\;}¢ ;,

1+ z:; % o(1) < o(7). (9)

For example, given exponentially decaying eigenvalues
Ai = 7% where v < 1, the increase is at least exponential,
and the convergence rate is at least (1 + (7 — 1)y7~%)
bigger. The case with linear speed-up is recovered when
all eigenvalues are equal.

5 OPTIMAL BLOCK SIZE

Our results such as Proposition 1 and inequality (9)
describe the convergence speedup of using larger coor-
dinate blocks for RNM with determinantal sampling
as a function of the eigenvalues of M. In this section,
we demonstrate that covariance matrices arising in ker-
nel ridge regression have known asymptotic eigenvalue
decays, which allows for a precise characterization of
RNM performance.

5.1 Kernel Ridge Regression

The motivating example for our analysis is the dual
formulation of kernel ridge regression which is a natural
application for block coordinate descent because of its
high dimensionality. Suppose our (primal) regression
problem is defined by the following objective:

n

1 1 A
min — 3 ~(®(a) "o - i) + 5 [lall3,
=1

where ®(-) represents the kernel feature mapping and
A is the regularization parameter. Due to the Fenchel
duality theorem (Borwein and Zhu, 2005), the dual
formulation of this problem is:

! p
iy g0 Kat g2 (o +20m),  (10)

where K;; = ®(a;) " ®(a;). It is easy to see that the
minimization problem (10) is exactly in the right form
for RNM to be applied with the matrix M = %K + AL
Notice that M is an n X n matrix and sampling sub-
matrices of M has the interpretation of subsampling
the dataset. However, to keep the notation consistent
with earlier discussion, w.l.o.g. we will let d = n for the
remainder of this section so that M is d x d. We will
also assume that the minimization problem is solved
with the RNM update where each coordinate block is
sampled as S ~ DPP(1M).

1
«
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Figure 1: In (a) we consider exponentially decreasing eigenvalues. In (b) (left) we plot the relationship between p

and E[S] for exponential decay. In (b) (right) we show the numerical effort for polynomial decay.

5.2 Exponentially decreasing spectrum

Let {\;}%_, be the eigenvalues of M in decreasing order.
Suppose that the eigenvalue decay is exponentially
decreasing:

X = Cy' + O\ for v < 1.

Motivation A classical motivating example for the
exponential eigenvalue decay is the squared exponential
kernel, where an analytical form of the decay can be
derived for normally distributed data (Rasmussen and
Williams, 2006). In particular, assuming x ~ N(0,n?),
and using the kernel function k(z,y) = exp (— (9”2_73)2)
in one dimension, the eigenvalues satisfy A\ < C~v" for
a general constant C' independent of k, where

2772

YT e JErop

Complexity For the ease of exposition, suppose that
~3+tL < X < 44, where ) is the regularization constant
and ¢ € [d]. Intuitively, this means that the regulariza-
tion parameter flattens the decay at v9*+!, which will
play a role in the analysis.

(11)

To control the expected size E[|S|] of determinantal
sampling, let a(p) = CyP, where p € [1,d]. We get:

. (5) &
E[S]] < p+ Ra(p,q) for §~DPP (GL:M),

d— @ q—p . .
where Ry(p,q) = > i1 % Asymptotically, if
p < ¢, i.e., the parameter a(p) dominates the regu-
larization C'A, then the expected subset is E[| S]] ~ p.
However, in the regime where p = Q(q), the expected

subset size rapidly goes up to d (see Figure 1b (left)).
We now derive the convergence rate of RNM under
determinantal sampling:
® P

1—0(S) = > :
A TR & e T ES LRy

Likewise one can see that the convergence rate improves
exponentially with p.

Numerical effort From Theorem 5, we know that
in order to reach an e accurate solution from the initial
accuracy ¢y = f(2°) — f(z*) under the convergence
rate € < (1 — 0)Teg, the number of needed steps can
be bounded by

log (e¢) — log (eo)
T= log(1 — o) =

(12)

Using the bound derived for 1 — o (.S), we obtain T’ <
(log(é) —log(é)) (,ydqu +1). Since, the computation

step is dominated by the inversion operation O(E[|S]]?),
the number of arithmetic operations is
3 P >
d q |-
Y+

The upper bound on the numerical effort in the previ-
ous equation has two regimes. At first, for small subset
sizes it is increasing, but then exponential decay starts
to dominate and using larger blocks significantly im-
proves the convergence rate. Finally it flattens around
E[|S]] = q. Note that when A ~ 74, i.e., for ¢ = izi%;’
this phenomenon is visualized in Figure la where the
vertical bars correspond to ¢. In the regime where
d =~ q, inverting the whole matrix seems to be the best
option. When ¢ < d, the term 7? dominates the term
~® and the best subset size is either 1 or on the order
of ¢, depending on the value of .

O ([E[S)?-T) <0 ((p + Ra(p,q))

These observations are contrary to the intuition from
the previous works. We suspect that, due to fixed
memory fetching costs, for small sizes the initial phase
is unobserved but the second phase should be observed.
Figure 1a suggests that for sufficiently small values
of X\ the numerical performance is maximized at the

attenuation point ¢ and the predicted optimal block
log(X)
log(v)

size is
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5.3 Polynomially decaying spectrum

Suppose that the eigenvalues {\;}¢ ; are decreasing
polynomially, i.e., so that \; = Ci™% + CA for s > 1.

Motivation For example, consider a Matérn ker-
nel of order s, which has the form k(z,y) =
CoBs(||lx — yl|) exp(=Cy ||l — y||), where Cy, Cs are
constants, and B,(d) is a modified Bessel function of
order s (see Rasmussen and Williams, 2006). This class
of kernels exhibits asymptotically polynomial decay of
eigenvalues (see Seeger et al., 2008).

Complexity Suppose, A = ¢ ° for ¢ € [1,00). To
control the expected size let us parameterize the tuning
parameters as a = Cp~*, where C' is a suitable general
constant. Then the convergence rate becomes:

p° 1

1—-0(8) = d—+p=~+q=  (p/d)F+(p/g) +1

and ]EHS’H = 25:1 7l_31;f‘3;;_5 If p <K q, we can
establish by integral approximation that E[|S|] = O(p),
otherwise the expected size grows faster. Additionally,

with increasing p the convergence rate always improves.

Numerical Effort When p « ¢, similarly as in
the preceding subsection, the numerical cost becomes
O(pg(%)). This suggests that for s > 3 the
total numerical cost decreases for larger subsets, while
for the problems with smaller s, the cost increases. In
general, it is difficult to obtain general insights from
the formulas, but the visalization in Figure 1b (right)
suggests that if the regularization constant is large
(small ), even problems with large s might incur more
cost as the subset size increases.

This suggests that small block sizes matching the mem-
ory fetching costs should be optimal if either the reg-
ularization is large or if s is small. With the same
assumption, if the desired accuracy is very high, per-
forming full matriz inversion can be more efficient,
corresponding to E[|S|] — d in Figure 1b (right). Note
that increasing the accuracy to which we optimize the
problem shifts the curves up in the logarithmic plot,
while keeping the end point fixed.

5.4 Sparse spectrum

Suppose that only s out of the d eigenvalues are rela-
tively large, while the remaining ones are very small.
This scenario occurs with a linear kernel where the
number of large eigenvalues corresponds to the number
of features, and the remaining ones are proportional to
the regularization parameter .

Complexity For the ease of exposition, let the large
eigenvalues all be equal to p > A. Lemma 5 implies
that if o = Zikil Ai then E[|S|] < k. The conver-
gence rate can be split to two cases:

-~ di;-]f-l when k € [s,d — 1],
170’(5) = X1 A2
1 - +0O when k € [0, s).

n w2

We see that once k > s a discontinuity in the spectrum
implies a discontinuity in the convergence rate. Conse-
quently, the optimal subset size is of the order of s as
long as % is sufficiently small.

6 EXPERIMENTS

We numerically validate the theoretical findings from
the previous sections. Our main objective is to demon-
strate that the convergence behavior of RNM under
DPP sampling aligns well with the behavior of RNM
under uniform sampling (called 7-nice), which is more
commonly used. This would suggest that our conver-
gence analysis under DPP sampling is also predictive
for other standard samplings. In addition to providing
evidence for this claim, we also show that there are
cases where DPP sampling leads to superior perfor-
mance of RNM.

Even though there exist efficient algorithms for DPP
sampling, we chose to use approximate ridge lever-
age score sampling as a cheaper proxy for DPP sam-
pling, as suggested in a recent line of work (Derezinski,
2019; Derezinski et al., 2019). The real data exper-
iments were performed with sampling according to
the %—approximate ridge leverage scores (Calandriello,
2017). We always report the mean value of 10 reruns
of the experiment with the given parameters.

Gaussian Data The first experiment deals with data
sampled from a Gaussian distribution. The optimiza-
tion using a kernel K with sparse spectrum (Figure
2a) verifies the theoretical findings that the optimal
block size should be of the same order as rank(K). Us-
ing similarly generated data, and the relation in (11)
to relate lengthscale | and + of squared exponential
kernel, we reproduce the prediction of the theory that
for sharper decays the optimal expected size should be
larger (see Figure 2b, compared with theory, Figure
la). The performance of DPP and uniform sampling
is on par as the intuition suggests, since for normally
distributed data even a uniform subsample provides
good summary statistics.

Gaussian Mixture Data Akin to results from the
sketching literature (e.g., see Dereziniski and Warmuth,
2018), we suspect that the superior convergence of DPP
sampling over uniform presents itself primarily if the
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Figure 2: For Gaussian data, RNM exhibits similar behavior under DPP and uniform (7-nice) samplings.
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Figure 3: Gaussian mixture data - sparse spectrum,
rank of kernel K shown.

dataset is heterogeneous. By heterogeneity we mean
that a uniform subsampling of the points is likely not
a good summary of the dataset. Consider a dataset
where the points are sampled from a Gaussian Mixture
Model with 8 clusters that are equally likely. In order to
have a good summary, a point from each cluster should
be present in the sample. DPP samples are generally
more diverse than uniform samples which makes it more
likely that they will cover all the clusters. In Figure
3, we see that DPP significantly outperforms uniform
sampling for this dataset because it allows RNM to
solve more representative subproblems.

Real Data Experiments We perform two real data
experiments on standard UCI datasets where we op-
timize until statistical precision. In Figure 4a, we
optimize linear ridge regression on the superconduc-
tivity dataset. Next, in Figure 4b we fit kernel ridge
regression with squared exponential kernel on the cpus-
mall dataset. For both datasets, the optimal subset
size under DPP sampling roughly matches the optimal
size under uniform sampling. Moreover, in the case
of the superconductivity dataset, as suggested by the
theory for linear kernels, the optimal size is of the same
order as the feature dimensionality.
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(a) n=1460 and d = 81.  (b) n = 2191 and d = 12.

Figure 4: Experiments on real data.

7 CONCLUSION

We analyzed a sampling strategy for the Randomized
Newton Method, where coordinate blocks of the Hes-
sian over-approximation are sampled according to their
determinant. This sampling allows for a simple interpre-
tation of the convergence rate of the algorithm, which
was previously not well understood. We demonstrated
that for empirical risk minimization this convergence
analysis allows us to predict the optimal size for the
sampled coordinate blocks in order to minimize the
total computational cost of the optimization.
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