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Abstract

We consider the practical and classical set-
ting where the seller is using an exploration
stage to learn the value distributions of the
bidders before running a revenue-maximizing
auction in a exploitation phase. In this two-
stage process, we exhibit practical, simple and
robust strategies with large utility uplifts for
the bidders. We quantify precisely the seller
revenue against non-discounted buyers, com-
plementing recent studies that had focused
on impatient/heavily discounted buyers. We
also prove the robustness of these shading
strategies to sample approximation error of
the seller, to bidder’s approximation error of
the competition and to possible change of the
mechanisms.

Introduction

Repeated auctions play an important role in modern
economics as they are widely used in practice to sell
e.g. electrical power or digital goods such as ad place-
ments on big online platforms. Understanding the
precise interactions between the buyers and the sellers
in these auctions is key to assess the balance of power
on big online platforms. In practice, most of the online
auctioneers are using tools at the intersection of clas-
sical auction literature Myerson (1981) and statistical
learning theory. They take advantage of the enormous
amount of data they gather on the behavior of the
buyers to learn optimal auctions and maximize revenue
for the platforms.

Myerson showed how to design an incentive-compatible
revenue-maximizing auction once the seller knows the
value distributions of the buyers Myerson (1981). If the
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seller has perfect knowledge of these distributions, she
can define the allocation and payment rules maximizing
her expected revenue.

How does the seller learn these value distributions
in practice to create her optimal revenue-maximizing
auction ? A very rich line of work Ostrovsky and
Schwarz (2011); Cole and Roughgarden (2014); Medina
and Mohri (2014); Huang et al. (2018) has assumed
that the seller has access to a finite sample of bidders’
valuations, coming from past bids in truthful auctions.
The game they consider is divided in two stages. The
first round consists in several truthful auctions such as
a second price auction without reserve or with random
reserve where the bidders bid truthfully providing the
seller with draws from their value distribution. Then, if
the bidders are not strategic in the first stage, the seller
can learn an approximation of the revenue-maximizing
auction based on these samples and run a revenue-
maximizing auction in the second stage.

On big online platforms, the same dominant bidders
are actually repeatedly interacting with a seller, bil-
lions of times a day in the case of online advertising.
This setting has been considered from either the seller’s
point of view in Amin et al. (2013, 2014); Cesa-Bianchi
et al. (2013) or the bidders’ standpoint Kanoria and
Nazerzadeh (2014); Tang and Zeng (2018); Nedelec
et al. (2018, 2019). All these works can be seen as a
special instance of a Stackelberg game Dockner et al.
(2000) where the bidders know the rules of the mecha-
nism and have the choice of the bid distribution they
will disclose to the seller. The main takeaway from
these works is that if one of the seller or bidders is
extremely dominant in term of patience – i.e. longer
time horizon of revenue optimization – then this player
can get the best revenue/utility to hope for: the pay-
ment of a revenue-maximizing auction if the seller is
strongly dominant, the utility of a 2nd-price auction
with no reserve price if the bidders are strongly domi-
nant and are all strategic. Yet, these payments have
been exhibited in extreme asymptotic cases. In the
line of work following from Amin et al. (2013); Mohri
and Munoz (2015), the bidder is assumed to be finitely
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patient while the seller is infinitely patient. In this
strongly unbalanced setting, the seller is able to begin
with exploration stages long enough to force the bidder
to be truthful, allowing the seller to play the revenue-
maximizing auction in the (longer) exploitation phase.
On the contrary, if the bidders are infinitely patient and
the seller has to update the mechanism in finite time,
Tang and Zeng (2018); Nedelec et al. (2018) exhibited
optimal strategies that bidders can enforce. The re-
maining crucial question is: what happens in between
these extreme cases, in more realistic conditions?

Our work aims at providing answers to this question
by studying the robustness of the bidders’ strategic
behavior to more realistic conditions:

1. Are these strategic behaviors robust to strategic
sellers implementing two-stage processes (explo-
ration/exploitation) such as the selling algorithms
described in Amin et al. (2013); Golrezaei et al.
(2019)? How is the value shared between seller and
bidders in non-asymptotic patience conditions?

2. Are the possible strategic behaviors robust to the
seller optimizing the mechanism with a finite num-
ber of samples?

3. How does the lack of knowledge of the competition
(i.e. other bidders’s value distributions) negatively
impact the strategic bidder’s utility?

1 Framework and contributions

As it is classical in auction theory Krishna (2009), we
assume the valuation of a bidder v 2 R is drawn from a
specific distribution F (the distribution can be different
from one bidder to the other); a bidding strategy is a
mapping � from R+ into R+ that provides the actual
bid B = �(v) when the value is v. As a consequence,
the distribution of bids FB is the push-forward of F
by �. We assume from now on that the support of F
is [0, b) ✓ [0,+1]. If b = +1, we additionally assume
that F verifies 1 � F (x) = o(x�1) to avoid problems
with the definition of the optimal reserve price. Unless
otherwise noted F is assumed to be regular.

The seller has an estimate of the bidders’ bid distribu-
tion, typically coming from access to past bids. Then,
she uses an approximation of a revenue-maximizing
auction based on her estimate of the bid distributions.
We will consider that this is a lazy 2nd-price auction
Paes Leme et al. (2016) whose reserve price is optimized
to maximize the seller’s revenue. For the lazy 2nd-price
auction, the optimal reserve price happens to be the
monopoly price r

⇤
�

which maximizes the monopoly rev-
enue

RB(r) = r(1� FB(r))

extracted by the seller on the current bidder. We can
formalize this as a two-step process Amin et al. (2013);
Cole and Roughgarden (2014):

General two-step process with commitment: A
general two-step process with commitment is a tuple
of the form P = (G,H, r, F ) that is defined as follows:

1 – exploration The seller runs a lazy 2nd-price auc-
tion. The current bidder faces a competition G.
In this step, the potential randomized or determin-
istic reserve price is denoted by the distribution
H.

2 – exploitation The seller runs a lazy 2nd-price auc-
tion with reserve price r, possibly personalized.
The current bidder faces the same competition G

as in the first step.

To make explicit the dependency on the bidder’s strat-
egy � on the design of the auction of the second
step when optimizing the reserve price based on the
observation of the first period, we use the notation
P
� = (G,H, r

⇤
�
, F ). The tradeoff between exploration

and exploitation from the seller standpoint was intro-
duced in Amin et al. (2013) and refined in Mohri and
Munoz (2015); Golrezaei et al. (2019). They introduce
a parameter ↵, 0  ↵ < 1, to define this trade-off,
assuming the ratio of length between the first and the
second stage is equal to ↵/1�↵. In Amin et al. (2013),
they show that if bidders are non-discounted buyers,
there must exist a good strategy for them in this mech-
anism, forcing the seller to suffer a regret linear in the
number of auctions. We are interested in solving the
Stackelberg game faced by bidders when they know
the seller is using this classical mechanism to learn
their value distribution. Bidders are the leaders in this
framework since they know the mechanism used by the
seller and can choose their strategy accordingly.

We assume that the strategic bidder commits to the
same strategy � (inducing the same distribution of
bids FB) in both phases. This assumption accounts for
the fact that in practice sellers regularly update their
priors based on recent past bids, forcing the bidders
to commit in the long-term to the bid distribution
they want the seller to use as prior. Otherwise, the
seller might discover new aspects of the buyer’s bid
distribution and change their mechanism accordingly
more than once as time evolves.

In this framework, the objective of the bidder is to
choose a strategy � to maximize a weighted sum of her
utility in both phases:

U↵(�) = ↵U1(�) + (1� ↵)U2(�) (1)
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where Ui is the expected utility of the bidder in stage i.
The ↵ 2 [0, 1] quantifies the length of each stage Amin
et al. (2013). More precisely, U1 is the expected utility
of a lazy second price without reserve/with random
reserve and U2 is the expected utility of a lazy second
price with monopoly reserves corresponding to FB .

Tang and Zeng (2018); Nedelec et al. (2018) exhibited
strategies for the case where the bidders only optimize
for the utility of the second phase, i.e. ↵ = 0. However,
in practice, sellers use an exploration stage to learn the
value distribution. Taking care of this exploration phase
is of great importance for the bidders since optimizing
only the second stage can lead to large loss of utility
during the first stage.

In Section 2, we extend the approach of Tang and Zeng
(2018); Nedelec et al. (2018) to the two-stage game
showing that the strategies which are optimal when
the bidder is only optimizing her utility in the second
stage are suboptimal when she takes into consideration
the exploration stage of the seller. We find in Section
3 the optimal strategy in this framework and study the
behavior of this strategy as a function of the length of
the exploration stage. To study whether the strategies
are robust to the presence of other strategic bidders
in the game, we also prove the existence of a Nash
equilibrium under certain conditions and we compute
the utility of the bidders and the revenue of the seller
at this Nash equilibrium when it exists.

Unlike Amin et al. (2013); Golrezaei et al. (2019), we
consider the objective function of the bidders to be the
expected utility of the two stages instead of the utility
computed on a finite number of auctions. Indeed, as
there exists a high number of repeated auctions, billions
a day in the case of online advertising, optimizing
directly the expected utility makes sense from a bidder’s
standpoint. We extend our results to finite sample sizes
in Section 4.1. We finally show the strategies are robust
to an estimation of the bidders’ competition in Section
4.2 and to a change of mechanism in Section 4.3. It
shows their robustness to most of the difficulties bidders
practically face and provides concrete solutions to solve
these problems.

2 Understanding the strategic

reaction of the players

In order to get a good understanding of how the welfare
is shared between seller and bidders when ↵ moves from
0 to 1, we need to study the strategies of the different
players. First, on the seller’s side, she chooses the
distribution of reserve prices H faced by the strategic
bidder in the first phase. At this point, we assume the
seller does not have any knowledge about the bidders

(except the support of the value distribution). Hence,
she mostly has two choices for H: either no reserve price
or a uniform distribution Amin et al. (2014). In the
second stage, the seller is assumed welfare-benevolent,
i.e. if she has the choice between two reserve prices
equivalent in terms of payment, she chooses the lowest
one. Hence, in the second stage, the seller chooses
r
⇤
�
= inf argmax

r
RB(r).

From a bidder’s standpoint, (Tang and Zeng, 2018, Th.
6.2) exhibits the best response for the extreme case
↵ = 0. Unfortunately, this best response induces a
complicated optimization problem for the seller: RB

is non-convex with several local optima and the global
optimum is reached at a discontinuity of RB (see Fig.
1). This is especially problematic if sellers are known to
optimize reserve prices conditionally on some available
context using parametric models such as Deep Neural
Networks Dütting et al. (2019) whose fit is optimized
via first-order optimization and hence would regularly
fail to find the global optimum. This is undesirable for
the bidders: in any Stackelberg game, the leader’s ad-
vantage comes from being able to predict the follower’s
strategy.

To address this issue, Tang and Zeng (2018); Nedelec
et al. (2018) proposed a thresholding strategy that is
the best response in the restricted class of strategies
that ensure RB to be concave as long as RX is so,
when ↵ = 0. We show this strategy can be extended to
the two-stage process with a slight modification. The
requirement is to ensure RBi to be quasi-concave as
long as RX is so. Then, we have the following result.
Theorem 1. Given a two-step process (G,H, r

⇤
�
, F )

with r
⇤
�
= inf argmax

r
RB(r) and such that F is quasi-

regular1, 8↵ 2 [0, 1], 90  x0  x1 such that the best
quasi-regular response (maximizing U↵(�) with FB reg-
ular) is

�̃x0,x1(x) = 1[xx0]x+ 1[x0<xx1]
R

1� F (x)
+ 1[x>x1]x

where R = x1(1� F (x1))

Moreover, we have x1 = sup{x : x(1�F (x)) � R} and
x0  x0 = inf{x : x(1� F (x)) � R}.

The proof is in Appendix B.2.
Remark. The thresholding strategy from Tang and
Zeng (2018); Nedelec et al. (2018) is a special case of
�̃x0,x1 in the case when x0 = 0 and we will denote it
�̃x1 for simplicity. As we will see in Section 3.1, when
↵ is small enough (but not 0 yet), x0 = 0 is optimal.
It thus makes sense to study both these strategies.

This class of strategies solves the main drawback of
the best response from Tang and Zeng (2018). If the

1We say a distribution is quasi-regular if the associated
revenue curve RXi is quasi-concave
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Figure 1: Top: illustration of strategies. Bottom: func-
tion optimized by the seller b(1� FB(b)) depending on
the strategy for values distribution F being U(0, 1). R

is set at 0.2, x1 is set such that x1(1 � F (x1)) = R

(right root) and x0 ' 0.27 for �̃x0,x1 .

value distribution Fi is quasi-regular, then the bid
distribution FB is also quasi-regular, offering a quasi-
concave maximization problem (thus “predictable" for
the buyer) to the seller. Figure 1 illustrates the different
strategies as well as the corresponding optimization
problems and the virtual values associated to the push-
forward bid distributions. Understanding the strategic
answer of the bidders helps avoiding worst-case scenario
reasoning when studying the revenue of the sellers
against strategic bidders. We now quantify precisely
how the welfare is shared between strategic bidders
and seller.

3 Welfare sharing between seller and

buyers

This section presents how the welfare is shared in the
two-stage process with strategic bidders. First, we
show how to numerically compute the best response
and illustrate the variation of utility and payment with
↵. After remarking and showing that the thresholded
strategy Nedelec et al. (2018) is optimal for greater
values of ↵ than 0, we focus on this strategy and show
the existence of a Nash equilibrium. It proves that even
in the case of multiple strategic bidders, there exists
strategies that enable bidders to take advantage of the
learning stage of the seller.

3.1 Welfare sharing with best quasi-regular

response

We first show how to obtain numerically the best re-
sponse �̃x0,x1 by solving the maximization problem of
U↵ restricted to the class of strategies described in Th.
1. This allows us to show how the bidder’s utility and
payment vary with ↵.
Theorem 2. Given a two-stage process (G,H, r

⇤
�
, F )

with r
⇤
�
= inf argmax

r
RB(r), the best response is of

the form of �̃x⇤
0 ,x

⇤
1

and the utility U↵(�̃x0,x1) has the
following derivatives:

@U↵(�̃x0,x1)

@x0
= ↵(1� F (x0))G(x0)H(x0)

� x0f(x0)G↵

✓
x1(1� F (x1))

(1� F (x0))

◆

@U↵(�̃x0,x1)

@x1
= f(x1) (x1)

✓
G↵(x1)

� EX

✓
1[x0Xx1]

X

(1� F (X))
g↵

✓
x1(1� F (x1))

(1� F (X))

◆◆◆

where G↵(x) = ↵G(x)H(x) + (1� ↵)G(x) and  (x) =
x� 1�F (x)

f(x) .

The proof is in Appendix B.3. We now use these
results to compute numerically the best response in
the following two-stage process: P1 = (G=U[0,1], H=
0, r⇤

�̃x⇤
0 ,x⇤

1

, F =U[0,1]) (uniformly distributed reserve in

stage 1)

The results are presented in Fig. 2. First, we recover
the results from the literature corresponding to the
extremes values of ↵. For ↵ = 1�, the payment and
utility in the second stage are the ones of a 2nd-price
with monopoly price of value distribution. As ↵ de-
creases, the total payment over the two stages quickly
decreases (and utility increases) towards values that
are even more favorable to the bidder than the ones
of a 2nd-price with no reserve price. This is consistent
with the observations from Nedelec et al. (2018) (case
↵ = 0): if only one bidder is strategic, the payment of
this strategic bidder can decrease even further than the
one of a 2nd-price with no reserve price. In Appendix,
we provide the same study with random reserve and
show that the presence of exploration of the reserve
prices in the first period (difference between left and
right) does not impact much the payment/utility of
the second period. It slightly decreases the advantage
of the bidder, but not significantly.

Finally, we observe two regimes for x
⇤
0 (Fig. 2, right):

for ↵ < 0.8 it is 0 and for ↵ > 0.8 it is the value that
saturates the inequality constraint described by Th. 1
between x0 and x1. This illustrates why we cannot only
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Figure 2: Welfare sharing with random reserve in stage 1: Left – Utility of strategic bidder in the two-stage game
as a function of ↵. Middle – Payment of strategic bidder in the two-stage game as a function of ↵. The dotted
lines corresponds to phase 1, the dashed ones to phase 2 and the solid line for the full game. The blue color is
used for the bidder’s utility and the red for her payment. The black color is used for the baseline of truthful
bidding. Right: evolution of x⇤

0, x
⇤
1 with ↵.

use first-order optimality condition: the optimal value
is often reached on the edge of the feasible domain. We
formalize this latter observation and shows that when
↵ is small enough, the reserve value x

⇤
0 is exactly 0.

Lemma 1. Given a two-step process (G,H, r
⇤
�
, F )

with r
⇤
�

= inf argmax
r
RB(r). If 9y 2 [0, b], 8x <

y,
G(x)H(x)

f(x) < x and G(x)H(x)
f(x) is bounded on [0, x⇤]

with x
⇤ = inf argmax

x
RX(x), then 9↵0 > 0 such that

8↵ < ↵0,

(x⇤
0, x

⇤
1) 2 argmax

x0,x1

U↵(�̃x0,x1) ) x
⇤
0 = 0

The proof can be found in Appendix B.3. G(x)H(x)
f(x)

being bounded on [0, x⇤] is satisfied if F is MHR
(monotonous hazard rate). G(x)H(x)

f(x) < x is the key
assumption. Intuitively, it can be interpreted as "if
the bidder has enough mass under the competition, she
can overbid at almost no cost on small values to de-
crease the reserve value to 0." This theorem shows that
the thresholding strategies proposed in Tang and Zeng
(2018); Nedelec et al. (2018) are actually optimal for ↵
small enough and not just for ↵ = 0. In the following
subsections, we carry out a formal analysis for such
strategies �̃0,x1 = �̃x1 as we can more easily character-
ize the best response and prove Nash equilibria.

3.2 Phase transition for the classical

thresholding strategies in the two-stage

game

We suppose in this subsection that the seller commits
to thresholding, i.e. x0 = 0 with the notation above.
The seller uses monopoly reserves in the second phase.
Theorem 3. We call G↵ = ↵G1 + (1� ↵)G2, G1 and
G2 being the distributions of the competition faced by
the bidder in the two phases, possibly including reserve
prices. We assume  �1(0) > 0. If the buyer uses the

thresholding strategy �̃x1 of Theorem 1 and commits
to it, we have for their utility, if the seller is welfare
benevolent : the utility has (in general) a discontinuity
at x1 =  

�1(0). For x1 <  
�1(0), we have U(0) �

U(x1). For x1 >  
�1(0), the first order condition

are the same as in Nedelec et al. (2018); Tang and
Zeng (2018) where the distribution of the competition
is now G↵ = ↵G1 + (1� ↵)G2. Call x⇤

1(↵) the unique
solution of this problem. Hence, the optimal threshold
is argmax

x12{0,x⇤
1(↵)} U(x1). An optimal threshold at

x1 = 0 corresponds to bidding truthfully.
Lemma 2 (Phase transition in ↵). Assume the setup of
Theorem 3. Suppose that G1 = G2, i.e. the distribution
of the competition is the same in the two phases and
there is no reserve price in the first phase. Then there is
a critical value ↵c for which, if ↵ < ↵c, it is preferable
for the bidder to threshold and if ↵ > ↵c, it is preferable
for the bidder to bid truthfully.

The proofs of the theorem and the lemma can be found
in Section D and we provide more details on the utility
there. A graphical illustration of these results can be
found in Figure 3.

3.3 Existence of a Nash equilibrium in the

two-stage game

Most of the literature on strategic buyers in repeated
auctions have focused on the posted price setting Amin
et al. (2013); Medina and Mohri (2014), though see
Golrezaei et al. (2019) for a recent extension to second
price auction. To complement this line of work, we
exhibit now the existence of a Nash equilibrium between
strategic bidders in the two-stage game. Our approach
here is the following. All players have essentially two
strategies, according to Theorem 3: they can either
threshold optimally above the monopoly price or bid
truthfully. We consider the first order conditions for a
Nash equilibrium if all players threshold and we then
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(a) ↵ = .95 (b) ↵ = .76 (c) ↵ = .2

Figure 3: Utility of the strategic buyer in 2 stage game for various threshold levels r’s, zero reserves.
We consider a setup where we have two bidders, both have Unif[0,1] value distribution. One is strategic. There is
no reserve price in the first stage. Different ↵’s are displayed. At ↵ ' .762, the truthful strategy is essentially
equivalent to optimal thresholding. For smaller ↵’s, the optimal thresholding is preferable (right). For higher ↵,
truthful bidding is preferred (a). This illustrates the results of Theorem 3

.

study the best response of the remaining player.

Theorem 4. We consider the symmetric case where
all bidders have the same value distribution F and it is
regular. We assume for simplicity that the distribution
is supported on [0,1]. Suppose this distribution has
density that is continuous at 0 and 1 with f(1) 6= 0 and
 crosses 0 exactly once and hence is positive beyond
that crossing point.

In the case where ↵ = 0, there is a unique symmetric
Nash equilibrium. The revenue of the bidders in this
case is the same as in a second price auction with no
reserve.

For any fixed ↵ > 0, there exists ↵c,thresh (possibly 0 or
1) such that if ↵  ↵c,tresh there exists a symmetric
Nash equilibrium in the class of thresholded strategies.
It is the same as in the case ↵ = 0 and hence the
revenue of the bidders is again the same as in a second
price auction with no reserve.

There exists ↵c,truthful (possibly 0 or 1) such that if ↵ �
↵c,truthful there exists a symmetric Nash equilibrium in
the class of thresholded strategies and it corresponds to
bidding truthfully.

The proof for the case ↵ = 0 is in Appendix C. The
remainder of the proof is in Appendix D. The presence
of other strategic bidders does not prevent bidders from
taking advantage of the learning stage of the seller.

4 Robustness of bidding strategies to

the information structure of the

game

We study the robustness of the bidding strategies to
several variants of the two-stage game: 1) the seller
is using an approximation of the bid distribution to

compute the reserve price of the second stage, 2) the
bidder does not have an estimation of the competition
to compute the optimal strategy for the two-stage game
and 3) the seller replaces the lazy second price with
monopoly reserve with another type of auction. Their
simplicity and robustness make them relevant in real-
world interactions.

4.1 Robustness to sample approximation of

the seller and ERM/optimization

algorithms

In practice, the seller needs to estimate the distribution
of the buyer and hence does not have a perfect knowl-
edge of the bid distribution FBi . The buyer needs to
find a robust shading method, making sure that the
seller has an incentive to lower her reserve price, even
if she misestimates the bid distribution.

We call  F the virtual value function associated with
the distribution F , i.e.  F (x) = x� 1�F (x)

f(x) .

Lemma 3. Suppose that the buyer uses a strategy
� under her value distribution F . Suppose the seller
thinks that the value distribution of the buyer is G.
Call �F and �G the hazard rate functions of the two
distributions Then the seller computes the virtual value
function of the buyer under G, denoted  B,G, as

 B,G(�(x)) =  B,F (�(x))��0(x)

✓
1

�G(x)
� 1

�F (x)

◆
.

As an aside, we note that by definition we have
1

�G(x) � 1
�F (x) =  F (x) �  G(x). We have the fol-

lowing useful corollary pertaining to the thresholded
strategies described in Section 3.

Corollary 1. If the buyer uses the strategy �̃
(✏)
r (x)
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defined as

�̃
(✏)
r

(x) =

✓
(r � ✏)(1� F (r))

1� F (x)
+ ✏

◆
1[xr] + x1[x>r] ,

we have, for x 6= r,  B,F (�̃
(✏)
r (x)) = ✏1[xr] +

 F (x)1[x>r] . In particular, we have for x 6= r

��� B,F (�̃
(✏)
r

(x))�  B,G(�̃
(✏)
r

(x))
���

 | F (x)�  G(x)|
⇥
(r � ✏)1[xr] + 1[x>r]

⇤
.

If for all x,  B,F (�̃
(✏)
r ) � ✏ and | F (x) �  G(x)|  �,

we have  B,G(�̃
(✏)
r (x)) � ✏� �max((r � ✏), 1) .

Hence, a natural way to quantify the proximity of
distributions in this context is of course in terms of
their virtual value functions. Furthermore, if the buyer
uses a shading function such that, under her strategy
and with her value distribution, the perceived virtual
value is positive, as long as the seller computes the
virtual value using a nearby distribution, she will also
perceive a positive virtual value and hence have no
incentive to put a reserve price above the lowest bid.
In particular, if � comes from an approximation error
that the buyer can predict or measure, she can also
adjust her ✏ so as to make sure that the seller perceives
a positive virtual value for all x. We pursue this specific
question in more details in the next subsection.

The previous results already give some results about the
impact of empirically estimating the value distribution
F by the empirical cumulative distribution function
F̂n on setting the reserve price. However because our
approximations are formulated in terms of hazard rate,
applying those results would yield quite poor approxi-
mation results in the context of setting the monopoly
price through ERM. This is due to the fact that es-
timating a density pointwise in supremum norm is a
somewhat difficult problem in general, associated with
poor rates of convergence. We refer the interested
reader to Tsybakov (2009) for more details on this
question.

So we now focus on the specific problem of empirical
minimization and take advantage of its characteristics
to obtain better results than would have been possible
by applying the results of the previous section naively.
Theorem 5. Suppose the buyer has a continuous and
increasing value distribution F , supported on [0, b], b 
1, with the property that if r � y � x, F (y)� F (x) �
�F (y � x), where �F > 0. Suppose that sup

t�r
t(1 �

F (t)) = r(1�F (r)). Suppose the buyer uses the strategy
�̃
(✏)
r defined as

�̃
(✏)
r

(x) =

✓
(r � ✏)(1� F (r))

1� F (x)
+ ✏

◆
1[xr] + x1[x>r] ,

Assume she samples n values {xi}ni=1 i.i.d according to
the distribution F and bids accordingly in second price
auctions. Call x(n) = max1in xi. In this case the
(population) reserve value x

⇤ is equal to 0. Assume
that the seller uses empirical risk minimization to de-
termine the monopoly price in a (lazy) second price
auction, using these n samples. Call x̂⇤

n
the reserve

value determined by the seller using ERM. We have,
if Cn(�) = n

�1/2
p
log(2/�)/2 and ✏ > x(n)Cn(�)/F (r)

with probability at least 1� �1,

x̂
⇤
n
<

2rCn(�)

✏�F
with probability at least 1� (� + �1) .

In particular, if ✏ is replaced by a sequence ✏n such that
n
1/2
✏nmin(1, 1/x(n)) ! 1 in probability, x̂⇤

n
goes to 0

in probability like n
�1/2 max(1, x(n))/✏n.

Informally speaking, our theorem says that using the
strategy �̃

(✏n)
r with ✏n slightly larger than n

�1/2 will
yield a reserve value arbitrarily close to 0. Hence the
population results we derived in earlier sections apply
to the sample version of the problem. We give examples
and discuss our assumptions in Appendix E.2 where
we prove the theorem.

We note that the flexibility afforded by ✏ is two-fold:
when ✏ > 0, the extra seller revenue is a strictly de-
creasing function of the reserve price; hence even if for
some reason reserve price movements are required to
be small, the seller will have an incentive to make such
move. The other reason is more related to estimation
issues: if the reserve price is determined by empirical
risk minimization, and hence affected by even small
sampling noise, having ✏ big enough will guarantee
that the mean extra gain of the seller will be above
this sampling noise. Of course, the average cost for the
bidder can be interpreted to just be ✏ at each value
under the current reserve price and hence may not be
a too hefty price to bear.

4.2 Robustness to the knowledge of the

competition distribution

Another common situation is that bidders do not know
in advance the competition G they are facing. They
need to estimate it from past interactions with the seller
and other bidders. First, we show that there exists some
strategies that do not need a precise estimation of the
competition. Then, we look at some worst-case scenario
where the goal is to find the strategy with the highest
utility in the worst case of G. We are optimizing the
bidding strategy in the class of thresholded strategies.
Theorem 6 (Thresholding at the monopoly price).
Consider the one-strategic setting in a lazy second
price auction with FXi the value distribution of the
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strategic bidder i with a seller computing the reserve
prices to maximize her revenue. Consider �tr the
truthful strategy. Consider the case of ↵ = 1. Then
there exists � which does not depend on G and : 1)
Ui(�) � Ui(�tr), Ui being the utility of the strategic
bidder. 2) Ri(�) � Ri(�tr), Ri being the payment
of bidder i to the seller. Then, �̃(✏)

 �1(0) fulfill these
conditions for ✏ � 0 small enough.

For ✏ = 0, we call this strategy the thresholded strategy
at the monopoly price. In the two-stage game, there is
a critical value ↵c for which, if ↵ < ↵c, it is preferable
for the bidder to threshold at the monopoly price and if
↵ > ↵c, it is preferable for the bidder to bid truthfully.

The formal proof in the general case is in Appendix F.
The nice and crucial property of thresholding at the
monopoly price is that it does not depend on a specific
knowledge of the competition.

Numerical applications in the case ↵ = 0: In
the case of two bidders with uniform value distribu-
tion, the strategic bidder utility increases from 0.083 to
0.132, (a 57% increase). In the case of two bidders with
exponential distribution,with parameters µ = 0.25 and
� = 1, the utility of the strategic bidders goes from
0.791 to 1.025 (a 29.5% increase). This theorem shows
that even if a fine-tuned knowledge of the competition
helps bidders increase their utility, there exists a strat-
egy where bidders do not need to know the competition
and can still significantly increase their utility. Due to
lack of space, we provide more results on the impact
of knowledge of the competition in Appendix F.

4.3 Robustness to a change of mechanism

We finally show that the thresholded strategies are
robust to certain changes of mechanism. This makes
sense in the framework of Stackelberg games with no
commitment where the player performs a certain op-
timization given the objective function of the other
player whereas this other player can decide to change
her optimization problem.

Myerson auction. In the one-strategic setting, in
the symmetric case where all bidders have initially the
same value distribution, we show that the utility gain
for the strategic bidder of thresholding at the monopoly
price is higher in the Myerson auction than in the lazy
second price auction.

Lemma 4. Consider the case where the distribution
of the competition is fixed. Assume all bidders have
the same value distribution FX , and that FX is regular.
Assume that bidder i is strategic and that the K � 1
other bidders bid truthfully. Let us denote by �tru the
truthful strategy and �thr the thresholded strategy at the

monopoly price. The utility of bidder i in the Myerson
auction U

Myer

i
and in the lazy second price auction

U
Lazy

i
satisfy

U
Myer
i

(�thr)�U
Myer
i

(�tru) � U
Lazy
i

(�thr)�U
Lazy
i

(�tru).

The proof is given in Appendix G.1. Numerics with
K = 2 bidders with U [0, 1] value distribution: The
utility is 1/12 in the truthful case in both lazy second
price and Myerson since these auctions are identical
in the symmetric case. The utility of the thresholded
strategy at monopoly price is 7/48 in the Myerson
auction, i.e. 75% more than the utility with the truthful
strategy. We note that the gain is larger than for a
second price auction with monopoly reserve where the
extra utility was 57%.

Eager second price auction with monopoly

price. Monopoly reserves are not optimal reserve
prices for this version of the second price auction in
general but in practice, the optimal ones are NP-hard
to compute Paes Leme et al. (2016). We recall that the
eager second price auction is a standard second price
auction between bidders who clear their reserves.
Lemma 5. Consider the same setting and notations
as Lemma 4. The utility of bidder i in the eager second
price auction with monopoly reserves, U

Eager

i
, and

in the lazy second price auction U
Lazy

i
with the same

reserves, satisfy :

U
Eager
i

(�thr)�U
Eager
i

(�tru) � U
Lazy
i

(�thr)�U
Lazy
i

(�tru).

The proof is given in Appendix G.2. These two lemmas
show that thresholded strategies can increase the utility
of strategic bidders even if the seller runs a different
auction in the second stage than the lazy second price
auction with monopoly price. We plan to design games
where the seller can change the mechanism and bidders
can update their bidding strategy at any point.

5 Conclusion

We propose novel optimal strategies for the canonical
problem of auction design with unknown value distri-
butions that are learned in an exploration phase and
exploited thereafter. The Stackelberg game we con-
sider exhibit complex solutions but we provide simple
strategies that can be made robust to various setups
reflecting how much information bidders have about
the game they are participating in. This allows buyers
to quantify the price of revealing information about
their values in repeated auctions. It also opens new
avenues for research on the seller side by providing new
realistic strategies that may adopted by the strategic
bidder.



Clément Calauzènes, Thomas Nedelec, Vianney Perchet, Noureddine El Karoui

References

Michele Aghassi and Dimitris Bertsimas. Robust game
theory. Mathematical Programming, 2006.

Kareem Amin, Afshin Rostamizadeh, and Umar Syed.
Learning prices for repeated auctions with strategic
buyers. Proceedings of NIPS, 2013.

Kareem Amin, Afshin Rostamizadeh, and Umar Syed.
Repeated contextual auctions with strategic buyers.
Proceedings of NIPS, 2014.

Itai Ashlagi, Constantinos Daskalakis, and Nima Hagh-
panah. Sequential mechanisms with ex-post partici-
pation guarantees. Proceedings of EC, 2016.

N. Cesa-Bianchi, C. Gentile, and Y. Mansour. Re-
gret minimization for reserve prices in second-price
auctions. Proceedings of SODA, 2013.

Richard Cole and Tim Roughgarden. The sample com-
plexity of revenue maximization. Proceedings of The-
ory of computing, 2014.

Peerapong Dhangwatnotai, Tim Roughgarden, and
Qiqi Yan. Revenue maximization with a single sam-
ple. Games and Economic Behavior, 91, 2015.

Engelbert J. Dockner, Steffen Jorgensen, Ngo Van
Long, and Gerhard Sorger. Differential Games in
Economics and Management Science. Cambridge
University Press, 2000.

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, and
David C Parkes. Optimal auctions through deep
learning. Proceedings of ICML, 2019.

Alessandro Epasto, Mohammad Mahdian, Vahab Mir-
rokni, and Song Zuo. Incentive-aware learning for
large markets. Proceedings of WWW, 2018.

Negin Golrezaei, Adel Javanmard, and Vahab Mirrokni.
Dynamic incentive-aware learning: Robust pricing in
contextual auctions. Proceedings of NeurIPS, 2019.

Zhiyi Huang, Yishay Mansour, and Tim Roughgarden.
Making the most of your samples. SIAM Journal on
Computing, 2018.

Yash Kanoria and Hamid Nazerzadeh. Dynamic reserve
prices for repeated auctions: Learning from bids.
Proceedings of WINE, 2014.

V. Krishna. Auction Theory. 2009.
P. Massart. The tight constant in the dvoretzky-kiefer-

wolfowitz inequality. The Annals of Probability, 18,
1990.

Andres M Medina and Mehryar Mohri. Learning theory
and algorithms for revenue optimization in second
price auctions with reserve. Proceedings of ICML,
2014.

Mehryar Mohri and Andres Munoz. Revenue optimiza-
tion against strategic buyers. Proceedings of NIPS,
2015.

Jamie H Morgenstern and Tim Roughgarden. On the
pseudo-dimension of nearly optimal auctions. Pro-
ceedings of NIPS, 2015.

R. B. Myerson. Optimal auction design. Mathematics
of Operation Research, 6(1), 1981.

Thomas Nedelec, Marc Abeille, Clément Calauzènes,
Noureddine El Karoui, Benjamin Heymann, and
Vianney Perchet. Thresholding the virtual value:
a simple method to increase welfare and lower re-
serve prices in online auction systems. arXiv preprint
arXiv:1808.06979, 2018.

Thomas Nedelec, Noureddine El Karoui, and Vianney
Perchet. Learning to bid in revenue-maximizing
auctions. Proceedings of ICML, 2019.

M. Ostrovsky and M. Schwarz. Reserve prices in inter-
net advertising auctions: A field experiment. Pro-
ceedings of EC, 2011.

Renato Paes Leme, Martin Pal, and Sergei Vassilvit-
skii. A field guide to personalized reserve prices.
Proceedings of WWW, 2016.

Pingzhong Tang and Yulong Zeng. The price of prior
dependence in auctions. Proceedings of EC, 2018.

Alexandre B. Tsybakov. Introduction to nonparametric
estimation. 2009.


	Framework and contributions
	Understanding the strategic reaction of the players
	Welfare sharing between seller and buyers
	Welfare sharing with best quasi-regular response
	Phase transition for the classical thresholding strategies in the two-stage game
	Existence of a Nash equilibrium in the two-stage game

	Robustness of bidding strategies to the information structure of the game
	Robustness to sample approximation of the seller and ERM/optimization algorithms
	Robustness to the knowledge of the competition distribution
	Robustness to a change of mechanism

	Conclusion
	Proof of Myerson Lemma
	Technical lemmas

	Optimal Classes of Strategies for two-step Process
	Seller Revenue is Lower than with Truthful Bidding
	Deriving the Best Quasi-Regular Response
	Welfare Sharing between Seller and Bidder

	Proof of the existence of a Nash equilibrium (=0)
	A directional derivative result
	Uniqueness of the Nash equilibrium
	Existence of the Nash equilibrium
	Best response strategy: one strategic case
	Proof of existence of the Nash equilibrium

	Equivalence of revenue

	Proofs for Subsections 3.2 and 3.3
	Proof of results in Section 4.1
	Proof of Lemma 17 and Corollary 2
	Proof of Theorem 5

	Proof of results of Section 4.2
	Proof of results of Section 4.3
	Thresholding at the monopoly price in the Myerson auction
	Thresholding at the monopoly price in the eager second price auction with monopoly price


