
Decentralized gradient methods: does topology matter?

Giovanni Neglia Chuan Xu Don Towsley Gianmarco Calbi

Inria, Univ. Côte d’Azur
France

Inria, Univ. Côte d’Azur
France

UMass Amherst
USA

Inria, Univ. Côte d’Azur
France

Abstract

Consensus-based distributed optimization
methods have recently been advocated as al-
ternatives to parameter server and ring all-
reduce paradigms for large scale training of
machine learning models. In this case, each
worker maintains a local estimate of the opti-
mal parameter vector and iteratively updates
it by averaging the estimates obtained from
its neighbors, and applying a correction on
the basis of its local dataset. While theo-
retical results suggest that worker commu-
nication topology should have strong impact
on the number of epochs needed to converge,
previous experiments have shown the oppo-
site conclusion. This paper sheds lights on
this apparent contradiction and show how
sparse topologies can lead to faster conver-
gence even in the absence of communication
delays.

1 INTRODUCTION

In 2014, Google’s Sybil machine learning (ML) plat-
form was processing hundreds of terabytes through
thousands of cores to train models with hundreds of
billions of parameters (Canini et al., 2014). At this
scale, no single machine can solve these problems in a
timely manner, and, as time goes on, the need for e�-
cient distributed solutions becomes even more urgent.
For example, experiments in (Young et al., 2017) rely
on more than 104 computing nodes to iteratively im-
prove the (hyper)parameters of a deep neural network.

The example in (Young et al., 2017) is typical of a large
class of iterative ML distributed algorithms. Such al-
gorithms begin with a guess of an optimal vector of pa-

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

rameters and proceed through multiple iterations over
the input data to improve the solution. The process
evolves in a data-parallel manner: input data is di-
vided among worker threads. Currently, two commu-
nication paradigms are commonly used to coordinate
the di↵erent workers (Google I/O, 2018): parameter
server and ring all-reduce. Both paradigms are na-
tively supported by TensorFlow (Abadi et al., 2016).

In the first case, a stateful parameter server
(PS) (Smola and Narayanamurthy, 2010) maintains
the current version of the model parameters. Work-
ers use locally available versions of the model to com-
pute “delta” updates of the parameters (e.g., through
a gradient descent step). Updates are then aggregated
by the parameter server and combined with its cur-
rent state to produce a new estimate of the optimal
parameter vector.

As an alternative, it is possible to remove the PS, by
letting each worker aggregate the inputs of all other
workers through the ring all-reduce algorithm (Gib-
iansky, 2017). With M workers, each aggregation
phase requires 2(M � 1) communication steps with
O(1) data transmitted per worker. There are many
e�cient low level implementations of ring all-reduce,
e.g., in NVIDIA’s library NCCL.

We observe that both the PS and the ring all-reduce
paradigms 1) maintain a unique candidate parameter
vector at any given time and 2) rely logically on an all-
to-all communication scheme.1 Recently Lian et al.
(2017, 2018) have promoted an alternative approach
in the ML research community, where each worker
1) keeps updating a local version of the parameters
and 2) broadcasts its updates only to a subset of nodes
(its neighbors). This family of algorithms became orig-
inally popular in the control community, starting from
the seminal work of Tsitsiklis et al. (1986) on dis-
tributed gradient methods. They are often referred
to as consensus-based distributed optimization meth-

1Each node needs to receive the aggregate of all other
nodes’ updates to move to the next iteration. Aggregation
is performed by the PS or along the ring through multiple
rounds.

Decentralized gradient methods: does topology matter?

ods. Experimental results in (Lian et al., 2017, 2018;
Luo et al., 2019) show that

1. in terms of number of epochs, the convergence
speed is almost the same when the communica-
tion topology is a ring or a clique, contradicting
theoretical findings that predict convergence to be
faster on a clique;

2. in terms of wall-clock time, convergence is faster
for sparser topologies, an e↵ect attributed in (Lian
et al., 2017) to smaller communication load.

In particular, Luo et al. (2019) summarize their find-
ings as follows “in theory, the bigger the spectral gap,
[i.e., the more connected the topology] the fewer iter-
ations it takes to converge. However, our experiments
do not show a significant di↵erence in the convergence
rate w.r.t. iterations, even when spectral gaps are very
dissimilar.”

In this paper we contribute to a better understanding
of the potential advantages of consensus-based gradi-
ent methods. In particular,

1. we present a refined convergence analysis that
helps to explain the apparent contradiction among
theoretical results and empirical observations,

2. we show that sparse topologies can speed-up wall-
clock time convergence even when communication
costs are negligible, because they intrinsically mit-
igate the straggler problem.

The paper is organized as follows. Section 2 provides
required background. Our theoretical analysis of the
e↵ect of communication topology is in Sect. 3. Exper-
iment results in Sect. 4 confirm our findings. Section 5
concludes the paper.

2 NOTATION AND BACKGROUND

The goal of supervised learning is to learn a function
that maps an input to an output using S examples
from a training dataset S = {(x(l), y(l)), l = 1, . . . S}.
Each example (x(l), y(l)) is a pair consisting of an input
object x(l) and an associated target value y(l). In order
to find the best statistical model, ML techniques often
find the set of parameters w 2 Rn that solves the
following optimization problem:

minimize
w

S
X

l=1

f(w,x(l), y(l)) (1)

where function f(w,x(l), y(l)) represents the error the
model commits on the l-th element of the dataset S

when parameter vector w is used. The objective func-
tion may also include a regularization term that en-
forces some “simplicity” (e.g., sparseness) on w; such
a term is easily taken into account in our analysis.

Due to increases in available data and statistical model
complexity, distributed solutions are often required to
determine the parameter vector in a reasonable time.
The dataset in this case is divided among M workers
(S = [M

j=1

Sj), possibly with some overlap. For sim-
plicity, we consider that all local datasets Sj have the
same size. Problem (1) can be restated in an equiva-
lent form as minimization of the sum of functions local
to each node:

minimize
w

F (w) =
M
X

j=1

Fj(w), (2)

where Fj(w) = 1

|Sj |
P

(x

(l),y(l)
)2Sj f(w,x(l), y(l)).

The distributed system can be represented by a di-
rected dataflow graph G = (V, E), where V =
{1, 2, . . .M} is the set of nodes (the workers) and an
edge (i, j) 2 E indicates that, at each iteration, node j
waits for updates from node i for the previous iter-
ation. We assume the graph is strongly connected.
Let Nj = {i|(i, j) 2 E} denote the in-neighborhood
of node j, i.e., the set of predecessors of node j in G.
Each node j maintains a local estimate of the param-
eter vector wj(k) and broadcasts it to its successors.
The local estimate is updated as follows:

wj(k + 1) =
X

i2Nj[{j}

wi(k)Ai,j � ⌘(k)gj(wj(k)). (3)

The node computes a weighted average (consen-
sus/gossip component) of the estimates of its neigh-
bors and itself, and then corrects it taking into ac-
count a stochastic subgradient gj(wj(k)) of its local
function, i.e.,

gj(wj(k)) =
1

B

X

(x

(l),y(l)
)2⇠j(k)

@f(wj(k),x
(l), y(l)),

where @f(w,x(l), y(l)) denotes a subgradient of f with
respect to w, and ⇠j(k) is a random minibatch of size
B drawn from Sj . Parameter ⌘(k) > 0 is the (poten-
tially time-varying) learning rate. A = (Ai,j) is an
M⇥M matrix of non-negative weights. We call A the
consensus matrix.2

The operation of a synchronous PS or ring all-reduce
is captured by (3) when the underlying graph G is a
clique, A = 11|/M , where 1 is the M ⇥ 1 vector
consisting of all ones, and wi(0) = wj(0), 8i, j 2 V.

2We are describing a synchronous DSM. The consis-
tency model could be weaker, allowing node i to use older
estimates from its neighbors (Li et al., 2014).

Giovanni Neglia, Chuan Xu, Don Towsley, Gianmarco Calbi

Under some standard technical conditions, (Nedić
et al., 2018, Thm. 8) and (Duchi et al., 2012, Thm. 2)
conclude, respectively for Distributed Subgradient
Method (DSM) and for the Dual Averaging Dis-
tributed method, that the number of iterations K✏

needed to approximate the minimum objective func-
tion value by the desired error ✏ is

K✏ 2 O
✓

1

✏2�(A)

◆

, (4)

where 0  �(A)  1 is the spectral gap of the ma-
trix A, i.e., the di↵erence between the moduli of the
two largest eigenvalues of A. The spectral gap quan-
tifies how information flows in the network. In par-
ticular, the spectral gap is maximal for a clique with
weights Ai,j = 1/M . Motivated by these convergence
results, existing theoretically-oriented literature has
concluded that a more connected network topology
leads to faster convergence (Nedić et al., 2018; Duchi
et al., 2012). But some recent experimental results
report that consensus-based gradient methods achieve
similar performance after the same number of itera-
tions/epochs on topologies as di↵erent as rings and
cliques. For example (Lian et al., 2017, Fig. 3) shows
almost overlapping training losses for di↵erent ResNet
architectures trained on CIFAR-10 with up to one hun-
dred workers. (Luo et al., 2019, Fig. 20), (Koloskova
et al., 2019, Fig. 11 in supplementary material), and
our experimental results in Sect. 4 confirm these find-
ings.

Lian et al. (2017) provide a partial explanation for
this insensitivity in their Corollary 2, showing that
the convergence rate is topology-independent 1) after
a large number of iterations (O(M5/�(A)2)), 2) for
a vanishing learning rate, and 3) when the functions
Fj are di↵erentiable with Lipschitzian gradients. Un-
der the additional hypothesis of strong convexity, Pu
et al. (2019) prove that topology insensitivity should
manifest after O(M/�(A)2) iterations.3 Assran et al.
(2019) provide similar results in terms of the graph
diameter and maximum degree. These results do not
explain why insensitivity is often observed in practice
(as shown in (Lian et al., 2017, 2018; Luo et al., 2019;
Koloskova et al., 2019)) 1) since the beginning of the
training phase, 2) with constant learning rates, and
3) for non-di↵erentiable machine learning models (e.g.,
neural networks). In the following section, we present
a refined convergence analysis that explains when and
why the e↵ect of topology on the number of iterations
needed to converge is weaker than what previously pre-
dicted.

3We provide numerical estimates for the number of iter-
ations predicted by (Lian et al., 2017) and (Pu et al., 2019)
in Appendix C.

3 ANALYSIS

A less connected topology requires more iterations to
achieve a given precision as indicated by (4). Our
detailed analysis below shows that, when consensus-
based optimization methods are used for ML training,
the increase in the number of iterations is much less
pronounced than previous studies predict. This is due
to two di↵erent e↵ects. First, consensus is a↵ected
only by variability in initial estimates and subgradi-
ents across nodes, and not by their absolute values.
Second, certain configurations of initial estimates and
subgradients are more di�cult to achieve a consensus
over, and would make the training highly dependent
on the topology, but they are unlikely to be obtained
by randomly partitioning the dataset.

Let n be the number of parameters of the model, and
W (k) and G(k) be n ⇥ M matrices, whose columns
are, respectively, node estimates w

1

(k), . . . ,wM (k)
and subgradients g

1

(w
1

(k)), . . . , gM (wM (k)) at the
completion of iteration k. Equation (3) can be rewrit-
ten in the form W (k+1) = W (k)A�⌘(k)G(k), from
which we obtain iteratively

W (k + 1) = W (0)Ak+1 �
k

X

h=0

⌘(h)G(h)Ak�h. (5)

We make the following assumptions:4

A1 all functions Fi are convex,

A2 the set of (global) minimizers W⇤ is non-empty,

A3 graph G is strongly connected,

A4 matrix A is normal (i.e., A|
A = AA

|) and dou-
bly stochastic,

A5 the squared Frobenius norm of subgradient matrix
G(k) is bounded in expectation over the vector
⇠ of minibatches randomly drawn at nodes, i.e.,

there exists E, such that E
⇠

h

kG(k)k2F
i

 E.

Assumptions A1-A4 are standard ones in the related
literature, see for example (Nedić and Ozdaglar, 2009;
Duchi et al., 2012; Nedić et al., 2018). Assumption
A5 imposes a bound on the (expected) energy of the
subgradients, because kG(k)k2F =

P

jkgj(wj(k))k2
2

.
In the literature it is often replaced by the stronger
requirement that the norm-2 of the subgradients
gj(wj(k)) is bounded. Let �G(k) denote the ma-
trix G(k)�G(k)11|/M , whose column j is the di↵er-
ence between subgradient gj(wj(k)) and the average

4Experiments in Sect. 4 show that our conclusions hold
also when these assumptions are not satisfied.

Decentralized gradient methods: does topology matter?

of subgradients
PM

j=1

gj(wj(k))/M . k�G(k)k2F cap-
tures the variability in the subgradients. Assumption
A5 also implies that there exist two constants E

sp

 E

and H  p
E such that

E
⇠

h

k�G(k)k2F
i

 E
sp

, kE
⇠

[G(k)]kF  H.

Similarly, let R denote the energy of the initial pa-
rameter vectors (or an upper bound for it), i.e., R ,
kW (0)k2F . We also denote by R

sp

the energy for the
di↵erence matrix �W (0) , W (0) � W (0)11|/M ,
i.e., R

sp

, k�W (0)k2F . R
sp

captures the variabil-
ity in initial estimates. It holds R

sp

 R.

Because of Assumption A4, the consensus matrix has
a spectral decomposition with orthogonal projectors
A =

PQ
q=1

�qPq, where �
1

, . . . ,�Q are the Q  M
distinct eigenvalues of A, Pq is the orthogonal projec-
tor onto the nullspace of A � �qI along the range of
A� �qI. We assume that the eigenvalues are ordered
so that |�

1

| � |�
2

| � · · · � |�Q|. Assumptions A3 and
A4 imply that �

1

= 1, and |�
2

| < 1 (Appendix B).
Finally, we define

↵ ,

8

<

:

r

PQ
q=2

eq

�

�

�

�q

�2

�

�

�

2

, if �
2

6= 0,

1, otherwise.
(6)

where eq is an upper-bound for the normalized fraction

of energy E
⇠

h

k�G(k)k2F
i

in the subspace defined by

projector Pq (Appendix D). The quantity ↵ can be
interpreted as an e↵ective bound for the fraction of
the energy E

sp

that falls in the subspace relative to
the second largest eigenvalue �

2

.

We are now ready to introduce our main convergence
result. We state it for the average model over nodes
and time, i.e., for ŵ(K�1) , 1

K

PK�1

k=0

1

M

PM
i=1

wi(k).
We have also derived a similar bound for the local
time-average model at each node, i.e., for ŵi(K�1) ,
1

K

PK�1

k=0

wi(k) (Appendix D.3).

Proposition 3.1. Under assumptions A1-A5 and
that a constant learning rate ⌘(k) = ⌘ is used, an
upper bound for the objective value at the end of the
(K � 1)th iteration is given by:

E
⇥

F
�

ŵ(K � 1)
�⇤� F ⇤  M

2⌘K
dist

�

ŵ(0),W⇤�2 +
⌘E

2

+ 2H
p

Rsp

p
M

K

1� |�
2

|K
1� |�

2

|
+ 2⌘H

p

Esp

✓

(1� ↵)
K � 1

K
(7)

+
↵

1� |�
2

|
✓

1� 1

K

1� |�
2

|K
1� |�

2

|
◆◆

.

Here, dist(x,W⇤) denotes the Euclidean distance be-
tween vector x and set of global minimizers W⇤. The
proof is in Appendix D.1. The first two terms on
the right hand side of (7) also appear when studying
the convergence of centralized subgradient methods.
The last two terms appear because of the distributed
consensus component of the algorithm and depend on
|�

2

| < 1. We observe that 1� |�
2

| is the spectral gap
of A. It measures how well connected the graph is. In
particular, the larger the spectral gap (the smaller �

2

),
the better the connectivity and the smaller the bound
in (7).

From Proposition 3.1, we can derive a looser bound
analogous to the bound for DSM in (Nedić and
Ozdaglar, 2009). In fact, observing that R

sp

 R,
E

sp

 E, H  p
E, and 0  ↵  1, we can prove (Ap-

pendix D.2):

Corollary 3.2. Under assumptions A1-A5 and that
constant learning rate ⌘(k) = ⌘ is used, an upper bound
for the objective value at the end of the (K � 1)th it-
eration is given by:

E
⇥

F
�

ŵ(K � 1)
�⇤� F ⇤  M

2⌘K
dist

�

ŵ(0),W⇤�2 +
⌘E

2

+ 2
p
E
p
R

p
M

K

1� |�
2

|K
1� |�

2

|
+ 2⌘E

1

1� |�
2

|
✓

1� 1

K

1� |�
2

|K
1� |�

2

|
◆

. (8)

In particular, if workers compute full-batch subgradi-
ents and the 2-norm of subgradients of functions Fi is
bounded by a constant L, we obtain:

F
�

ŵ(K � 1)
�� F ⇤  M

2⌘K
dist

�

ŵ(0),W⇤�2 +
⌘ML2

2

+ 2L
p
R
M

K

1� |�
2

|K
1� |�

2

|
+ 2⌘L2

M

1� |�
2

|
✓

1� 1

K

1� |�
2

|K
1� |�

2

|
◆

. (9)

WhenK is large enough, the fourth term in (8) and (9)
is dominant, so that the error is essentially propor-
tional to 1/(1� |�

2

|). Note that the constant multiply-
ing 1/(1� |�

2

|) in (8) is larger than the corresponding
one in (7) by a factor

� , 1

↵
⇥ E

p

E
sp

H
(10)

The value � roughly indicates how much looser
bound (8) is in comparison to bound (7).

Existing theoretical works like (Nedić and Ozdaglar,
2009; Duchi et al., 2012; Nedić et al., 2018) de-
rived bounds similar to (9) and concluded then that

Giovanni Neglia, Chuan Xu, Don Towsley, Gianmarco Calbi

one should select the learning rate proportional to
p

1� |�
2

| to reduce the e↵ect of topology. In particu-

lar, one obtains (4) when ⌘ = ⌘
0

p

(1� |�
2

|)/K. Our
bound (7) improves bound (8) by replacing R in the
third terms of (8) by the smaller value R

sp

, and
p
E

in the third and fourth terms by the smaller values H
and

p

E
sp

, and introducing the new coe�cient ↵. We
qualitatively describe the e↵ect of these constants.

Rsp Bound (7) shows that the norm of the initial es-
timates (R) does not really matter, but rather variabil-
ity among workers does. In particular, for ML compu-
tation we can make wi(0) = wj(0) for each i and j,
and then R

sp

= 0, so that the third term in the RHS
of (7) vanishes.

Esp,H For E
sp

, considerations similar to those ap-
plying to R

sp

hold. What matters is the variability
of the subgradients. Assume that the dataset is repli-
cated at each node and each node computes the sub-
gradient over the full batch (B = S). In this case
all subgradients would be equal, and k�G(k)k = 0,
E

sp

= 0, and the fourth term would also vanish. This
corresponds to the fact that, when initial parameter
vectors, as well as local functions, are the same, the
parameter vectors are equal at any iteration k and the
system evolves exactly as it would under a centralized
subgradient method. In general, local subgradients
can be expected to be close (and E � E

sp

), if 1) lo-
cal datasets are representative of the entire dataset
(the dataset has been randomly split and |Sj | � M),
and 2) large batch sizes are used. On the other hand,
when batch sizes are very small, one expects stochastic
subgradients to be very noisy, and as a consequence
the energy of the matrix G to be much larger than
the energy of E⇠[G], so that

p
E � H. In both

cases, E/(
p

E
sp

H) is large (in the first case becausep
E � p

E
sp

, and in the second because
p
E � H).

We quantify these e↵ects below.

↵ From (5) we see that the e↵ect of the subgradients

is modulated byA

k�h, that equals
PQ

q=1

�k�h
q Pq. The

energy of the subgradients is spread across the di↵erent
subspaces defined by the eigenvectors ofA. The classic
bound (8) implicitly assumes that all energy falls in
the subspace corresponding to �

2

(this occurs if the
row of the matrices G(k) are aligned with the second
eigenvector). In reality, on average each subspace will
only get 1/Q-th of the total energy (eq ⇡ 1/Q), and the
energy in other subspaces will be dissipated faster than
what happens for the subspace corresponding to �

2

.
↵  1 quantifies this e↵ect.

A toy example in Appendix G illustrates qualitatively
these e↵ects. Here we provide estimates for the ex-
pected values of E, E

sp

, and H over all possible ways

Figure 1: Estimate of E/(
p

EspH) versus the relative
batch size B/S for M = 100, S = 106, C = M , and
di↵erent level of heterogeneity (�2/k@Fk22) of the dataset.
Curves for C = 1 (in Appendix F) are very similar, but for
the fact that the batch size can scale only up to S/M .

to distribute the dataset S randomly across the nodes.
We reason as follows. For a given parameter vector w,
consider the set of subgradients at all dataset points,
i.e., [

(x

(l),y(l)
)2S{@f(w,x(l), y(l))}. The average sub-

gradient over all datapoints is @F (w). Let �2(w) de-
note the trace of the covariance matrix of all subgra-
dients. We denote by SC the expanded dataset where
each datapoint is replicated C times with 1  C  M .
The dataset SC is split across the M nodes. Each node
selects a random minibatch from its local dataset and
we denote by G the corresponding subgradient matrix.

Proposition 3.3. Consider a uniform random per-
mutation ⇡ of SC with the constraint that C copies of
the same point are placed at C di↵erent nodes. The
following holds

E⇡

h

E
⇠

h

kGk2F
ii

= M

✓

k@Fk2
2

+
S �B

B(S � 1)
�2

◆

,

E⇡

h

E
⇠

h

k�Gk2F
ii

= �2

MC(S �B)� CS +MB

CB(S � 1)
,

E⇡

⇥kE
⇠

[G]kF
⇤

(11)

2
"p

Mk@Fk
2

,
p
M

s

k@Fk2
2

+
M � C

C(S � 1)
�2

#

.

We can use (11) to study how E, E
sp

, and H vary with
dataset size, batch size, and number of replicas, using
the following approximations:

bE = E⇡

h

E
⇠

h

kGk2F
ii

, bE
sp

= E⇡

h

E
⇠

h

k�Gk2F
ii

,

bH =
p
M

s

k@Fk2
2

+
M � C

C(S � 1)
�2. (12)

Figure 1 illustrates the ratio bE/(
q

bE
sp

bH)(= �↵) for a
particular setting. It also highlights the two regimes
discussed above: � ⇡ 1/↵ ⇥ p

E/E
sp

for large batch

Decentralized gradient methods: does topology matter?

sizes and � ⇡ 1/↵ ⇥ p
E/H for small ones. As �

indicates how much looser bound (8) is in compari-
son to bound (7), and � > E/(

p

E
sp

H), the figure
shows that (8) may indeed overestimate the e↵ect of
the topology by many orders of magnitudes.

4 EXPERIMENTS

With our experiments we want to 1) evaluate the e↵ect
of topology on the number of epochs to converge, and
in particular quantify E, E

sp

, H, and ↵ in practical
ML problems, 2) evaluate the e↵ect of topology on
the convergence time. We considered three di↵erent
optimization problems:

1. Minimization of mean squared error (MSE) for
linear regression on the dataset “Relative loca-
tion of CT slices on axial axis” from (uci; Graf
et al., 2011). Convexity holds, but gradients are
potentially unbounded.

2. Minimization of cross-entropy loss through a neu-
ral network with two convolutional layers on
MNIST dataset (Lecun et al., 1998). Neither con-
vexity, nor subgradient boundness hold.

3. Minimization of cross-entropy loss through
ResNet18 neural network (He et al., 2016) on
CIFAR-10 dataset (Krizhevsky, 2009). Neither
convexity, nor subgradient boundness hold. More-
over, we employ local subgradients with classical
momentum (Sutskever et al., 2013) (with coe�-
cient 0.9).

We have developed an ad-hoc Python simulator that
allows us to test clusters with a large number of nodes,
as well as a distributed application using PyTorch MPI
backend to run experiments on a real GPU cluster
platform. In general, datasets have been randomly
split across the di↵erent workers without any replica-
tion (C = 1). For MNIST we have also considered a
scenario with M = 10 workers, where each worker has
been assigned all images for a specific digit. A constant
learning rate has been set using the configuration rule
from (Smith, 2017) described in Appendix H. Interest-
ingly, for a given ML problem, when the dataset is split
randomly, this procedure has led to choose the learning
rate independently of the average node degree. The
values selected are indicated in Table 1. Each node
starts from the same model parameters (R

sp

= 0) that
have been initialized through PyTorch default func-
tions. We report here a subset of all results, the others
can be found in Appendix H.

Table 1 shows values of
p

E/E
sp

,
p
E/H, 1/↵, and

their product � for di↵erent problems and di↵er-

ent settings.5 E, E
sp

, and H have been evaluated
through empirical averages using the random mini-
batches drawn at the first iteration. ↵ is computed for
an undirected ring topology. Remember that the value
� (defined in (10)) indicates how much tighter the new
bound (7) is in comparison to the classic one (8). We
also use (12) to provide an estimate of � as follows

b� = 1/↵ ⇥ bE/(
q

bE
sp

bH). The approximation is very
accurate when the dataset is split randomly across the
nodes. On the other hand, for MNIST, when all im-
ages for a given digit are assigned to the same node, lo-
cal datasets are very di↵erent and approximations (12)
are too crude (but our bound (7) still holds). Interest-
ingly, � is dominated by di↵erent e↵ects for the three
ML problems. The similarity of local datasets prevails
for CT (large

p

E/E
sp

), while the noise of stochas-

tic subgradients prevails for CIFAR (large
p
E/H).

For MNIST the three e↵ects, including energy spread-
ing over di↵erent eigenspaces (1/↵), contribute almost
equally. This can be explained considering that, even
if local datasets have similar sizes, they are statisti-
cally more di↵erent the more complex the model to
train, i.e., the larger n.

From (7) and (8), we can also compute at which it-
eration the two bounds predict that the e↵ect of the
topology becomes significant, by identifying when the
training loss di↵erence between the clique and the ring
accounts for a given percentage of the loss decrease
over the entire training period. Figure 3 qualitatively
illustrates the procedure.6 These predictions are indi-
cated in the last columns of Table 1 and are compared
with the values observed in the experiments (k0).

We note that forecasts are very di↵erent, despite the
fact that, in some settings, our bound is only 3 times
tighter than the classic one. Bound (8) predicts that
the training loss curves should di↵er by more than 10%
since the first iteration (k0o = 1). The new bound (7)
correctly identifies that the topology’s e↵ect becomes
evident later, sometimes beyond the total number of
iterations performed in the experiment (in this case we
indicate k0n = 1).

Figure 2 shows the training loss evolution F (ŵ(k)) for
specific settings (one for each ML problem) and two

5Some additional experiments in Appendix H show that
Rsp and R have a smaller e↵ect on the bounds, as the third
term in (7) and in (8) converges to 0 when K diverges.

6In order to be able to compare the upper bounds (8)
and (7) with the actual loss curves, we rescale them by
a factor determined so that the upper bound curve and
the experimental one are tangent for the clique topology
(Fig. 3). Moreover, once determined at which iteration
rings and cliques should di↵er, we update the upper-bounds
with new estimates for E, Esp, H, R, and Rsp computed
at this iteration, and check if they now predict a larger
number of iterations.

Giovanni Neglia, Chuan Xu, Don Towsley, Gianmarco Calbi

Table 1: Empirical estimation of E, E
sp

, H, ↵ on di↵erent ML problems and comparison of their joint e↵ect

(�) with the value b� predicted through (12). Number of iterations by which training losses for the ring and the
clique di↵er by 4%, 10%, as predicted by the old bound (8), k0o, by the new one (7), k0n, and as measured in the
experiment, k0. When a value exceeds the total number of iterations we ran (respectively 1200 for CT, 1190 for
MNIST, and 1040 for CIFAR-10), we simply indicate it as 1.

Dataset Model M B ⌘
p

E/Esp

p
E/H 1

↵ � b�
@4% @10%

k0o k0n k0 k0o k0n k0

CT
(S=52000)

Linear regr.
n=384

16
128

0.0003

7.92 1.01 1.53 12.23 12.31 1 1 1 1 1 1
3250 38.45 1.00 1.64 62.86 60.97 1 1 1 1 1 1

100
128 7.75 1.01 1.54 12.05 11.56 1 10 1 1 1 1
520 15.58 1.00 1.51 23.60 22.96 1 17 1 1 1 1

MNIST
(S=60000)

2-conv layers
n=431080

16
128

0.1
1.45 1.42 1.49 3.07 2.92 1 16 1 1 72 1

500 2.15 1.14 1.53 3.75 3.71 1 22 40 1 260 1
64 128 1.41 1.42 1.51 3.02 3.03 1 10 1 1 24 1

split by digit 10 500 0.01 1.01 1.00 1.42 1.42 3.62 1 3 60 1 7 100
CIFAR-10
(S= 50000)

ResNet18
n=11173962

16
128

0.05
1.07 3.35 1.49 5.34 5.62 1 10 30 1 20 1

500 1.18 1.91 1.50 3.40 3.52 1 21 1 1 250 1

(a) CT: M=100, B = 128 (b) MNIST: M=16, B = 500 (c) CIFAR-10: M=16, B = 500

Figure 2: E↵ect of network connectivity (degree d) on the iterations to convergence.

Figure 3: How to determine the number of iteration
at which training loss for the clique and for the ring
di↵ers significantly.

very di↵erent topologies (undirected ring and clique),
when the dataset is split randomly across the nodes.
The behaviour is qualitatively similar to what ob-
served in previous works (Lian et al., 2017, 2018; Luo
et al., 2019); despite the remarkable di↵erence in the
level of connectivity (quantified also by the spectral
gap), the curves are very close, sometimes indistin-
guishable.

Figure 4: MNIST split by digit, M=10, B=500.

Figure 4 shows the same plot for the case when MNIST
images for the same digit have been assigned to the
same node. In this case the local datasets are very
di↵erent and

p

E/E
sp

⇡ 1; the topology has a re-
markable e↵ect! This plot warns against extending
the empirical finding in (Lian et al., 2017, 2018; Luo
et al., 2019) to settings where local datasets can be
highly di↵erent as it can be for example in the case of
federated learning (Konecný et al., 2015).

The experiments above confirm that the communica-
tion topology has little influence on the number of

Decentralized gradient methods: does topology matter?

(a) Throughput (b) Error vs iterations (c) Error vs time

Figure 5: E↵ect of network connectivity (degree d) on the convergence for dataset MNIST with computation times from
a Spark cluster. M = 16, B = 500.

epochs needed to converge (when local datasets are
statistically similar). Our analysis reconciles (at least
in part) theory and experiments by pushing farther
the training epoch at which the e↵ect of the topology
should be evident.

The conclusion about the role of the topology is radi-
cally di↵erent if one considers the time to converge.
For example, Karakus et al. (2017) and Luo et al.
(2019) observe experimentally that sparse topologies
can e↵ectively reduce the convergence wall-clock time.
A possible explanation is that each iteration is faster
because less time is spent in the communication phase:
the less connected the graph, the smaller the commu-
nication load at each node. Lian et al. (2017, 2018) ad-
vance this explanation to justify why DSM on ring-like
topologies can converge faster than the centralized PS.

Here, we show that sparse topologies can speed-up
wall-clock time convergence even when communication
costs are negligible, because they intrinsically mitigate
the e↵ect of stragglers, i.e., tasks whose completion
time can be occasionally much longer than its typi-
cal value. Transient slowdowns are common in com-
puting systems (especially in shared ones) and have
many causes, such as resource contention, background
OS activities, garbage collection, and (for ML tasks)
stopping criteria calculations. Stragglers can signif-
icantly reduce computation speed in a multi-machine
setting (Ananthanarayanan et al., 2013; Karakus et al.,
2017; Li et al., 2018). For consensus-based method,
one can hope that, when the topology is sparse, a tem-
porary straggler only slows down a limited number of
nodes (its out-neighbors in G), so that the system can
still maintain a high throughput.

Neglia et al. (2019) have proposed approximate for-
mulas to evaluate the throughput of distributed ML
systems for some specific random distribution of the
computation time (uniform, exponential, and Pareto).
Here, we take a more practical approach. Our
PyTorch-based distributed application allow us to sim-
ulate systems with arbitrary distributions of the com-

putation times and communication delays. We have
carried out experiments with zero communication de-
lays (an ideal network) and two di↵erent empirical dis-
tributions for the computation time. One was obtained
by running stochastic gradient descent on a produc-
tion Spark cluster with sixteen servers using Zoe An-
alytics (Pace et al., 2017), each with two 8-core Intel
E5-2630 CPUs running at 2.40GHz. The other was ex-
tracted from ASCI-Q super-computer traces (Petrini
et al., 2003, Fig. 4). Figure 5 shows the e↵ect of
topology connectivity on the convergence time for a
MNIST experiment with Spark computation distribu-
tion. We consider in this case undirected d-regular
random graphs. The number of iterations completed
per node grows faster the less connected the topology
(Fig. 5 (a)). As the training loss is almost indepen-
dent of the topology (Fig. 5 (b)), the ring achieves the
shortest convergence time (Fig. 5 (c)), even if there is
no communication delay. Qualitatively similar results
for other ML problems and time distributions are in
Appendix H.

5 CONCLUSIONS

We have explained, both through analysis and exper-
iments, when and why the communication topology
does not a↵ect the number of epochs consensus-based
optimization methods need to converge, an e↵ect re-
cently observed in many papers, but not thoroughly
investigated. We have also shown that, as a conse-
quence of this invariance, a less connected topology
achieves a shorter convergence time, not necessarily
because it incurs a smaller communication load, but
because it mitigates the stragglers’ problem. The dis-
tributed operation of consensus-based approaches ap-
pears particularly suited for federated and multi-agent
learning. Our study points out that further research
is required for these applications, because the benefits
observed until now are dependent on the statistical
similarity of the local datasets, an assumption that is
not satisfied in federated learning.

Giovanni Neglia, Chuan Xu, Don Towsley, Gianmarco Calbi

6 ACKNOWLEDGEMENTS

We warmly thank Alain Jean-Marie, Pietro Michiardi,
and Bruno Ribeiro for their feedback on the
manuscript and their help preparing the rebuttal let-
ter. We are also grateful to the OPAL infrastructure
from Université Côte d’Azur and Inria Sophia Antipo-
lis - Méditerranée “NEF” computation platform for
providing resources and support. Finally, We would
like to thank the anonymous reviewers for their in-
sightful comments and suggestions, which helped us
improve this work.

This work was supported in part by ARL under Co-
operative Agreement W911NF-17-2-0196.

References

UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml/datasets/.

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Je↵rey Dean, Matthieu Devin,
Sanjay Ghemawat, Geo↵rey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’16, pages 265–283, 2016. ISBN 978-1-931971-
33-1.

Ganesh Ananthanarayanan, Ali Ghodsi, Scott
Shenker, and Ion Stoica. E↵ective straggler miti-
gation: Attack of the clones. In Proc. of the 10th
USENIX Conf. NSDI, 2013.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and
Michael Rabbat. Stochastic gradient push for dis-
tributed deep learning. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, volume 97 of Proceedings of Machine Learning
Research, pages 344–353. PMLR, 2019.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson.
Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5:4308,
2014.

Kevin Canini, Tushar Chandra, Eugene Ie, Jim Mc-
Fadden, Ken Goldman, Mike Gunter, Jeremiah
Harmsen, Kristen LeFevre, Dmitry Lepikhin, Tomas
Lloret Llinares, Indraneel Mukherjee, Fernando
Pereira, Josh Redstone, Tal Shaked, and Yoram
Singer. Sibyl: A system for large scale supervised
machine learning, 2014. Technical talk.

John C. Duchi, Alekh Agarwal, and Martin J. Wain-
wright. Dual averaging for distributed optimization:

Convergence analysis and network scaling. IEEE
Trans. on Automatic Control, 57(3):592–606, 2012.

Andrew Gibiansky. Bringing hpc techniques to deep
learning. online, http://research.baidu.com/

bringing-hpc-techniques-deep-learning, 2017.

Google I/O. Distributed tensorflow training.
online, https://www.youtube.com/watch?v=

bRMGoPqsn20, 2018.

Franz Graf, Hans-Peter Kriegel, Matthias Schubert,
Sebastian Pölsterl, and Alexander Cavallaro. 2D Im-
age Registration in CT Images Using Radial Image
Descriptors. In Proc. of MICCAI, pages 607–614,
2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao
Yin. Straggler mitigation in distributed optimiza-
tion through data encoding. In Proc. of NIPS, pages
5434–5442. 2017.

Anastasia Koloskova, Sebastian U. Stich, and Mar-
tin Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication.
In Proceedings of the 36th International Conference
on Machine Learning, ICML, volume 97 of Pro-
ceedings of Machine Learning Research, pages 3478–
3487. PMLR, 2019.

Jakub Konecný, Brendan McMahan, and Daniel Ra-
mage. Federated Optimization: Distributed Opti-
mization Beyond the Datacenter. In Neural Infor-
mation Processing Systems (workshop), 2015.

Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Ha↵ner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
Nov 1998.

Mu Li, David G Andersen, Alexander J Smola,
and Kai Yu. Communication e�cient distributed
machine learning with the parameter server. In
Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
19–27. Curran Associates, Inc., 2014.

Songze Li, Seyed Mohammadreza Mousavi Kalan,
A. Salman Avestimehr, and Mahdi Soltanolkotabi.
Near-Optimal Straggler Mitigation for Distributed
Gradient Methods. In Proc. of the 7th Intl. Work-
shop ParLearning, May 2018.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can Decentralized Algo-

http://archive.ics.uci.edu/ml/datasets/
http://archive.ics.uci.edu/ml/datasets/
https://www.youtube.com/watch?v=bRMGoPqsn20
https://www.youtube.com/watch?v=bRMGoPqsn20

Decentralized gradient methods: does topology matter?

rithms Outperform Centralized Algorithms? A Case
Study for Decentralized Parallel Stochastic Gradient
Descent. In NIPS, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient
descent. In ICML, 2018.

Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xue-
hai Qian. Hop: Heterogeneity-aware decentral-
ized training. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’19, pages 893–907, 2019.

Brendan D. McKay. The expected eigenvalue distri-
bution of a large regular graph. Linear Algebra and
its Applications, 40:203 – 216, 1981.

Brendan D. McKay and Nicholas C. Wormald. Uni-
form generation of random regular graphs of mod-
erate degree. J. Algorithms, 11(1):52–67, February
1990. ISSN 0196-6774.

Carl D. Meyer, editor. Matrix Analysis and Applied
Linear Algebra. SIAM, Philadelphia, PA, USA,
2000. ISBN 0-89871-454-0.

Angelia Nedić and Asuman E. Ozdaglar. Distributed
subgradient methods for multi-agent optimization.
IEEE Trans. Automat. Contr., 54(1):48–61, 2009.

Angelia Nedić, Alex Olshevsky, and Michael G.
Rabbat. Network topology and communication-
computation tradeo↵s in decentralized optimization.
Proc. of the IEEE, 106(5):953–976, May 2018.

Giovanni Neglia, Gianmarco Calbi, Don Towsley, and
Gayane Vardoyan. The Role of Network Topology
for Distributed Machine Learning. In IEEE Inter-
national Conference on Computer Communications
(INFOCOM), 2019.

Francesco Pace, Daniele Venzano, Damiano Carra,
and Pietro Michiardi. Flexible scheduling of dis-
tributed analytic applications. In Proceedings of the
17th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, CCGrid ’17, pages
100–109, Piscataway, NJ, USA, 2017. IEEE Press.
ISBN 978-1-5090-6610-0.

Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin.
The case of the missing supercomputer performance:
Achieving optimal performance on the 8,192 proces-
sors of asci q. In Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, SC ’03, pages 55–,
2003.

Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis.
A non-asymptotic analysis of network independence
for distributed stochastic gradient descent, 2019.
arXiv preprint arXiv:1906.02702v9.

Leslie N Smith. Cyclical learning rates for training
neural networks. In Applications of Computer Vi-
sion (WACV), 2017 IEEE Winter Conference on,
pages 464–472. IEEE, 2017.

Alexander Smola and Shravan Narayanamurthy. An
architecture for parallel topic models. Proc. VLDB
Endow., 3(1-2):703–710, September 2010. ISSN
2150-8097.

Ilya Sutskever, James Martens, George Dahl, and Ge-
o↵rey Hinton. On the importance of initialization
and momentum in deep learning. In International
conference on machine learning, pages 1139–1147,
2013.

John Tsitsiklis, Dimitri Bertsekas, and Michael
Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE
Transactions on Automatic Control, 31(9):803–812,
September 1986.

Steven R. Young, Derek C. Rose, Travis John-
ston, William T. Heller, Thomas P. Karnowski,
Thomas E. Potok, Robert M. Patton, Gabriel Per-
due, and Jonathan Miller. Evolving Deep Networks
Using HPC. In Proceedings of the Machine Learning
on HPC Environments, MLHPC’17, 2017.

	INTRODUCTION
	NOTATION AND BACKGROUND
	ANALYSIS
	EXPERIMENTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	Notation
	Linear algebra reminders
	Irreducible primitive doubly stochastic non-negative matrices
	Normal matrices

	Insensitivity quantification in previous work
	Convergence results
	Proof of Proposition 3.1
	Proof of Corollary 3.2
	Convergence of local estimates

	Proof of Proposition 3.3
	Effect of the replication factor C on
	Toy example
	Datasets' generation
	Proof of (78)

	Experiments

