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APPENDIX A

In this appendix, we provide a detailed proof of Theo-
rem 2 in the main text about a sublinear bound on the
Bayesian regret of the DRBQO algorithm. For simplic-
ity, we focus on the case where the decision space X
and the distributional uncertainty set Pn,ρ are finite.
The results can be extended to infinite sets using the
discretization trick as in Srinivas et al. [2010].

Notations and conventions. Unless explicitly spec-
ified otherwise, we denote a conditional distribution
P (.|x) ∈ Pn,ρ,∀x ∈ X by P , i.e., P ∈ Pn,ρ×X . Recall
the definition of the quadrature functional in the main
text as

g(f, x, P ) =
∫
P (w|x)f(x,w)dw,

for any x ∈ X and P ∈ Pn,ρ × X . Let x∗ ∈
arg maxx∈X minP∈Pn,ρ EP (w)[f(x,w)], and P ∗(.|x) =
arg minP∈Pn,ρ EP (w)[f(x,w)],∀x ∈ X . Since f is
a stochastic process (a GP in our case), x∗ and
P ∗ are also random variables. The DRBQO algo-
rithm πDRBQO maps at a time step t the history
Ht = (x1, w1, P1, ..., xt−1, wt−1, Pt−1) to a new de-
cision (xt, wt) ∈ X × Sn and conditional distribu-
tion Pt ∈ Pn,ρ × X as presented in line 2-3 of Al-
gorithm 1 in the main text. The practical imple-
mentation of Algorithm 1 samples (xt, Pt) as fol-
lows: xt ∈ arg maxx∈X minP∈Pn,ρ EP (w)[f̃t(x,w)], and
Pt(.|x) = arg minP∈Pn,ρ EP (w)[f̃t(x,w)],∀x ∈ X where
f̃t is a function sample of f at time t from its posterior
GP.
Lemma 1. For any sequence of deterministic functions
{Ut : X × Pn,ρ ×X → R|t ∈ N},

BayesRegret(T, πDRBQO)

= E
T∑
t=1

[Ut(xt, Pt)− g(f, xt, Pt)]

+ E
T∑
t=1

[g(f, x∗, P ∗)− Ut(x∗, P ∗)] ,

for all T ∈ N.

Proof. Given Ht, πDRBQO samples (xt, Pt) according
to the probability they are optimal, i.e., (xt, Pt) ∼

Pr(x∗, P ∗|Ht). Thus, conditioned on Ht, (x∗, P ∗) and
(xt, Pt) are identically distributed. As a result, given
a deterministic function Ut, we have E[Ut(x∗, P ∗)] =
E[Ut(xt, Pt)]. Therefore,

E [g(f, x∗, P ∗)− g(f, xt, Pt)]
= E [E [g(f, x∗, P ∗)− g(f, xt, Pt)] |Ht]
= E [E [Ut(xt, Pt)− g(xt, Pt)] |Ht]
+ E [E [g(f, x∗, P ∗)− Ut(x∗, P ∗)] |Ht]
= E [Ut(xt, Pt)− g(f, xt, Pt)]
+ E [g(f, x∗, P ∗)− Ut(x∗, P ∗)] .

Lemma 2. Let X ∼ N (µ, σ2).

1. For all β ≥ 0, we have

Pr{|X − µ| > β1/2σ} ≤ e−β/2.

2. If µ ≤ 0, then

E[max{X, 0}] = σ√
2π
e
−µ2

2σ2 .

3. For all a ≤ b, we have

E[X|a < X < b] = µ− σ2 p(a)− p(b)
φ(a)− φ(b) ,

where p(x) and φ(x) denote the density function
and cumulative distribution function of X, respec-
tively.

Proof. The results are simple properties of normal dis-
tributions.

Lemma 3. Given Ht,∀t ∈ N, let σ2
t (x,w) :=

Ct(x,w;x,w) be the variance of f(x,w). Then, for
all P , all x and for w∗ = arg maxw∈Sn σ

2
t (x,w), we

have

σ2
t (x, P ) = V ar[g(f, x, P )|Ht] ≤ σ2

t (x,w∗).
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Proof. It follows from a simple property of posterior
covariance that

σ2
t (x, P ) =

∑
w,w′

P (w|x)P (w′|x)Ct(x,w;x,w′)

≤
∑
w,w′

P (w|x)P (w′|x)Ct(x,w;x,w)

≤
∑
w,w′

P (w|x)Pt(w′|x)σ2
t−1(x,w∗)

= σ2
t (x,w∗).

Lemma 4. If Ut(x, P ) = µt−1(x, P ) +
√
βtσt−1(x, P )

where

µt−1(x, P ) :=
∫
P (w|x)µt−1(x,w)dw,

σ2
t−1(x, P ) :=∫ ∫

Ct−1(x,w;x,w′)P (w|x)P (w′|x)dwdw′,

and βt = 2 log (t2+1)|X ||Pn,ρ|√
2π , then

E
T∑
t=1

[g(f, x∗, P ∗)− Ut(x∗, P ∗)] ≤ 1,

for all T ∈ N.

Proof. The trick is to concentrate on the non-negative
terms of the expectation. These non-negative terms
can be bounded due to the specific choice of upper
confidence bound Ut.

Note that for any deterministic conditional dis-
tribution P ∈ Pn,ρ × X , we have g(f, x, P ) ∼
N (µt−1(x, P ), σ2

t−1(x, P )), i.e., g(f, x, P )−Ut(x, P ) ∼
N (−

√
βtσt−1(x, P ), σ2

t−1(x, P )). It thus follows from
Lemma 2.2 that:

E[max{g(f, x, P )− Ut(x, P ), 0}|Ht]

= σt−1(x, P )√
2π

exp(−βt2 )

= σt−1(x, P )
(t2 + 1)|X ||Pn,ρ|

≤ 1
(t2 + 1)|X ||Pn,ρ|

.

The final inequality above follows from Lemma 3 and
from the assumption that σ0(x,w) ≤ 1,∀x,w, i.e.,

σt−1(x, P ) ≤ σt−1(x,w∗) ≤ σ0(x,w∗) ≤ 1,

where w∗ = arg maxw Ct−1(x,w;x,w).

Therefore, we have

E
T∑
t=1

[g(f, x∗, P ∗)− Ut(x∗, P ∗)]

≤ E
T∑
t=1

E[max{g(f, x∗, P ∗)− Ut(x∗, P ∗), 0}|Ht]

≤ E
T∑
t=1

∑
x∈X

∑
P∈Pn,ρ

E[max{g(f, x, P )− Ut(x, P ), 0}]

≤
∞∑
t=1

∑
x∈X

∑
P∈Pn,ρ

1
(t2 + 1)|X ||Pn,ρ|

= 1.

Lemma 5. Given the definition of the maximum in-
formation gain γT as in Srinivas et al. [2010], we have

E
T∑
t=1

[Ut(xt, Pt)− g(f, xt, Pt)]

≤ (
√
βT +B)

√
2π

|X ||Pn,ρ|
+ 2γT

√
(1 + 2ρ)n(1 + σ−2)−1

+ 2

√
TγT (1 + σ−2)−1 log (1 + T 2)|X ||Pn,ρ|√

2π
,

for all T ∈ N.

Proof. Now we bound the first term

L := E
T∑
t=1

[Ut(xt, Pt)− g(f, xt, Pt)]

= E
T∑
t=1

E[J(xt, Ht)|xt, Ht],

where

J(xt, Ht) = E[Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt].

While the second term of the Bayesian regret of DR-
BQO can be bounded as in Lemma 4 by adopting the
techniques from Russo and Roy [2014], bounding L
in DRBQO is non-trivial. This is because Pt(.|x) is
also a random process on the simplex given Ht. Thus,
g(f, xt, Pt)|Ht does not follow a GP as in the standard
Quadrature formulae. In addition, we do not have
a closed form of E[g(f, xt, Pt)|Ht]. We overcome this
difficulty by decomposing J into several terms that
can be bounded more easily and leveraging the mild
assumptions of f in the problem setup.

Given (Ht, xt), we are interested in bounding J(xt, Ht).
The main idea for bounding this term is that we decom-
pose the range R of the random variable f(xt, w),∀w



into three disjoint sets:

At(w) ={
f(xt, w)

∣∣∣∣|f(xt, w)− µt−1(xt, w)| ≤
√
βtσt−1(xt, w)

}
,

Bt(w) ={
f(xt, w)

∣∣∣∣µt−1(xt, w)− f(x,w) >
√
βtσt−1(xt, w)

}
,

Ct(w) ={
f(xt, w)

∣∣∣∣µt−1(xt, w)− f(x,w) < −
√
βtσt−1(xt, w)

}
,

for all w ∈ Ω. Note that At(w)∪Bt(w)∪Ct(w) = R,∀w.
We also denote Āt(w) = R\At(w) = Bt(w)∪Ct(w),∀w.

Since f is bounded on At, there exists P ∗t such that

P ∗t (.|x) = arg max
P∈Pn,ρ

{Ut(x, P )− g(f, x, P )|f ∈ At},

for all x ∈ X .

Using the equation above, we decompose J(xt, Ht) as

J(xt, Ht) = E[Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]
= Ef∈At [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]
+ Ef∈Āt [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]
≤ Ef∈At [Ut(xt, P ∗t )− g(f, xt, P ∗t )|Ht, xt]
+ Ef∈Āt [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]
= E[Ut(xt, P ∗t )− g(f, xt, P ∗t )|Ht, xt]
+ Ef∈Āt [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]
− Ef∈Āt [Ut(xt, P

∗
t )− g(f, xt, P ∗t )|Ht, xt]

= J1 + J2 + J3,

where

J1 = E[Ut(xt, P ∗t )− g(f, xt, P ∗t )|Ht, xt],
J2 = Ef∈Āt [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt],
J3 = Ef∈Āt [g(f, xt, P ∗t )− Ut(xt, P ∗t )|Ht, xt].

It follows from Lemma 3 and from the selection of
wt for the highest posterior variance in the DRBQO
algorithm (Algorithm 1 in the main text) that for all
P , we have

σ2
t−1(xt, P ) =

∑
w,w′

P (w|x)P (w′|x)Ct−1(xt, w;xt, w′)

≤ σ2
t−1(xt, wt).

Note that given (Ht, xt), wt is deterministic.

For J1, we have

J1 = E[Ut(xt, P ∗t )− g(f, xt, P ∗t )|Ht, xt]
= Ut(xt, P ∗t )− E[g(f, xt, P ∗t )|Ht, xt]
= Ut(xt, P ∗t )− µt−1(xt, P ∗t )

=
√
βtσt−1(xt, P ∗t )

≤
√
βtσt−1(xt, wt).

For J2, we have

J2 = Ef∈Āt [Ut(xt, Pt)− g(f, xt, Pt)|Ht, xt]

= Ef∈Āt [
√
βtσt−1(xt, Pt)|Ht, xt]

+ Ef∈Bt [
∑
w

Pt(w)(µt−1(xt, w)− f(xt, w)|Ht, xt]

+ Ef∈Ct [
∑
w

Pt(w)(µt−1(xt, w)− f(xt, w)|Ht, xt]

≤ Ef∈Āt [
√
βtσt−1(xt, wt)]

+ Ef∈Bt [
∑
w

Pt(w)(µt−1(xt, w)− f(xt, w)|Ht, xt]

≤
√
βtσt−1(xt, wt)e−βt/2

+ Ef∈Bt [
∑
w

Pt(w)(µt−1(xt, w)− f(xt, w)|Ht, xt]

≤
√
βtσt−1(xt, wt)e−βt/2

+ Ef∈Bt

√∑
w

(µt−1(xt, w)− f(xt, w))2
∑
w

P 2
t (w)

≤
√
βtσt−1(xt, wt)e−βt/2

+ Ef∈Bt

√∑
w

(µt−1(xt, w)− f(xt, w))2 1 + 2ρ
n

≤
√
βtσt−1(xt, wt)e−βt/2

+
√

1 + 2ρ
n

Ef∈Bt
∑
w

(µt−1(xt, w)− f(xt, w))

=
√
βtσt−1(xt, wt)e−βt/2

+
√

1 + 2ρ
n

∑
w

(µt−1(xt, w)− Ef∈Bt [f(xt, w)])

=
√
βtσt−1(xt, wt)e−βt/2

+
√

1 + 2ρ
n

∑
w

σ2
t−1(at, w)κ(xt, w)

≤
√
βtσt−1(xt, wt)e−βt/2 +

√
1 + 2ρ
n

∑
w

σ2
t−1(at, w)

≤
√
βtσt−1(xt, wt)e−βt/2 +

√
n(1 + 2ρ)σ2

t−1(at, wt),
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where

κ(xt, w) := p(µt1(xt, w)−
√
βtσt−1(xt, w))

φ(µt1(xt, w)−
√
βtσt−1(xt, w))

≤ 1,

and p(.) and φ(.) denote the density function and the
cumulative distribution function of the Gaussian dis-
tribution N (µt−1(xt, w), σ2

t−1(xt, w)),∀w. Here, the
third inequality follows from the Cauchy-Schwartz in-
equality; the fourth inequality follows from the bound
of the χ2 ball on the distributions in it; the fifth inequal-
ity follows from that fact that µt−1(x,w)− f(x,w) ≥√
βtσt−1(x,w) ≥ 0; and the final equation follows from

Lemma 2.3.

For J3, we have

J3 = Ef∈Āt [g(f, xt, P ∗t )− Ut(xt, P ∗t )|Ht, xt]
= Ef∈Āt [g(f, xt, P ∗t )|Ht, xt] + Ef∈Āt [−Ut(xt, P

∗
t )]

= Ef∈Āt [−Ut(xt, P
∗
t )]

= Ef∈Āt [−µt−1(xt, P ∗t )−
√
βtσt−1(xt, P ∗t )]

≤ Ef∈Āt [−µt−1(xt, P ∗t )]
≤ Ef∈Āt [B]

≤ Be−βt/2.

Here, the second equation follows from the prop-
erty that Ef∈Āt [f(xt, w)] = 0 since f(xt, w) ∼
N (µt−1(xt, w), σ2

t−1(xt, w)),∀w, and Āt(w) is a sym-
metric region in R with respect to (but not includ-
ing) the line x = µt−1(xt, w),∀w; the first inequality
follows the non-negativity of the posterior variance
σt−1(xt, P ∗t ); the second inequality follows from that
the posterior mean µt−1(x,w) of a GP is in the RKHS
associated with kernel k of the GP, thus is bounded
above by B by the mild assumption in the problem
setup; and the final inequality follows from Lemma 2.1.

Combining these results, we can finally bound the first
term of the Bayesian regret of DRBQO,

L = E
T∑
t=1

E[J(xt, Ht)|xt, Ht]

≤ E
T∑
t=1

√
βtσt−1(xt, wt) + E

T∑
t=1

Be−βt/2

+ E
T∑
t=1

√
βtσt−1(xt, wt)e−βt/2

+ E
T∑
t=1

√
n(1 + 2ρ)σ2

t−1(at, wt)

≤ E
√
TβT

√√√√ T∑
t=1

σ2
t−1(xt, wt)

+ (B +
√
βT )

∞∑
t=1

√
2π

(1 + t2)|X ||Pn,ρ|

+
√
n(1 + 2ρ)E

T∑
t=1

σ2
t−1(at, wt)

≤
√
TβT

√
2(1 + σ−2)−1γT + (

√
βT +B)

√
2π

|X ||Pn,ρ|
+
√
n(1 + 2ρ)2(1 + σ−2)−1γT ,

where γT is the maximum information gain defined in
Srinivas et al. [2010], and we also use the following
inequality of the maximum information gain

T∑
t=1

σ2
t−1(xt, wt) ≤ 2(1 + σ−2)−1γT .

Theorem 2 is a direct consequence of Lemma 1, Lemma
4 and Lemma 5.

Upper bounds on the information gain. For com-
pleteness, we include here the upper bounds for the
information gains γT which are derived from Srinivas
et al. [2010]:

Kernel type Information gain γT
Linear O(d log T )
Squared exponential O((log T )d+1)
Matérn with ν > 1 O(T d(d+1)/(2ν+d(d+1)) log T )

where d ∈ N is the dimension of the search domain.

APPENDIX B.1

In this appendix, we provide derivation details of Propo-
sition 1 in the main text.

Consider the constrained optimization problem

min
p∈Pn,ρ

n∑
i=1

pili. (1)

This is a convex optimization problem which forms the
Lagrangian:

L(p, λ, η, ζ) = pT l − λ

(
ρ− 1

2n

n∑
i=0

(npi − 1)2

)

− η(1−
n∑
i=1

pi)−
n∑
i=1

ζipi, (2)

where p ∈ Rn, λ ≥ 0, η ∈ R, and ζ ∈ Rn+. The KKT



conditions for the primal problem (1) are:

li + λ(npi − 1) + η − ζi = 0,∀1 ≤ i ≤ n (3)
λ
(
2ρ+ 1− n‖p‖22

)
= 0 (4)

n‖p‖22 ≤ 2ρ+ 1 (5)
λ ≥ 0 (6)
n∑
i=1

pi = 1 (7)

ζipi = 0,∀1 ≤ i ≤ n (8)
ζi ≥ 0,∀1 ≤ i ≤ n. (9)

We can see that the strong duality holds because the
primal problem in (1) satisfies the Slater’s condition;
therefore the KKT conditions are the necessary and
sufficient conditions for the primal optimal solution. It
follows from Equations (3), (8), and (9) that:

λnpi = (−li − η)+ := max{−li − η, 0}, (10)

which, combined with Equation (7), implies that:

nλ =
n∑
i=1

(−li − η)+ (11)

From Equation (11), we have:

η =
−
∑
i∈A li − nλ
|A|

, (12)

where A = {i : li + η ≤ 0}. Note that |A| ≥ 1 be-
cause otherwise pi = 0,∀1 ≤ i ≤ n which contradicts
Equation (7). We then plug Equation (12) and (10)
into Equation (5) to solve for λ. Note that ‖p‖22 is
decreasing in λ, thus we can bisect to find the optimal
λ within its bound. We can easily obtain a bound on
λ from Equation (5):

0 ≤ λ ≤ max
{
−lmin +

∑n
i=1 li√

1 + 2ρ− 1
,
−lmin + lmax√

1 + 2ρ

}
,

where lmin = min1≤i≤n li, and lmax = max1≤i≤n li.

The optimal distribution arg minp∈Pn,ρ
∑n
i=1 pili is not

constant, but rather a function of l. Thus, its gradients
with respect to some parameter ψ must be computed
from those of l. This becomes straightforward when
we have solved (pi, λ, η) in terms of l as in the results
above:

∂pi
∂ψ = −1

nλ2 (−li − η) ∂λ∂ψ + 1
nλ (−∂li∂ψ −

∂η
∂ψ )

|A| ∂η∂ψ = −
∑
i∈S

∂li
∂ψ − n

∂λ
∂ψ∑

i∈S pi
∂pi
∂ψ = 0.

APPENDIX B.2

In this appendix, we present the details of the bisec-
tion search in Algorithm 2 for computing the ρ-robust
distributions for line 3 of Algorithm 1 in the main text.

Algorithm 2: Bisection search
Input: p(λ) computed in Proposition 1 in the

main text, ε ≥ 0
1 λmin = 0

2 λmax = max
{
−lmin+

∑n

i=1
li√

1+2ρ−1 , −lmin+lmax√
1+2ρ

}
3 λ = λmin
4 while λmax − λmin > ε do
5 λ = 1

2 (λmax + λmin) ;
6 if n‖p(λ)‖22 > 2ρ+ 1 then
7 λmin = λ
8 end
9 else

10 λmax = λ
11 end
12 end

Output: λ, p(λ)

APPENDIX B.3

For the details of derivation for posterior sampling
(a.k.a Thompson sampling), see Appendix A of
Hernández-Lobato et al. [2014].

APPENDIX C

In this appendix, we provide some more experimental
results of DRBQO on synthetic and real-world prob-
lems.

Figure 6: The performance of DRBQO and the base-
lines on the expected reformulation of various synthetic
functions. Here we use n = 10 and the best ρ values
are calculated with ρ = 1.0. DRBQO achieves higher
ρ-robust values than the BQO baselines in almost all
the tested functions.
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Synthetic functions. The task in this experiment
is to maximize Ew∈N (0,1)[f(x,w)] where f is a stan-
dard synthetic function such as Beale, Eggholder, Hart-
mann and Levy, x is normalized to the unit cube
and f(x,w) := f(x + w). The performance met-
ric used in this experiment is the ρ-robust values
minP∈Pn,ρ EP (w)[f(x,w)]. Here we use n = 10 and
ρ = 1.0. We repeat the experiment 30 times and report
the average mean and the 96% confidence interval for
each evaluation metric. The result is presented in Fig-
ure 6. The result shows that DRBQO achieves higher
ρ-robust values than the baseline methods in all these
functions except that in EggHolder function, DRBQO
is compatable with BQO-EI but outperforms the other
algorithms.

Cross-validation hyperparameter tuning for
SVM. We use glass and connectionist bench classi-
fication datasets from UCI machine learning repository.
1 The glass dataset contains 214 samples describing
glass properties in 10 features. The task associated
with the glass dataset is to classify an example into one
of 7 classes. The connectionist bench dataset contains
208 samples each of which has 60 attributes. The task
in the connectionist bench dataset is to classify whether
sonar signals bounced off a metal cylinder or a roughly
cylindrical rock. Each of the datasets is split into the
training and test sets with the ratio of 80 : 20. The
training set is further split into n = 5 folds for this
experiment.

Figure 7: The test classification accuracy of SVM on
glass and connectionist bench dataset tuned by DR-
BQO and the BQO baselines. In this example, we use
n = 5.

Support vector machine (SVM) is a simple machine
learning algorithm for classification problems. SVMs
with RBF kernels have two hyperparameters: the mis-
classification trade-off C and the RBF hyperparameter
γ. We tuned these two hyperparameters in this exam-
ple.

1http://archive.ics.uci.edu/ml

The performance metric for this experiment is the clas-
sification accuracy of SVM in the test set. We repeat
the experiment 30 times and report the average mean
and the 96% confidence interval for each evaluation
metric. The result is presented in Figure 7. In this
example, DRBQO outperforms the baselines.

Appendix D: Further discussion

In this appendix, we provide further discussion of our
proposed framework suggested by our anonymous re-
viewers during the review phase.

Selection of ρ in DRBQO. ρ is a problem-dependent
hyperparameter and depends on the variance of f(x,w)
along w. Intuitively the higher the variance, more
conservative we would like to be by setting the larger
ρ value in the range of [0, (n − 1)/2]. If there is no
prior knowledge of the variance, we can heuristically
perform grid search for ρ in [0, (n− 1)/2].

Other potential applications of our proposed
framework. Our work considers the problem of learn-
ing to optimize under uncertain contexts where the
context distribution itself is misspecified due to lim-
ited data. In particular, our proposed method can be
applied to any problem where apart from the main
inputs (i.e., optimization variables x), an additional
factor (i.e., w) also affects the function output but this
additional factor is not under our control. We list two
specific applications here:

• As the first application, we are considering our
method for alloy design where alloying element
powders are slightly impure (in practice it is hard
to find 100% pure element powder). The intended
mixture composition of various elements is x while
the impurities are w in our formulation. It is only
possible to obtain a limited set of samples of the
impurity values through measuring the exact alloy
composition via X-ray or optical spectroscopy as
the impurity measuring process is expensive. In
this scenario, our proposed method aims to find
an alloy composition that has the highest strength
while being distributionally robust to impurities.

• Another example is robust control in reinforcement
learning where our goal is to learn a policy (i.e., x)
that is both optimal and robust to the unknown en-
vironment variables (i.e., w) e.g. some unobserved
state features determined randomly by the envi-
ronment (e.g., [Paul et al., 2018]). Here f(x,w)
is the goodness of policy x for an environment
variable w. Measuring f(x,w) for a given policy
x is computationally expensive. While current
works assume knowledge of the true environment
distribution P0(w), it is typically unknown except



a few of its samples that are obtained via previous
catastrophic experiences with the environment.

Extensions to other divergence measures be-
yond χ2 divergence. We have focused on χ2 di-
vergence mainly for simplicity. Our algorithmic and
theoretical results can be potentially extended to f -
divergence (including χ2, KL and Hellinger) that re-
quires the involved distribution to have the same sup-
port as the nominal distribution P̂ . Regarding the
algorithmic extension for f -divergence, since f in f -
divergence is convex, the surrogate DRO still reduces
to convenient KKT conditions (as the strong duality
still holds). Regarding the theoretical extension for f -
divergence, the sublinear convergence rate in Theorem
2 remains valid because in our analysis the distribution-
dependent term

∑
i p

2
i is always bounded above by 1

(though in the case of χ2 divergence, this bound can
be tighter as shown in our proof of Theorem 2). The
current form of our framework cannot however be ex-
tended to divergences that are defined for distributions
of continuous support such as Wasserstein because our
analysis relies on the assumption of finite support for
the distributional uncertainty set. This assumption
is however very mild in practice because if one of the
involved distributions is not discrete, computing the
Wasserstein distance becomes intractable even with
the simplest scenario where one distribution is uniform
while the other is discrete with two atoms. In practice,
we can usually avoid this intractability by discretizing
the support via discrete distributions for the distri-
butional uncertainty set, and thus can leverage our
analytical insights.

Discussion of the derived Bayesian regret
bound of DRBQO. The Bayesian bound of DR-
BQO in Theorem 2 of our main paper is of order√
TγT log((1 + T 2)|X ||Pn,ρ|) which matches the stan-

dard upper bounds (up to an extra log constant
log |Pn,ρ|) established in Russo and Roy [2014] and
Srinivas et al. [2010]. The extra log constant in our
bound accounts for an additional decision space Pn,ρ
for the context distribution in our problem. To our
knowledge, the standard bound above is one of the
best known upper bounds for GP optimization (e.g.,
Scarlett et al. [2017] establishes a lower bound for GP
optimization suggesting that the standard bound above
is near-optimal (w.r.t. the established lower bound) for
the square exponential kernel).
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