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Abstract

We consider contextual combinatorial volatile
multi-armed bandit (CCV-MAB), in which at
each round, the learner observes a set of avail-
able base arms and their contexts, and then, se-
lects a super arm that contains K base arms in
order to maximize its cumulative reward. Un-
der the semi-bandit feedback setting and as-
suming that the contexts lie in a space X en-
dowed with the Euclidean norm and that the ex-
pected base arm outcomes (expected rewards)
are Lipschitz continuous in the contexts (ex-
pected base arm outcomes), we propose an al-
gorithm called Adaptive Contextual Combina-
torial Upper Confidence Bound (ACC-UCB).
This algorithm, which adaptively discretizes X
to form estimates of base arm outcomes and
uses an a-approximation oracle as a subroutine
to select a super arm in each round, achieves
O(T(P+1)/(D+2)+€) regret for any € > 0, where
D represents the approximate optimality dimen-
sion related to X. This dimension captures both
the benignness of the base arm arrivals and the
structure of the expected reward. In addition, we
provide a recipe for obtaining more optimistic re-
gret bounds by taking into account the volatil-
ity of the base arms and show that ACC-UCB
achieves significant performance gains compared
to the state-of-the-art for worker selection in mo-
bile crowdsourcing.

1 INTRODUCTION

The multi-armed bandit (MAB) is a prominent example
of the sequential decision-making paradigm under uncer-
tainty [Thompson, 1933, Lai and Robbins, 1985]. In its
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classical version, the learner selects arms sequentially over
rounds, one at a time from a finite set, in order to maximize
its cumulative reward. It faces the challenge of exploration
and exploitation as it is not aware of the arm reward dis-
tributions beforehand and observes in each round only the
reward of the selected arm. The metric used to evaluate the
performance of the learner is called the (expected) regret,
which is defined as the cumulative loss of the learner with
respect to an oracle that acts optimally based on arms’ re-
ward distributions. It is known that maximizing the cumu-
lative reward is equivalent to minimizing the regret. Many
algorithms have been proposed to minimize the regret by
balancing exploration and exploitation. Two notable exam-
ples are upper confidence bound (UCB) based index poli-
cies [Lai and Robbins, 1985, Agrawal, 1995, Auer et al.,
2002] and Thompson sampling [Thompson, 1933, Agrawal
and Goyal, 2012, Russo and Van Roy, 2014].

An important extension of the standard MAB is the contex-
tual MAB [Langford and Zhang, 2007,Lu et al., 2010, Chu
et al., 2011, Slivkins, 2014], where at the beginning of each
round the learner observes side-information, also called the
context, about the arm rewards in that particular round.
As the learner tries to maximize its cumulative reward by
taking this information into account, its regret is typically
measured with respect to an oracle that selects in each
round the best arm given the context of that round. Con-
textual MAB algorithms have been used in a variety of ap-
plications ranging from personalized news article recom-
mendation [Li et al., 2010] to sequential decision-making
in mobile healthcare [Tewari and Murphy, 2017].

Another important extension of the standard MAB is the
combinatorial MAB, where in each round the learner
chooses a subset of base arms, also called the super arm,
and obtains a reward that depends on the outcomes of the
base arms that are in the chosen super arm [Cesa-Bianchi
and Lugosi, 2012, Gai et al., 2012, Chen et al., 2013, Kve-
ton et al., 2015b]. This problem is mainly investigated un-
der the semi-bandit feedback setting, where the learner also
observes outcomes of the selected base arms. It is also ex-
tended to handle the cases when some base arms can only
get probabilistically triggered [Kveton et al., 2015a, Chen
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Table 1: Comparison with related work.

Properties This work [Lietal., 2016] [Chen et al., 2018] [Chen et al., 2013] [Bubeck et al., 2011] [Slivkins, 2014] [Kleinberg et al., 2010]
Contextual Yes Yes Yes No No Yes No
Combinatorial Yes Yes Yes Yes No No No
Volatile (base) arms Yes No Yes No No Yes Yes
Arm and/or context space Infinite Finite/infinite Infinite Finite Infinite Infinite Finite
Adaptive discretization Yes No No No Yes Yes No
Reward function General General Submodular General General General General
Feedback type Semi-bandit Cascading Semi-bandit Semi-bandit Full-bandit Full-bandit Full-bandit
Computation oracle @ « (1—1/e) (a, B) Exact Exact Exact

et al., 2016, Huyuk and Tekin, 2019]. Combinatorial MAB
have found applications in slate recommendation [Radlin-
ski et al., 2008], crowdsourcing [ Yang et al., 2017] and on-
line influence maximization [Chen et al., 2016].

Deviating from the aforementioned works, another strand
of literature considers MAB with time-varying arm sets un-
der the names sleeping MAB [Kleinberg et al., 2010] or
volatile MAB [Bnaya et al., 2013], both of which are rem-
nants of mortal MAB [Chakrabarti et al., 2009]. In this
setting, the learner tries to select the best of the available
arms in each round to maximize its cumulative reward.
The concept of volatility is quite common in applications
that involve sequential decision making. For instance, in
online advertising, ads become unavailable after they ex-
pire [Chakrabarti et al., 2009]. Similarly, in crowdsourc-
ing, the set of available tasks and workers may change over
time [Jain et al., 2017].

We consider CCV-MAB that includes the characteristics of
all the MAB models mentioned above: (i) base arms are
volatile, (ii) expected outcome of a base arm depends on its
context, (iii) the learner selects a super arm in each round
that consists of a subset of the available base arms, observes
outcomes of the selected base arms and receives a reward
that depends on these outcomes. We propose an algorithm
called ACC-UCB that achieves O(T(P+1)/(D+2)+€) regret
for any € > 0 with respect to an cv-approximation oracle un-
der the assumptions that the expected base arm outcomes
and the expected rewards are Lipschitz continuous in the
contexts and the expected base arm outcomes respectively.
Here, dimension D, which can usually be much smaller
than the dimension D of the context space, captures the be-
nignness of the base arm arrivals and the structure of the ex-
pected reward. Our model and algorithm can be applied to
solve dynamic resource allocation problems ranging from
crowdsourcing to online advertising to multi-user channel
allocation.

Contribution and Comparison with the Related Works

The most closely related work to ours is [Chen et al., 2018],
which also investigates a variant of CCV-MAB. This work
assumes that the reward function is submodular and the ex-
pected base arm outcomes are Holder continuous in con-
texts with exponent 3 > 0, and uses a greedy algorithm
as the approximation oracle. Their proposed learning al-

gorithm, CCMAB, uses the similarity information in the
space of contexts to learn the expected base arm outcomes.
For this, it uniformly discretizes the context space X into
hypercubes whose sizes are set according to the time hori-
zon T, resulting in a regret of O(T(2+D)/BA+D))  Ag
opposed to that work, ACC-UCB adaptively discretizes the
context space to leverage the benignness of base arm ar-
rivals and the structure of the expected reward function.
Thereby, the regret bounds proven for ACC-UCB do not di-
rectly depend on D and it achieves a strictly smaller regret
compared to CC-MAB under Lipschitz continuity (8 = 1).
We also provide a recipe for obtaining more optimistic re-
gret bounds while taking into account the volatility of the
base arms. In addition, we test ACC-UCB in worker se-
lection for mobile crowdsourcing and show that it achieves
significant performance gains compared to the state-of-the-
art.

Adaptive discretization was first introduced to address
the problem of the continuum-armed bandit [Auer et al.,
2007, Kleinberg, 2005], where there are infinitely many
arms to choose from, and thus, learning their expected re-
wards independently becomes practically impossible. This
problem was generalized in [Bubeck et al., 2011] to generic
measurable spaces of arms, which also introduced Hierar-
chical Optimistic Optimization (HOO) algorithm. Under
a set of weak continuity assumptions on the mean reward
function around its maxima, HOO was shown to achieve
O(T(D"H)/(D"Jrz)“) regret, for any € > 0, where D,
is the near optimality dimension related to the arm space.
ACC-UCB significantly differs from HOO in the follow-
ing aspects: it selects multiple arms in each round by ap-
proximately solving a combinatorial optimization problem
and the set of arms that it can select from changes in every
round. This makes both the algorithmic structure and the
regret analysis of ACC-UCB significantly different from
that of HOO.

A variant of HOO was proposed for the Bayesian setting
of Gaussian process MAB in [Shekhar et al., 2018]. Simi-
larly, [Slivkins, 2014] proposed the contextual zooming al-
gorithm for the contextual MAB, and proved regret bounds
that depend on the contextual zooming dimension. An-
other related work [Li et al., 2016] developed algorithms
for the contextual combinatorial cascading bandit. A de-
tailed comparison of our work with other related works is
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given in Table 1.

The rest of the paper is organized as follows: Section 2 for-
mulates CCV-MAB. Section 3 describes ACC-UCB. Sec-
tion 4 contains the regret analysis. Section 5 gives the ex-
perimental results and Section 6 provides a conclusion and
possible future lead. Full proofs and a table of notation are
given in the supplemental document.

2 PROBLEM FORMULATION

2.1 Base Arms, Outcomes, Super Arms and Rewards

Our setup involves base arms that are defined by their
D-dimensional contexts, x, belonging to the context set
X = [0,1]P. A base arm with context z has an outcome
denoted by r(x), which is a random variable that takes
values in [0,1]. We assume that there exists a function
p(x) :+ X — [0,1] such that p(z) = E[r(z)], Vo € X.
We assume that base arms with similar contexts have sim-
ilar expected outcomes. This is captured by imposing the
following smoothness condition on x, which is a standard
assumption in the contextual MAB setting [Slivkins, 2014].

Assumption 1. (Lipschitz continuity for the expected out-
come in contexts). For any given pair of contexts x,x’ € X,
we have |p(x) — p(2’)| < ||lo — a'||y, where ||-||, is the Eu-
clidean norm in RP.

A super arm is a set of K base arms that is defined by
the contexts of its base arms. Consider a super arm as-
sociated with the context tuple @ = [x1, ..., x k] such that
ZTm € X, ¥m € [K]. The corresponding outcome and ex-
pected outcome vectors (the latter is also called the expec-
tation vector) are denoted by r(x) = [r(z1),...,7(xK)]
and p(x) = [p(z1),...,pu(rr)]. We assume that the re-
ward received from playing this super arm is a non-negative
real number that is given by u(r(x)) and that the base arm
outcomes are independent of each other. We only make the
following mild assumptions on the reward, which allow for
a very large class of functions to fit our model. We note that
these assumptions are standard in the combinatorial MAB
setting [Chen et al., 2013].

Assumption 2. Vx = [z1,...,zx]| such that ©,, € X,
Vm € [K], we have E[u(r(x))] = u(p(x)).

Assumption 2 states that the expected reward of playing
a super arm is only a function of the expectation vector
of that super arm. As noted in [Chen et al., 2013], this
assumption holds for linear reward functions, but can also
hold for non-linear ones if we know the distribution type of
the base arms and the outcomes of different base arms are
independent.

Assumption 3. (Monotonicity) For any pu =

(1, -y i) € 10,1)% and i/ = [ph, ..., ] € [0,1)5 if
fim < iy ¥ € [K], then u(s) < u(i).

Assumption 3 states that the expected reward is monotoni-
cally non-decreasing with respect to the expected outcome
vector.

Assumption 4. (Lipschitz continuity of the expected re-
ward in expected outcomes) AB > 0 such that for any . =
[:ula s MUJK] € [Oa I]K and M’ = [:ullr s HU‘/K] € [07 1]Kr
we have |u(p) — u(p)| < BY (L) | — pf).

Assumption 4 implies that one can get a good estimate of
the expected reward of a super arm if one can get good
estimates of the expected outcomes of the base arms that
are in that super arm.

2.2 The Learning Problem

We consider a sequential decision-making problem with
volatile base arms that proceeds over 7' rounds indexed by
t € [T]. The learner knows u perfectly, but does not know
1 beforehand. In each round ¢, M > K base arms indexed
by the set M! = [M?] arrive.! We assume M* < oo, for
all t > 0. The context of base arm m € M? is represented
by !, € X. We denote by X* = {2 },,crqt the set of
available contexts and by u* = [u(z!,)]mem: the vector
of expected outcomes of the available base arms in round
t. We denote by S* = {S C M : |S| = K} the set of
available super arms in round .

At the beginning of round ¢, the learner first observes M?
and X'* and then selects a super arm S* from S*. At the end
of round ¢, the learner collects the reward u(r(x%,)) where
xl, = [9[;2i b ’xi;( ] is the set of context vectors associ-

ated with super arm S* and r (2%, ) = [T(xitl)v . r(x’;tK )]

is the outcome vector of super arm S?. It also observes
r(xk.) as a part of the semi-bandit feedback. The goal of
the learner is to maximize its expected cumulative reward
by round 7T'.

Since combinatorial optimization is NP-hard in general
[Wolsey and Nemhauser, 2014], finding an optimal su-
per arm S*! that achieves an expected reward opt(u') =
maxgestu(p(zl)) is computationally intractable even
when p is perfectly known. Thus, we assume that the
learner has access to an c-approximation oracle, which
when given as input ! returns an « optimal solution. Since
the learner does not know u? in our case, it gives an M?-
dimensional parameter vector §* as input to the approxima-
tion oracle to get S* = Oracle(*), which is an approxi-

mately optimal solution under #¢ but not necessarily under
t

uh.
To measure the loss of the learner in this setting by round
T for a fixed sequence of context arrivals {X*}7_;, we use

'We assume that the reward monotonically increases as the
set of selected base arms grows. Therefore, when M t < K, the
learner will select all available base arms and incur zero regret.
Here, we focus on the non-trivial case where M*¢ > K for all ¢.
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the standard notion of a-approximation regret [Chen et al.,
2013] (referred to as the regret hereafter), given as

T

Ra(T) = oY opt(u') = 3 ulplah))

t=1 t=1

Our goal is to devise a learning algorithm that minimizes
the growth rate of the regret of the learner. This is a chal-
lenging problem since the expected outcomes of the base
arms are unknown a priori and volatility of the base arms
poses a challenge in estimating the expected outcomes ac-
curately. Since the learner does not have any control over
M? and X%, in the worst-case, a different set of arms can
arrive in each round. Therefore, achieving sublinear regret
in time would be impossible without further structure on
the outcomes and rewards. Thus, the assumptions made
in the previous section are necessary to integrate what has
been learned in the past to form accurate estimates of ex-
pected base arm outcomes and expected rewards in the cur-
rent round. In particular, they allow us to partition the con-
text space into regions, each of which is assumed to con-
tain contexts with similar expected outcomes, and create
partition-based estimates of expected base arm outcomes.
In the next section, we list the properties of the context
space and reward function that follow from the definitions
and assumptions in Section 2.1. These will be used in both
algorithm design and regret analysis.

2.3 Properties of the Context Space

We first give the definition of a well-behaved metric space.

Definition 1. (Well-behaved metric space [Bubeck et al.,
2011]) A compact metric space (X, d) is said to be well-
behaved if there exists a sequence of subsets (Xp)p>0 of X
satisfying the following properties:

1. Given N € N, each subset X}, has N" elements, i.e.
Xy, = {xni, 1 <i < N"} and to each element zy, ;
is associated a cell Xy, ; = {x € X : d(z,zp,) <
d(z,zp ), Vj # i}

2. For_all h>0and1 < i < N we have: Xni =
U;y:lN(i_l)+1Xh+1,j. The nodes xp,+1 ; for N (i—1)+
1 < 5 < Ni are called the children of xy, ;, which in

turn is referred to as the parent.

3. We assume that the cells have geometrically decaying
radii, i.e. there exists 0 < p < land 0 < vy <
1 < vy such that we have B(xy, ;, vap” /2) C Xn,i C
B(zp,i, v1p"/2), where B(x,r) denotes a closed ball
centered at x with radius r. Note that we have
vapl < diam(Xy;) < wviph, where diam(X}, ;) =
SUP%yEX}LJ_d(x, y)

The first property implies that for every h > 0 the cells
Xpin1 <4 < NP partition X'. This can be observed

trivially by reductio ad absurdum. The second property in-
tuitively means that as h grows, we get a more refined se-
quence of partitions. The third property implies that the
nodes xj ; are evenly spread out in the space. As pre-
viously indicated in [Bubeck et al., 2011, Shekhar et al.,
20181, (X, ||-||5) is well behaved.

Our regret bounds depend on the notion of approximate op-
timality dimension, which relates to the dimensions of sets
of optimistic contexts that yield approximately optimal ex-
pected rewards. First, we define the approximate optimality
dimension of the context space, tailored to our combinato-
rial setting, which is inspired by definitions of the near op-
timality dimension given in [Bubeck et al., 2011, Shekhar
et al., 2018, Munos, 2011].

Definition 2. (The approximate optimality dimension)

o A subset Xo of X is called r-separated if for
any x1,x9 € Xo such that 1 # xo, we have
|z1 — x2||y > r. The cardinality of the largest such
set is called the r-packing number of X with respect to

|-l5, and is denoted by M (X, ||-||5, 7). Equivalently,

the r-packing number of X is the maximum number of

disjoint ||-||,-balls of radius r that are contained in X.

o Let Z = XK, Forany k > 0, r > 0,t > 0 and
f:RT = RT, we define the set

Xiy ={z e Xk —u(u(x))
< f(r),for somex € Zsuch thatz € x}
to be an (f(r),u,r)-optimal set. Let
M(XF ., Illy,7) be its r-packing number. — We

define the (f,u,r)-optimality dimension D“(f, k)
associated with X ]’f(r) and u as follows:

D*(f,r) = max {0,1imsup 10g<M(Xf(T),H J27) }
r—0 log(r—1)

Note that if « € Z is such that k — u(u(x)) < f(r),
then all elements of = will be in X Jf(r). Use of the -
optimality dimension allows us to bound the regret in the
volatile setting in a way that the time order of the regret
depends on D¥( f, k) which is in most of the cases strictly
smaller than D as opposed to the prior work [Chen et al.,
2018] which has bounds that depend on D. For instance,
we can let u; = minger u(p(zh..)) and £ = ouf;,
to obtain a worst-case approximate optimality dimension
D = D¥(f,au’,,)-
Remark 1. D is obviously less than or equal to D since
we are narrowing the space to specific subspaces. We illus-
trate this in the example below, which is a modified version
of Example 3 in [Bubeck et al., 2011]. We thus exploit the
nature of the reward function u. If we remove the volatil-

ity assumption from the problem setting and assume that
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the learner can choose only one arm in a given round, D
will be the near optimality dimension of the context space
(where we let 1 be the optimal expected reward), thus re-
covering the notion as introduced in previous works. In
Section 4.4 we explain ways to construct more optimistic
regret bounds using the approximate optimality dimension.
Moreover, a case for which D < D when o < 1 is given in
Section 4.3.

Example 1. Let X = [0,1]° and K = 1. Let us define
u(p(z)) = 1 — ||z||3 for some a > 1. Let ||-||, be the norm
defined on the metric space X. Fix c > 0, let f(r) = cr and

K = umm (exact oracle). Let t = argmin,epyu(u(z*')),

where x*' := argmax, c y+ u(p(z)). Denote x* = x*' and
note that in this case k = u(u(z*)). When ||z*||, = 0, we
have D < (1 —1/a)D < D (proof is in the supplemental
document).

3 THE LEARNING ALGORITHM

Our algorithm is called Adaptive Contextual Combinatorial
Upper Confidence Bound (ACC-UCB) and is motivated by
several tree based methods that have been used for func-
tion optimization under continuity assumptions [Bubeck
et al., 2011, Shekhar et al., 2018, Munos, 2011] (pseu-
docode given in Algorithm 1). By Definition 1 there exists
a sequence (X})p>0, each containing N h nodes whose as-
sociated cells form a tree of partitions of X'. The procedure
is described as follows: At round ¢, we observe arrived base
arms and contexts. We maintain an active set of leaf nodes
and denote it by L. For the arrived base arms, we identify
the set of available active leaf nodes, whose regions contain
the available contexts and denote it by N“. By p(zy, ;) we
denote the parent of node x}, ;. For each active leaf node we
maintain an index which is an upper confidence bound on
the maximum expected outcome of base arms which have
contexts in the region associated with the node. The index
is defined as g*(zp ;) := b'(xn:) + vip" where the term
b'(xp,;) is a high probability upper bound on p(zy, ;) de-
fined as

V() = min{ g (@p ) + T H(an),
i (plan)) + ¢ (plon) + vap® )

and c'(zp;) = /2logT/C(xy ;) is the confidence ra-

dius, tailored to give high probability upper bounds on
p. Here C*(zy;) is the number of times a base arm
associated with a context from the cell Xj; was se-
lected by the algorithm, formally defined as C*(zp ;) =
S, Zkl,(zl I{(H} , 1}') = (h,i)} where we denote by
(HY | I'') the active leaf node associated with the cell con-
taining the context of the kth selected base arm at time ¢'.
We define the total reward accumulated by the algorithm
until round ¢ from selecting arms with contexts associated

with the node x, ; as follows:

t K
ZZ t’ ]I{ Hkvlk):(hvi)}

t'=1k=1

U xhz

where we denote by s!, the kth base arm selected by the
algorithm at round ¢. Consequently, we define the empirical
mean used in the index as
ot V() /CHani)  for CF(zpi) >0
i (wh,s) o= .
0 otherwise

C*(xp, ;) can be larger than ¢, since at a certain round, the
algorithm may select base arms with contexts belonging to
the same cell. However, it always holds that Ct(zy, ;) <
K't. The constants v; and p are parameters as described in
Definition 1 that are given as input to the algorithm.

Using the same approach, we next define the index of an
arm m € M?. Let ¢!, = x;, ; be the active leaf node

associated to the cell containing x%,. Then,

9" (k) = g"(dh,) + N(v1/va)vypm
where the second term guarantees (with high probability)
that g*(x%,) upper bounds pu(zt)).

Remark 2. Since at any round t, a cell associated with an
active leaf node xy, ; may contain several contexts of the
available base arms, we have g'(zt)) = g'(zt) when m
and n are two available base arms, both of which have con-
texts that live in the cell Xy, ;. As a consequence, indices of
all base arm contexts inside one cell are equal.

After the indices of the available base arms, i.e.,
{g*(2%,) }merqe are computed, they are given as input 6
to the approximation oracle in round ¢ to obtain the super
arm S? C M that will be played in round ¢.> At this point,
we identify the active leaf nodes that are “selected”, denote
their collection by P?, and update their statistics (after these
are played and their outcomes are observed) according to
the following rules. For each z, ; € Pt

) thl T iﬂti
i (o) = S

Ct(LC}M') = Ctil(x

Yan) + rew'(zp ;)
Yapi) + numt(zh;)
ni) +num'(xp,;) 2

ey

where rew!(zy, ;)

= S O HL I = (1))
and num®(zp;) = S g, I{(HL, IL) = (h,i)}. Statistics
of the other active leaf nodes do not change. Subsequently,
for each node xj, ; € Pt, we decide whether or not to ex-
pand it into N children nodes, according to the following
condition:

The base arms are randomly chosen in the first round.
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e Refine. If ct(zp,;) < v1p", then the node z, ; is ex-
panded into NV children nodes {x}4+1,; : N(i — 1)+
1 < j < Ni} which are added to the set of active
leaves, whereas x}, ; is removed from it.

If the above condition is not satisfied, we continue. Ba-
sically, we refine the partitions when we are confident
enough about the p values inside that cell.

Algorithm 1 ACC-UCB
Input: X, (X3)n>0, v1, V2, po N, x01, K, T.
Initialize: C%(zp, ;) = 0, @°(zp,) = 0, Vap,; € X;
XO = X, El = {IO,l}-
fort=1,2,...,T do:
Observe base arms in M? and their contexts Xt
Identify available active leaf nodes N'* C L*.
Compute indices gt(xh i)s Th,i € N
Compute indices g*(xt,), m € M?.
St + Oracle(g'(z}), ..., g"(@%,:)).
Observe outcomes of base arms in S? and collect the
reward.
Identify the set of selected nodes P!.
for 2, ; € P do:
Update fi*(xp, ;) as in (1) and C*(zy, ;) as in (2).
if ¢t (zp,;) < v1p" then:
L LPu{zpi1,: N@i—1)+1<j5<
Ni}\ {xp,i}. > Refine the tree of partitions.
end if
end for
end for

4 REGRET ANALYSIS

4.1 Preliminaries

First, we show that the index of a given node x;, ; is an up-
per bound of its true mean with overwhelming probability.

Lemma 1. Given the event F = {Vt < T,Vap,; € L
|3 (zh,i) — p(xn )| < cHxpq)+ vlph} under the assump-
tions made in Section 2, we have P{f} >1—2K?2?71

The next result gives high probability bounds of the differ-
ence between the index and the mean of a given node. Fur-
thermore, we give an upper bound on the number of times
anode can be selected before expansion.

Lemma 2. Consider that event F happens. Then, if at
round t, the node x,; € P is not expanded by the algo-
rithm, we have gt () — p(wn.:) < (5Nwv1/vg + L)viph.
Moreover, a node xy,; may be selected by the algorithm

no more than qp, times before it is expanded, where q;, <

’7 2logT —‘ 210g(Tv3)
( >

2
- Vi
1P ) (s o2 with vz : ey,

Next, we give a high probability upper bound on the true
mean of any given arm.

Lemma 3. Consider that event F happens. Then, we have
Vt <T andm € MY, g'(zt,) > p(at).

The following lemma upper bounds the suboptimality gap
of any suboptimal super arm with high probability.

Lemma 4. If the reward function u satisfies the Lipschitz
continuity and the monotonicity condition and if event F
holds, then in any round t, the regret incurred by super arm
S is upper bounded by megt B(6Nv1/va + 2)v1p m
or by BK (6N v, /vy + 2)v1p"®), where h(t) = min{h!,
m € St}

Finally, we will make use of the following fact when upper
bounding the cardinality of the set of nodes from which the
algorithm selects.

Lemma 5. Fix k > 0. Let D = D"(f, k) and f(r) = cr
for a given ¢ > 0. Fix Dy > D. Then, there ex-
ists a constant Q, such that for all v < wvs we have

M5, |ly,r) < QrP.
4.2 A Sublinear Regret Bound

Theorem 1. Fix T > 0. Given the parameters of the prob-
lemO0<a<1]l, NeNKeN B>0and0 < vy <
1 < vy, define D = D*(f,au’,,) and f(r) = cr, where
¢ = BK(6Nv, /vy + 2)v1/va. Then, for any Dy > D,
there exists QQ = Q(X, u, pi, au’ ., ¢) > 0 (independent of
T'), for which the a-regret incurred by ACC-UCB is upper
bounded with probability at least 1 — 2K2T~1 as follows:

- D11+2 . (]og(T’(}3)) D11+2
- (log(Tws)) D772

Ro(T) < Cy-T"
+Cy- T

1
D12

where Cy = 2Q BK (6Nv1/vs + 2)
KB(6Nwy /vy + 2)v;.

m and CQ =

Sketch of proof. By Lemma 4 we have R,(T) <
>t<r BK(6Nv1/v2 + 2)v1p"®). In order to obtain sub-
linear regret, we express the summation in terms of the lev-
els of the tree and then we fix some level H and consider
two summations separately, that correspond to the levels
h < H and h > H. Then, we use the fact that any
two nodes in A}, are at least vop" apart, the definition of
v p*-packing number and Lemma 5 to bound the cardi-
nality of the set of nodes from which the algorithm may
select base arms. After merging the two summations, we
design the prefixed constant H so that we can have a sub-
linear bound. Finally, by a clever choice of H, we obtain
O(T(P+1)/(D+2)+€) regret for any € > 0. |

In the previous work closest to our setting [Chen et al.,
2018], the algorithm CC-MAB is shown to achieve
O(TB+D)/(38+D)) " regret, where (3 is a positive real
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number (8 = 1 gives our Assumption 1) and D is the
dimension of the context space. Their setting assumes a
submodular reward function, whereas we, except from As-
sumptions 2-4, do not assume anything else on the nature
of this function. While they uniformly partition the context
space, we adaptively partition it, making full use of benign
contexts. The difference is that after a certain point, the
learning accuracy of CC-MAB stops growing, while that
of ACC-UCB converges to an optimum. As a result, ACC-
UCB learns much faster than CC-MAB (see Section 5 for
numerical results). While their regret bounds depend on
the dimension of the context space D, our bounds depend
on the approximate optimality dimension D, which is less
than or equal to D. Moreover, for 5 = 1 the exponent of T’
in their bounds is (D + 2)/(D + 3), while in our bounds
itis (Dy + 1)/(Dy + 2), for any D; > D. As a conclu-
sion, ACC-UCB outperforms the current state-of-the-art in
the contextual combinatorial volatile setting.

Finally, we note that if each super arm is a base arm, the set
of available base arms is time-invariant, u(u(z)) = u(x)
and o = 1, then our problem becomes a special case of
the X'-armed bandit [Bubeck et al., 2011]. In this case, D
becomes the near optimality dimension in [Bubeck et al.,
2011] and time order of the upper bound in Theorem 1
matches with the regret lower bound in Theorem 13 of
[Bubeck et al., 2011] (which holds for metric spaces) up
to a multiplicative logarithmic factor.

4.3 Regret When the Set of Contexts is Finite

When the context space is of finite cardinality (even though
of a combinatorial nature, and thus potentially very large),
the r-packing number of (f,u, x)-optimal sets will stop
growing after some point, and thus we can upper bound it.
Let P(f,u, k) = limsup,_,o M(Xf,, [ll5,7). Then,
the regret incurred by ACC-UCB is upper bounded as
shown below.

Theorem 2. Under the assumptions of Theorem 1 and the
additional assumption that the context space is of finite
cardinality, for any € > 0, the a-regret incurred by ACC-
UCB inT rounds is upper bounded with probability at least
1 —2K2T" as follows:

1

Ro(T) < C5T 77 - (log(Tws)) 7
1O, [Tl—ﬁ - (log(Tw3)) 7

where Cs(e) := BK(6Nvy/vs + 2)% and
Cy = BK(6NU1/’U2 + 2)1}1.

4.4 Optimistic Regret Bounds

The regret bound in Theorem 1 depends on the worst su-
per arm among the optimal super arms over all the rounds.
While this being the worst among the best is reasonable,

can we obtain a tighter bound? For this, we partition the
set of the rounds [T'] into subsets and consider their con-
tribution to the regret separately, in order to obtain differ-
ent dimensions not depending on the worst of the best su-
per arms overall, but the worst of the best super arms over
smaller sets.

Formally, let 7 : [T] — [T] be a permutation of the

rounds such that u(u(mg(*?(l))) > .. > u(u(:cggzm))
and let us denote by 7([T]) the new ordered set. Now

let I = {7},..., 7]%} be an ordered partition of 7 ([T])

and let us denote by Ty = |7} | the cardinality of T,
for some A\ € [|T'|] (there are finitely many such parti-
tions). Also, for any 0 < A < |[I]|, denote the ex-
pected reward of the “worst” optimal super arm in ’T)\F as
Upyin (T, A) = mingerr u(p(x..)). Let P(w([T])) be the
set of all partitions of 7([77)). Now let us denote by DY, the
(f,u, aul; (T, \))-optimality dimension® associated with
the subset 7)1 and by R, »(7") the regret incurred by the
learner over the rounds in 7.

Theorem 3. Under the assumptions of Theorem 1, for any
I € P(n([T))) let {D5}r<r| be a sequence of constants
such that DY > DY, for A\ < |['|. Then, there exists
U= QV( X, u,p,aul, (T, N),¢) > 0, A < |T| such
that the a-regret incurred by ACC-UCB is upper bounded
with probability at least 1 — 2K2T~1 as follows:

T

Ro(1) < Y |G ) - (1) TP

A=1

(log(Tws)) 23*2 + Ce - (Ty) A (log(Tws)) >

r

where C5(I', \) := 2Q5 K B(6Nv; /va + 2)% and
Cﬁ = KB(6N1}1/’U2 + 2)1}1.

For ¢ € (0,1), let 7¢ = {x(1),...,n(T —
[T} uin(€) = mingere u(p(al.)) and ug, =
max;c 7] u(p(x%..)). The following corollary gives an-

other bound on R, (T) in terms of a specific partition of
7[T] defined by T¢.

Corollary 1. For ¢ <€ (0,1) let D(§) be the
(f,u, auk ;. (§))-optimality dimension associated with the
set T¢. Let D : (0,1) — R, be any function such that
D(&) > D(€), for all ¢ € (0,1). Then, there exists
Q) = QX u,p,aul, (§),c) > 0 such that the a-
regret incurred by ACC-UCB in T rounds is upper bounded

with probability at least 1 — 2K2T~1 as follows:

R, (T) < inf

C T 5@7 . (log(Tvs)) DET2
< anf (alo (105(T'c3))

G 71777 - (log(Tun)) 75+t T

3 f is the same as in Theorem 1.
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—D(&)

where C5(§) = 2Q(§) KB(6Nv1 /va + 2) 5377,y and
Cg is defined as in Theorem 3.

D(€) in Corollary 1 is non-increasing in £&. The optimal
value for ¢ for which the time order of the terms in the
1—

1
regret bound are balanced is such that 7¢ = T~ D@&)+2

5 EXPERIMENTS

We consider a mobile crowdsourcing problem where the
goal is to assign a subset of available workers to location
dependent tasks arriving sequentially over time. Formally,
in each round ¢, a task arrives with a location (normalized
longitude and latitude) sampled uniformly at random from
[0, 1]%. Then, the learner selects K € {2,4} workers from
the set of available workers, M, which is sampled from
the Poisson distribution with mean 50. A worker is char-
acterized by its location that lies in [0, 1]? and its energy
and willingness to work (i.e. battery status) sampled uni-
formly at random from [0, 1]. We generate workers using
the Gowalla dataset [Cho et al., 2011]. This dataset con-
sists of 6,442,892 user check-ins in the social networking
platform Gowalla. Each check-in contains the user id, time
of check-in and location of check-in. In each round ¢, we
randomly select M? of these check-ins without replace-
ment and normalize and assign each of their locations to
a worker. Each base arm m in round ¢ is a task-worker
pair with a two-dimensional context =, = (z%, 1,2, ).
Here, !, ; represents the normalized* Euclidean distance
between the worker and task locations, while xfn,z repre-
sents the battery status of the worker.

We define the expected base arm outcome as u(zf)) =
f(at, 1) - (xh, 5)? where f is a Gaussian probability den-
sity function with mean 0 and standard deviation 1. Note
that p is decreasing in the distance between the worker and
task and increasing in the worker’s battery. Furthermore,
the outcome r(zf,) of worker m in round ¢ is Bernoulli
distributed with probability (!, ); itis 1 when the worker
successfully completes the task and 0 otherwise. We as-
sume that the task is successfully completed if at least one
of the assigned workers completes the task, which is true
for tasks such as cryptocurrency mining [Mukhopadhyay
etal., 2016]. Hence, u(r(xf,)) = 1if 3 g r(ah,) > 1
and 0 otherwise.

We implemented the simulations in Python® and ran them
for 50,000 rounds using ACC-UCB, CC-MAB [Chen et al.,
2018] and random selections. For ACC-UCB, we set v; =
V5,9 = 1,p = 0.5, and N = 2. Also, xg; is a square
with edge length 1 and center (0.5, 0.5). For CC-MAB we

“To normalize the distance we simply divide it by the maxi-
mum possible distance, v/2.

SFull code is provided at
CYBORG/ACC-UCB

https://github.com/Bilkent-

seta =1, hy = [50000%—‘ . We also used an exact oracle

in both algorithms. Reported results correspond to averages
over 10 independent runs. Figure 1 shows the cumulative
regret and Figure 2 shows the average task reward up to ¢
for all algorithms. As can be seen, ACC-UCB outperforms
CC-MAB and random selections.

le4
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Figure 1: Cumulative regrets of algorithms.
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Figure 2: Average task reward up to round .

6 CONCLUSION

We considered the contextual combinatorial volatile MAB
with semi-bandit feedback. We proposed an algorithm,
called ACC-UCB, that tradeoffs exploration and exploita-
tion by performing adaptive discretization of the context
space under mild continuity assumptions on the expected
base arm outcomes and the expected reward. ACC-UCB
is proven to achieve O(T(P+1/(P+2)+€) regret for any
€ > 0, where D represents the approximate optimality di-
mension associated with the context space. An interesting
future research direction is to investigate CCV-MAB in the
Bayesian setting.
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