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Abstract

Recently, several studies have proposed pro-
gressive or sequential layer-wise training meth-
ods based on the boosting theory for deep
neural networks. However, most studies lack
the global convergence guarantees or require
weak learning conditions that can be verified
a posteriori after running methods. Moreover,
generalization bounds usually have a worse de-
pendence on the network depth. In this paper,
to resolve these problems, we propose a new
functional gradient boosting for learning deep
residual-like networks in a layer-wise fashion
with its statistical guarantees on multi-class
classification tasks. In the proposed method,
each residual block is recognized as a func-
tional gradient (i.e., weak learner), and the
functional gradient step is performed by stack-
ing it on the network, resulting in a strong
optimization ability. In the theoretical anal-
ysis, we show the global convergence of the
method under a standard margin assumption
on a data distribution instead of a weak learn-
ing condition, and we eliminate a worse depen-
dence on the network depth in a generalization
bound via a fine-grained convergence analy-
sis. Moreover, we show that the existence
of a learnable function with a large margin
on a training dataset significantly improves a
generalization bound. Finally, we experimen-
tally demonstrate that our proposed method
is certainly useful for learning deep residual
networks.
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1 Introduction

Residual networks (ResNets) (He et al., 2016) are state-
of-the-art models equipped with a notable structure
called skip connections or resblocks. Thus, several stud-
ies have been devoted to understanding the reason for
their success. Recently, interesting aspects of ResNets
have been reported; one is the ensemble view (Veit
et al., 2016; Littwin and Wolf, 2016), where resblocks
are assembled as weak learners to make a stronger
model, and the other is the optimization or ordinary
differential equations view (Jastrzebski et al., 2017),
where resblocks provide a discretization of gradient
flows or ordinary differential equations to minimize an
objective function. Motivated by these perspectives
and gradient boosting machines (Mason et al., 1999;
Friedman, 2001; Chen and Guestrin, 2016; Ke et al.,
2017), functional gradient boosting (ResFGB) (Nitanda
and Suzuki, 2018a) for learning deep ResNets has been
proposed. In their method, each resblock can be rec-
ognized as an approximation to a functional gradient,
and functional gradient descent is performed by adding
a resblock on the top of the feature extraction layer
to optimize a network in a function space. Simultane-
ously, another boosting method (Huang et al., 2018)
for ResNets has been proposed for the same purpose.

Usually, a generalization bound is composed of an ap-
proximation term and a variance term. In Huang et al.
(2018); Nitanda and Suzuki (2018a), the approximation
term for a network obtained in their method was evalu-
ated through an algorithmic convergence rate analysis
of the method, and the variance term was estimated by
utilizing a conventional analysis of Rademacher com-
plexity (Koltchinskii and Panchenko, 2002) for neural
networks. In their analysis, a type of weak learning con-
dition which is verified only after running algorithms
was assumed to guarantee global convergence as well
as many other boosting methods. In the generaliza-
tion bounds, linear and exponential dependence on
the network depth appeared in Huang et al. (2018)
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and Nitanda and Suzuki (2018a), respectively, which
is usually unavoidable in analyses using Rademacher
complexity with norm constraints (Neyshabur et al.,
2015) due to a lack of understanding of the approxima-
tion ability. That is, a generalization bounds is getting
worse theoretically as the number of layers increases.

In this paper, we further develop this line of research.
We first propose a new functional gradient boosting
called ResFGB-FW for multi-class classification prob-
lems by combining ResFGB (Nitanda and Suzuki,
2018a) with the Frank-Wolfe method (Frank and Wolfe,
1956; Guélat and Marcotte, 1986; Jaggi, 2013) which is
a basic scheme of boosting methods, leading to a slight
modification of the network architecture of ResNets.
In a theoretical analysis, we show our network archi-
tecture is helpful in ensuring the global convergence
and provide a generalization bound without a type of
weak learning condition. In addition, we demonstrate
that a worse dependence on the depth can be elimi-
nated by precisely estimating the required norms of
parameters for global convergence of ResFGB-FW via
a fine-grained convergence analysis. A key step in the
proof for global convergence is to show that an ob-
tained weak learner in the method exhibits comparable
performance with a pure functional gradient in terms
of optimization ability in a function space. We show
this property by making a margin assumption where
a given training dataset is separable with a sufficient
margin by a good classifier in a set of learnable func-
tions assembled by a shallow neural network, while
this type of property is usually guaranteed by a weak
learning condition in other methods. As a result, we
can show not only that a worse dependence on the
network depth can be eliminated but also that the
existence of a good classifier providing a large margin
can significantly improve a generalization bound. Fi-
nally, we experimentally compare our proposed method
with state-of-the-art methods and demonstrate certain
superior performances.

Contributions

• We propose a new functional gradient boosting
for learning deep ResNets by combining ResFGB
with the Frank-Wolfe method and show superior
empirical performance over existing methods on
multiclass classification tasks.

• We provide a generalization bound for a trained
ResNet via a global convergence analysis of the
method under a margin condition instead of a weak
learning condition. Theoretical contributions in
this study are that (i) we guarantee the global
convergence without a type of weak learning con-
dition, (ii) we show that our network architecture
is helpful in ensuring the convergence, (iii) we elim-

inate a worse dependence on the network depth in
a generalization bound via a convergence analysis.

Related Work

Recently, it is known that a progressive learning scheme
or sequential layer-wise training has a powerful general-
ization ability as well as a conventional learning scheme
on the image classification task (Belilovsky et al., 2019;
Nøkland and Eidnes, 2019) and it is useful in network
architecture search (Liu et al., 2018; Kim et al., 2018;
Weill et al., 2019) which is considered as one of impor-
tant tasks in deep learning community. So far, many
studies (Han et al., 2016; Cortes et al., 2017; Mosca
and Magoulas, 2017; Wang et al., 2017; Kulkarni and
Karande, 2017; Huang et al., 2018; Brock et al., 2017;
Opitz et al., 2017; Malach and Shalev-Shwartz, 2018;
Marquez et al., 2018; Nitanda and Suzuki, 2018b,a;
Belilovsky et al., 2019; Nøkland and Eidnes, 2019) have
developed progressive learning methods and have ana-
lyzed the theoretical properties of these methods.

Especially, AdaNet (Cortes et al., 2017), BoostRes-
Net (Huang et al., 2018), and ResFGB (Nitanda and
Suzuki, 2018a) are closely related to our method in
the sense that components of neural networks are it-
eratively added to optimize a network structure based
on the boosting theory. However, our method has
several different theoretical properties from these meth-
ods, for instance, BoostResNet and ResFGB required
weak learning conditions to guarantee the global con-
vergence of the methods and linear and exponential
dependence on the network depth appeared in their
generalization bounds. On the other hand, our theory
guarantees the global convergence without such a weak
learning condition and eliminates a worse dependence
on the depth in a generalization bound. As for AdaNet,
the dependence on the network depth in the variance
term (i.e., estimation error) was logarithmic, but the
approximation guarantee (i.e., the global convergence
guarantee) was not provided in their theory.

2 Preliminary

In this section, we provide several notations to describe
a problem setting of the classification and a notion
of functional gradients used in the proposed method
and theoretical analyses. Moreover, we provide a basic
skeleton of generalization bound to derive an explicit
bound later.

2.1 Problem setting

Let X = Rd and Y be a feature space and a fi-
nite label set of cardinality c. We denote by ν
a true Borel probability measure on X × Y and
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by νn an empirical probability measure by obser-
vations (xi, yi)

n
i=1 independently drawn from ν, i.e.,

dνn(X,Y ) =
∑n
i=1 δ(xi,yi)(X,Y )dXdY/n, where δ de-

notes the Dirac delta function. For νn, we denote by
νXn the marginal distribution on X. In general, for a
probability measure µ, we denote by Eµ the expectation
with respect to a random variable according to µ. We
denote by L2(νXn ) the real-valued function space on X
equipped with inner product 〈·, ·〉L2(νX

n ) and by Lm2 (νXn )

the product space of L2(νXn ): for ∀ξ,∀ζ ∈ Lm2 (νXn ),

〈ξ, ζ〉Lm
2 (νX

n )

def
= EνX

n

 m∑
j=1

ξj(X)ζj(X)

 .
Lp-norm is defined by: ‖ξ‖p

Lm
p (νX

n )

def
= EνX

n
[‖ξ(X)‖pp] =

EνX
n

[∑m
j=1 |ξj(X)|p

]
for p ∈ {1, 2} and ξ ∈ Lm2 (νXn ).

Let F be a given function class of predictors. The
problem considered in this paper is formalized as the
empirical risk minimization problem:

min
f∈F

{
Ln(f)

def
= Eνn [l(f(X), Y )]

}
, (1)

where l be the logistic loss function for multiclass clas-
sification problems:

l(ζ, y) = − log

(
exp(ζy)∑
y∈Y exp(ζy)

)
.

Generally, regularization or constraint is needed for a
function class to guarantee generalization. Thus, we
next describe a network architecture belonging to F .

2.2 Network architecture

We split the predictor f into the feature extractor and
linear predictor: f(x) = w>φ(x), where w ∈ Rd×c is a
weight for the last layer and φ is a feature extractor
from X to X . For simplicity, we pre-train w on a
distribution νn as a linear classifier and fix it before
optimizing φ. In addition, we assume ‖(w)∗,y‖1 ≤ Λw
for ∀y ∈ Y . Thus, we focus on the problem of learning
a feature extractor φ and denote Rn(φ) = Ln(w>φ).
We herein describe the entire network architecture that
is a type of residual networks with slight modifications
(see Figure 1).
Definition 1. Let B1 and B2 be sets of neural net-
works: X → X , including the zero function. We denote
by φt the output of φ at the t-th layer. A set of residual
blocks (resblocks) at the t-th layer is

Bφt

def
= {ι1 + ι2 ◦ φt | ι1 ∈ B1, ι2 ∈ B2}.

A connection between t- and (t + 1)-th layers of φ is
described as follows:

φt+1(x)
def
= (1− ηt)φt(x) + ηtιt(x)

Figure 1: High level diagram of t-th layer of the network
obtained in the proposed method. A linear classifier
and an auxiliary loss are used to train resblocks at
t-layer and discarded after training t-th layer.

= ((1− ηt)id+ ηtι2) ◦ φt(x) + ηtι1(x),

where ηt ∈ [0, 1) and ιt ∈ Bφt . A class of predictors is
defined as follows: for the depth T ∈ Z+,

F def
=
{
w>φT | ιt ∈ Bφt , t ∈ {0, . . . , T − 1}

}
.

Remark Our model has two major differences from
the conventional residual networks and the model in
Nitanda and Suzuki (2018a); one is that the output
φt(x) is reduced at the rate of 1− ηt stemming from
the Frank-Wolfe method and the other is that resblocks
receive input data directly like DenseNet (Huang et al.,
2017). These modifications lead to provable statistical
guarantees without weak learning assumptions.

To provide theoretical analyses, some restrictions on
resblocks are required.

Assumption 1. Let ΛCi ,Λ
D
i (i ∈ {1, 2}) be positive

values and σ be a 1-Lipschitz activation function. As-
sume that residual blocks are shallow neural networks
defined as follows:

Bi =
{
z 7→ Ciσ(Diz) | max

j
‖(Ci)j,∗‖1 ≤ ΛCi ,

max
k
‖(Di)k,∗‖1 ≤ ΛDi , Ci ∈ Rd×d

′
, Di ∈ Rd

′×d}.
Assumption 1 is used for guaranteeing the generaliza-
tion bound. Although, we adopt shallow networks as
resblocks in this condition for simplicity, but we can
extend them to deeper resblocks. A typical example of
σ is the sigmoid function.
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2.3 Functional gradient

The key notion used in this study is the functional
gradient in a function space. We define

∇φRn(φ)(x)
def
=

{
∂zl(w

>z, yi)
∣∣
z=φ(xi)

(x = xi),

0 (otherwise).

This is nothing but a functional gradient (Fréchet dif-
ferential) in Ld2(νXn ), i.e., for ∀φ, ∀ξ ∈ Ld2(νXn ),

Rn(φ+ξ) = Rn(φ)+〈∇φRn(φ), ξ〉Ld
2(νX

n )+o(‖ξ‖Ld
2(νX

n )).

Thus, the functional gradient descent using ∇φRn op-
timizes Rn in Ld2(νXn ), but we need a smoothing tech-
nique introduced later to guarantee generalization be-
cause ∇Rn has no information on unseen data; in other
words, this method is meaningless for expected min-
imization problems. We similarly define a functional
gradient ∇fLn(f) and see ∇φRn(φ) = w∇fLn(w>φ)

The following proposition (Nitanda and Suzuki, 2018a)
shows the Fréchet differentiability and Lipschitz
smoothness for the multiclass logistic loss.

Proposition 1 (Nitanda and Suzuki (2018a)). Rn(φ)
is convex and Fréchet differentiable in Ld2(νXn ). More-
over, there exists ∃L > 0 such that ∀φ, ∀ξ ∈ Ld2(νXn ),

Rn(ψ + ξ) ≤ Rn(φ) + 〈∇φRn(φ), ξ〉Ld
2(νX

n ) +
L

2
‖ξ‖2Ld

2(νX
n ).

Remark Although, the Lipschitz parameter ofRn(φ)
depends on w, we consider it as a uniform constant
because w is fixed in our theoretical analysis.

2.4 Generalization Bound

We provide a skeleton of generalization bound on an
expected classification error which is derived by a con-
ventional analysis of Rademacher complexity for neural
networks (Koltchinskii and Panchenko, 2002). This
bound is composed of the L1-functional gradient norm
and the conventional margin defined below:

‖∇fLn(f)‖Lc
1(νX

n )
def
=

1

n

n∑
i=1

∑
y∈Y

∣∣∂ζy l(f(xi), yi)
∣∣ ,

mf (x, y)
def
= fy(x)−max

y′ 6=y
fy′(x).

Theorem 1. Suppose Assumption 1 holds, ΛC2 ΛD2 ≤
1/2, ηt ≤ 1 , and ‖x‖2 ≤ Λ∞ on X . Fix δ > 0. Then,
for ∀ρ > 0, with probability at least 1 − ρ over the
random choice from νn, we have that for ∀f ∈ F with
the network depth T ∈ Z+,

Pν [mf (X,Y ) ≤ 0] ≤

2c3ΛwΛ∞
δ
√
n

(
1 +

T−1∑
t=0

ηtΛ
C
1 ΛD1

T−1∏
s=t+1

(
1− ηs

2

))

+

√
1

2n
log ρ−1 +

1

2
(1 + exp(δ))‖∇fLn(f)‖Lc

1(νX
n ).

A remaining problem for deriving an explicit generaliza-
tion bound is to confirm how small functional gradient
norms can be achievable by given rates of ηt and up-
per bounds: ΛC1 ,Λ

D
1 ,Λ

C
2 , and ΛD2 . We estimate these

quantities by analyzing a convergence behavior of a
proposed functional gradient boosting for learning deep
residual networks.

3 Brief Review of Functional Gradient

Functional gradient methods including gradient boost-
ing (Mason et al., 1999; Friedman, 2001) and gradient
descent for kernel methods (Kivinen et al., 2004; Smale
and Yao, 2006; Ying and Zhou, 2006; Raskutti et al.,
2014; Wei et al., 2017) and over-parameterized neural
networks (Jacot et al., 2018; Du et al., 2018; Arora
et al., 2019) have powerful optimization ability because
these methods naturally perform in function spaces.

In gradient boosting, ∇φRn(φ) is approximated in a
given set of weak learners G as follows:

ξφ ∈ argmax
ξ∈G

〈∇φRn(φ), ξ〉Ld
2(νX

n ) (2)

and gradient method in a function space is performed
using a descent direction −ξφ. This approximation
procedure is recognized as a type of smoothing of func-
tional gradients.

In particular, this smoothing procedure is realized by
using the following kernel smoothing technique in the
kernel method and over-parameterized neural networks:

Tk∇φRn(φ)
def
= EνX

n
[∇φRn(φ)(X)k(X, ·)]

=
1

n

n∑
i=1

∇φRn(φ)(xi)k(xi, ·), (3)

where, k is a kernel function that is usually prefixed in
kernel methods; on the contrary, it depends on a map
φ for over-parameterized neural networks and is called
neural tangent kernel (Jacot et al., 2018).

We note that a kernel smoothing (3) is characterized
as a special case of (2) through the following relation-
ship. Let (Hk, 〈, 〉Hk

) be the reproducing Hilbert space
associated with a kernel k. Then,

Tk∇φRn(φ)

‖Tk∇φRn(φ)‖Hd
k

∈ argmax
‖ξ‖Hd

k
≤1

〈∇φRn(φ), ξ〉Ld
2(νX

n ) ,

(4)
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where ‖ξ‖2Hd
k

=
∑d
α=1 ‖ξα‖2Hk

for ξ = (ξα)dα=1 ∈ Hdk,
which is confirmed by 〈ψ, ξ〉Ld

2(νX
n ) = 〈Tkψ, ξ〉Hd

k
for

∀ξ ∈ Hdk. Hence, these methods using kernel smooth-
ing are considered as variants of functional gradient
boosting.

To further improve the optimization ability compared
to (4), one interesting idea is to maximize the following
quantity, which corresponds to the right hand side of
(4), with respect to k:

〈∇φRn(φ), Tk∇φRn(φ)〉Ld
2(νX

n ) = ‖Tk∇φRn(φ)‖2Hd
k
.

(5)
This approach was proposed in Nitanda and Suzuki
(2018a) for learning residual networks by successively
stacking layers, although there is a less explicit explana-
tion about this viewpoint. In this paper, we also adopt
this idea with several modifications for guaranteeing
the global convergence property.

4 New Functional Gradient Boosting

We here propose a new functional gradient boosting for
learning our models. The proposed method is essen-
tially a combination of kernel learning for improving
the approximation ability of kernel smoothing to func-
tional gradients and the Frank-Wolfe method which is a
basic scheme of boosting methods wherein weak learn-
ers are successively added into a prediction function.
Usually, the Frank-Wolfe method is used for learning
shallow neural networks (Barron, 1993; Bach, 2014;
Ping et al., 2016), but we adapt it for learning deep
residual networks by regarding residual blocks as weak
learners. Since, in our method, residual blocks are com-
posed of kernel smoothing of functional gradients and
kernel functions are composition of a feature extractor
and small networks, a modified Frank-Wolfe method
makes a feature extractor one level deeper by adding
this resblock. As a result, a network gradually grows
as the algorithm proceeds, and finally, a deep residual
network is obtained.

4.1 Functional gradient boosting for learning
deep residual networks

We herein describe the detail of the proposed method.
We note that ResFGB (Nitanda and Suzuki, 2018a) is
a special case of our method if a learning rate strategy
is ignored and ι1 = 0. In our method, kernel functions
used for kernel smoothing for resblocks are obtained
by inner products of embedding maps. Let K1 and K2

be sets of such embedding maps2: Rd → RD′ (D′ may
be set to ∞), and suppose 0 ∈ Ki (i ∈ {1, 2}). In our
theory, the sets K1 and K2 are sufficiently restrictive to

2Ki corresponds to outputs of intermediate layer of Bi

guarantee global convergence of the proposed method
and the generalization ability of an obtained residual
network, which is described later.

For a current feature extractor φt, a kernel functions
used for the smoothing of functional gradients is defined
in the following manner: for e1 ∈ K1, e2 ∈ K2,

ke1(x, x′) = e1(x)>e1(x′),

ke2(x, x′) = e2(φt(x))>e2(φt(x
′)).

As explained earlier, a kernel function is optimized to
well approximate the functional gradient:

max
e1∈K1

‖Tke1∇φRn(φt)‖2Hd
ke1

max
e2∈K2

‖Tke2∇φRn(φt)‖2Hd
ke2

. (6)

Instead of (6), solving the following problem is practi-
cally better: for D′ = d,

min
(e1,e2)∈K1×K2

∥∥∥∥e1 + e2 ◦ φt −
∇φRn(φt)

‖∇φRn(φt)(·)‖2

∥∥∥∥
Ld

2(νX
n )

(7)
because this problem (7) is much easier to solve and
∇φRn(φt)/‖∇φRn(φt)(·)‖2 is a good solution of (6)
if it is contained in a set: K1 + K2 ◦ φt as shown in
Nitanda and Suzuki (2018a). However, we note that
this approximation is just a heuristics and there is a
room for improvement by exploring another approxi-
mation. We denote by e1, e2 approximate solutions of
these problems.

Using kernels kei , a residual block that is a weak learner
to be added into a feature extractor φt in the proposed
method is constructed as follows:

ιt = −
Tke1∇φRn(φt)

Z1︸ ︷︷ ︸
ι1

−
Tke2∇φRn(φt)

Z1︸ ︷︷ ︸
ι2◦φt

, (8)

where Z1 is the normalization term: Z1 =
‖Tke1∇φRn(φt)‖Hd

ke1

. We note that the components

of a resblock, ι1 and ι2, are also defined in the above
equation and are composed of neural networks:

ι1 = A1e1(·), ι2 ◦ φt = A2e2 ◦ φt(·),

where A1, A2 are (d, d)-matrices:{
A1 = − 1

nZ1

∑n
i=1∇φRn(φt)(xi)e

>
1 (xi),

A2 = − 1
nZ1

∑n
i=1∇φRn(φt)(xi)(e2 ◦ φt)>(xi).

(9)

Finally, a Frank-Wolfe-like update is performed as fol-
lows: for a given learning rate ηt,

φt+1 ← (1− ηt)φt + ηtιt.
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As the right hand side of the above iteration is equal
to ((1− ηt)id+ ηtι2) ◦ φt(x) + ηtι1(x), we notice that
φt+1 is one level deeper than φt and a deep residual
network is constructed.

We give a full description of the proposed method
called ResFGB-FW in Algorithm 1. Although, we made
the assumption where a weight w for the last layer is
pre-trained due to theoretical tractability, it may be
practically better to optimize w at each iteration, so
that Algorithm 1 contains it as an option. We here note
that this procedure is certainly similar to a progressive
learning scheme in Belilovsky et al. (2019), except for
details of the architecture of each layer, which exhibits
comparable high performance with end-to-end training
schemes on the image classification tasks.

Algorithm 1 ResFGB-FW

Input: S = (xi, yi)
n
i=1, the number of iterations T ,

and learning rates ηt
φ0 ← id, w ← argminw∈Rd×c,‖(w)∗.y‖1≤Λw

Ln(w>φ0)

for t = 0 to T − 1 do
(Option) w ← argminw∈Rd×c,‖(w)∗.y‖1≤Λw

Ln(w>φt)

Get ei by solving (6) or (7) on S
A1 ← − 1

nZ1

∑n
i=1∇φRn(φt)(xi)e

>
1 (xi)

A2 ← − 1
nZ1

∑n
i=1∇φRn(φt)(xi)(e2 ◦ φt)>(xi)

ιt ← A1e1(·) +A2e2 ◦ φt(·)
φt+1 ← (1− ηt)φt + ηtιt

end for
Return w>φT

Remark There are two major differences from the
method in Nitanda and Suzuki (2018a); one is that the
output φt(x) is reduced at the rate of 1− ηt stemming
from the Frank-Wolfe method and the other is that res-
blocks receive input data directly like DenseNet (Huang
et al., 2017). These modifications lead to provable sta-
tistical guarantees without weak learning assumptions
adopted in Nitanda and Suzuki (2018a).

5 Convergence Analyses

We here provide the convergence analysis of Algorithm
1. To do so, we have to specify the architecture of
Ki and provide the required condition on resblocks
obtained in Algorithm 1 to guarantee the global conver-
gence property. We assume Ki are sets of shallow neural
networks: Fiσ(Gix) with norm constraints. Note that
the parameters of resblocks introduced in Section 2 can
be obtained by

Ci = AiFi, Di = Gi. (10)

The set of learnable functions by our method is de-
scribed as follows. We denote by DK1 the union of unit
balls in RKHSs defined by e1 ∈ K1:

DK1

def
= ∪e1∈K1

{ξ ∈ Hdke1 | ‖ξ‖Hd
ke1

≤ 1}.

Then, we define conv(DK1
) as the convex combination

of DK1 . We here make the following assumptions for
theoretical guarantees.
Assumption 2.

(A1) Let ΛFi ,Λ
G
i (i ∈ {1, 2}) be positive values and σ

be a 1-Lipschitz activation function. Let K1,K2 be sets
of shallow neural networks:

Ki =
{
z 7→ Fiσ(Giz) |

∑
j

‖(Fi)∗,j‖2 ≤ ΛFi ,

max
k
‖(Gi)k,∗‖1 ≤ ΛGi

}
.

In addition, ‖ei(z)‖2 ≤
√
K (i ∈ {1, 2}, K > 0) over

z ∈ Rd and the maximum singular value of w is upper
bounded by Σw.

(A2) Resblocks: ι1 = A1e1 and ιt = A1e1 +A2e2 ◦ φt
satisfy the following:

−〈∇φRn(φt), ι1〉Ld
2(νX

n ) ≥
1

2
max
ξ∈DK1

〈∇φRn(φ), ξ〉Ld
2(νX

n ) ,

−〈∇φRn(φt), ιt〉Ld
2(νX

n ) ≥ max
ξ∈DK1

〈∇φRn(φ), ξ〉Ld
2(νX

n ) .

(A3) For a training set S = (xi, yi)
n
i=1 sampled from

νn, there exist Mn, γn > 0 and ψn ∈ conv(DK1
) such

that for vi,y
def
= w>∗,yψn(xi), ∀i ∈ {1, . . . , n},

vi,yi ≥Mn + γn, vi,y ≤Mn (∀y 6= yi).

Remark Note that since the first component of res-
block: −ι1 = −A1e1 maximizes 〈∇φRn(φ), ξ〉Ld

2(νX
n )

through equations (4) and (5) over ξ ∈ DK1
, a kernel

ιt always satisfies the condition (A2) if problems (6)
are solved exactly, but (A2) also allows approximate
solution thanks to a support by ι2. In other words,
a deep architecture alleviates the requirement of the
optimality of weak learners for subproblems and is cer-
tainly useful in enhancing the global convergence. The
condition (A3) means that a given training set is sep-
arable by conv(DK1

) with a margin γn. We note that
this assumption is reasonable because conv(DK1

) is es-
sentially a set of infinite-width shallow neural networks
and has a universal approximation property. Hence, a
margin γn actually exists as long as a data distribution
is separable by a continuous function.

To ensure the convergence and generalization prop-
erties, we should derive upper bounds on norms of
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parameters of resblock ι and norm ‖ι(z)‖2, but it is
not obvious because resblocks contain a normalization
term Z1. An interesting technical contribution is to
derive the lower bound on Z1 under Assumption 2.

Proposition 2. Suppose Assumption 2 holds. Then,
iterates of Algorithm 1 satisfy

γn
4Σw
‖∇φRn(φt)‖Ld

1(νX
n ) ≤ ‖Tke1∇Rn(φt)‖Hd

ke1

. (11)

Proposition 2 says that the kernel smoothing in Algo-
rithm 1 produces a sufficient reduction of objective in
a function space as the margin γn is large. As a result,
norms of parameters and outputs of resblocks can be
made small.

Proposition 3. Suppose Assumption 2 holds. Then,
it follows that for resblocks ιi = AiFiσ(Gi·) obtained
in Algorithm 1,

‖(AiFi)α,∗‖1 ≤
4

γn
ΣwΛFi

√
K, (12)

‖ι1‖Ld
2(νX

n ), ‖ι2 ◦ φ‖Ld
2(νX

n ) ≤
4

γn
ΣwK. (13)

This proposition is useful for both convergence and
generalization guarantees, namely, the equation (12) is
used for deriving a generalization bound by substituting
it into the bound in Theorem 1, and the equation (13)
is used for deriving a convergence rate.

Global Convergence. The next theorem shows
the convergence property of Algorithm 1 to a bet-
ter model than conv(DK1), which can be shown by
adapting a proof for the vanilla Frank-Wolfe method
(Jaggi, 2013) to our method. For simplicity, we set
R∗n

def
= infφ∈conv(DK1

)Rn(φ) and set for t0,Λ∞ > 0,

C
def
= max

{
t0(Rn(φ0)−R∗n), 2L

(
Λ∞ +

16ΣwK

γn

)2
}
.

Theorem 2 (Convergence rate). Suppose Assumption
2 holds and ‖x‖2 ≤ Λ∞ on X . Then, iterates of Algo-
rithm 1 with learning rates ηt = 2

t+t0
(t0 ≥ 0) satisfy

Rn(φT )−R∗n ≤
C

T + t0
.

Note that this theorem provides a global convergence
guarantee. An important point of our analysis is that
a type of weak learning condition is not required un-
like existing studies (Huang et al., 2018; Nitanda and
Suzuki, 2018a). In addition, we remark that the con-
vergence becomes faster when the input distribution
has a high degree of linear separability and when using
a sufficient large t0.

Generalization Bound. By combining Proposition
2, 3, and Theorem 2 with generalization bound in
Theorem 1, we obtain the main result in this study. To
describe the result, we define

εn
def
= (c− 1) exp(−γn).

We can easily see that εn is an upper bound on R∗n
as follows. We set f = w>ψn where ψn ∈ conv(DK1

)
is defined in Assumption 2-(A3). Under Assumption
2-(A3), for i ∈ {1, . . . , n},

l(f(xi), yi) = log(1 +
∑
y′ 6=yi exp(fy′(xi)− fyi(xi)))

≤ log(1 + (c− 1) exp(−γn)) ≤ εn.

Thus, taking an expectation with respect to νXn , we
see that R∗n ≤ Rn(ψn) ≤ εn. Moreover, we note that
εn → 0 as γn →∞.
Corollary 1 (Main result). Suppose Assumption 2
holds and ‖x‖2 ≤ Λ∞ on X . Assume ΛF2 ΛG2 ≤
γn/8Σw

√
K. Fix δ > 0. Then, for ∀ρ > 0, with

probability at least 1− ρ over random choice from νn,
a predictor fT obtained by Algorithm 1 with ηt = 2

t+t0
(t0 ≥ 2) and T -iterates satisfies the following bound.

Pν [mf (X,Y ) ≤ 0] ≤ (1 + exp(δ))

(
εn +

C

T + t0

)
2c3ΛwΛ∞
δ
√
n

(
1 +

8ΣwΛF1 ΛG1
√
K

γn

)
+

√
1

2n
log ρ−1.

From Corollary 1, we can see that a worse depen-
dence on the network depth disappears; hence, the best
generalization performance is achieved when T →∞.
Specifically, if δ = γn/2 and γn are uniformly positive,
then we get for a sufficiently large T ,

Pν [mf (X,Y ) ≤ 0] ≤ O

(
εn +

1

γn
√
n

+

√
1

n
log ρ−1

)
.

From this bound, we can see that the standard margin
γn helps the generalization ability of the method, that
is, the complexity term is considerably reduced when
the margin γn is sufficiently large.

6 Numerical Experiments

We present experimental results on the binary and mul-
ticlass classification tasks. Our implementation is done
using Theano (Theano Development Team, 2016). The
experiments are conducted on Intel Core i7-8700K and
TITAN Xp 12GB with Ubuntu 16.04 (64-bit). We com-
pare Algorithm 1 with ResFGB (Nitanda and Suzuki,
2018a), multilayer perceptron (MLP), support vector
machine (SVM), random forest (RF), and gradient
boosting methods (GBM).
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Table 1: Test classification accuracies on benchmark datasets.

Method letter usps ijcnn1 mnist covtype

ResFGB-FW 0.981 (0.0007) 0.954 (0.0011) 0.988 (0.0008) 0.988 (0.0004) 0.969 (0.0008)

ResFGB 0.976 (0.0019) 0.954 (0.0009) 0.989 (0.0004) 0.986 (0.0007) 0.965 (0.0007)

MLP 0.970 (0.0060) 0.949 (0.0040) 0.988 (0.0011) 0.986 (0.0010) 0.965 (0.0015)

SVM 0.961 (0.0060) 0.947 (0.0020) 0.979 (0.0019) 0.970 (0.0040) 0.830 (0.0061)

RF 0.966 (0.0014) 0.940 (0.0020) 0.980 (0.0006) 0.973 (0.0005) 0.950 (0.0010)

GBM 0.967 (0.0013) 0.939 (0.0040) 0.982 (0.0011) 0.982 (0.0007) 0.971 (0.0005)

Figure 2: Learning curves for Algorithm 1 on multiclass classification problems. The figure shows classification
accuracy on training (blue) and test (purple) sets versus the number of iterations.

We use the following datasets: letter, usps, ijcnn1,
mnist, and covtype. We first divide each train dataset
randomly into two sets: 80% for training and the rest
for validation. We run each method on the train dataset
with several hyperparameter settings and choose a set-
ting providing the best classification accuracy on the
validation dataset. We finally train each model on an
entire train dataset and report a classification accuracy
on the test dataset. We perform the above procedure
5-times.

We explain hyper-parameter settings. For Algorithm 1,
three hidden-layers neural networks with 1000-nodes
per layer are used as ei ∈ Ki (i ∈ {1, 2}) to define
resblocks. Linear classifiers and ei are trained by Nes-
terov’s momentum method at each loop. The number
of iterations T and a parameter t0 ∈ {10, 100, 1000} for
learning rates ηt = 2/(t+t0) are tuned based on the per-
formance on the validation set. For ResFGB (Nitanda
and Suzuki, 2018a), constant learning rates are chosen
from {10−3, 10−2, 10−1} and similar settings as Algo-
rithm 1 are adopted for the other hyper-parameters.
For MLP, the ReLU is used as an activation and net-
work depth is set to three, four, or five layers. The
number of hidden units per layer is 100 or 1000. For
SVM, a random Fourier feature (Rahimi and Recht,
2007) is adopted with an embedding dimension of 103

or 104. For RF, the maximum depth is set to 10,
20, or 30 and the number of trees is set to 100, 500,
or 1000. For GBM, the learning rate is chosen from
{10−3, 10−2, 10−1, 1} with the maximum number of
trees being set to 1000, and number of leaves in one
tree is chosen from {24, 25, . . . , 210}.

Table 1 shows the mean classification accuracies and
standard deviations and Figure 2 depicts learning

curves on training and test datasets. As seen in the
table, the proposed method shows superior or compa-
rable performance over other state-of-the-art methods.
Therefore, we can conclude that our proposed method
is certainly useful for training deep ResNets with a
provable statistical guarantee.

7 Conclusion

We have proposed a new functional gradient boosting
by combining ResFGB with the Frank-Wolfe method
for learning deep ResNets. In theoretical analyses,
we have provided a generalization bound via a global
convergence analysis of the method under a margin con-
dition instead of a weak learning condition. Compared
to the previous study, our bound has two important
points; one is the elimination of a worse dependence
on the network depth, and the other is a significant
improvement by the existence of a learnable classifier
with a large margin on train datasets. Finally, we have
demonstrated superior empirical performance of the
proposed method over the state-of-the-art methods.
An interesting future work is to adjust our method
to the network architecture search by combining with
a usual end-to-end training such as stochastic gradi-
ent descent method. To do so, it will be necessary to
develop an effective criterion to switch the functional
gradient boosting and the end-to-end training schemes.
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Appendix

A Auxiliary Lemmas

For the proof of Theorem 1 which gives the skeleton of generalization bounds of deep residual networks obtained
by the proposed method, we here introduce the well known uniform bound (Koltchinskii and Panchenko, 2002)
using Rademacher complexity.

Let G be a set of functions from X to [−a, a] and S = {xi}ni=1 ⊂ X be a dataset sampled from νX,n, where νX

is the marginal distribution on X. Then, we define empirical Rademacher complexity <̂S(G) and Rademacher
complexity <s(G) as follows. For i.i.d random variables: σ = (σi)

n
i=1 taking −1 or 1 with equal probability,

<̂S(G) = Eσ

[
sup
f∈G

1

n

n∑
i=1

σif(xi)

]
, <s(G) = EνX,n [<̂S(G)].

We introduce a useful lemma for estimating Rademacher complexity.

Lemma A. (i) Let hi : R→ R (i ∈ {1, . . . , s}) be L-Lipschitz functions. Then it follows that

Eσ

[
sup
f∈G

n∑
i=1

σihi ◦ f(xi)

]
≤ LEσ

[
sup
f∈G

n∑
i=1

σi ◦ f(xi)

]
.

(ii) We denote by conv(G) the convex hull of G. Then, we have <̂S(conv(G)) = <̂S(G).

The following lemma gives the generalization bound using the margin distribution (c.f., Koltchinskii and Panchenko
(2002)). Let G be the set of predictors; G ⊂ {f : X → Rc} and ΠG = {fy(·) : X → R | f ∈ G, y ∈ Y}, then the
following holds.

Lemma B. Fix δ > 0. Then, for ∀ρ > 0, with probability at least 1− ρ over the random choice of S from νn, we
have ∀f ∈ G,

Pν [mf (X,Y ) ≤ 0] ≤ Pνn [mf (X,Y ) ≤ δ] +
2c2

δ
<n(ΠG) +

√
1

2n
log

1

ρ
.

The next lemma provides the bound on the margin distribution by functional gradient norm. We give a proof for
the completeness.

Lemma C (Nitanda and Suzuki (2018a)). For ∀δ > 0, the following bound holds.

Pνn [mf (X,Y ) ≤ δ] ≤ 1

2
(1 + exp(δ)) ‖∇fLn(f)‖Lc

1(νX
n ).

Proof. Since y-th element of ∇fLn(f)(xi) is

∂ζy l(f(xi), yi) = −1[y = yi] +
exp(fy(xi))∑

y′∈Y exp(fy′(xi))
,

where ζy denotes the y-th element of the first argument of l(ζ, y), we get

‖∇fLn(f)‖Lc
1(νX

n ) =
1

n

n∑
i=1

1− exp(fyi(xi))∑
y′∈Y exp(fy′(xi))

+
∑
y 6=yi

exp(fy(xi))∑
y′∈Y exp(fy′(xi))


=

1

n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))
+ 1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}

=
2

n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}
.
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If mf (x, y) ≤ δ, then, we see∑
y′ 6=y

exp(fy′(x)− fy(x)) ≥ exp

(
max
y′ 6=y

fy′(x)− fy(x)

)
= exp(−mf (x, y)) ≥ exp(−δ).

This implies,

pf (y|x) =
1

1 +
∑
y′ 6=y exp(fy′(x)− fy(x))

≤ 1

1 + exp(−δ)
.

Thus, we get by Markov inequality and the above equation,

Pνn [mf (X,Y ) ≤ δ] ≤ Pνn
[
pf (Y |X) ≤ 1

1 + exp(−δ)

]
= Pνn

[
1− pf (Y |X) ≥ exp(−δ)

1 + exp(−δ)

]
≤
(

1 +
1

exp(−δ)

)
Eνn [1− pf (Y |X)]

=
1

2

(
1 +

1

exp(−δ)

)
‖∇fLn(f)‖Lc

1(νX
n )

B Proofs

We first prove Theorem 1.

Proof of Theorem 1 . We here recall the network structure. The connection between the t-and t+ 1-th layers is

φt+1(x) = (1− ηt)φt(x) + ηtC1σ(D1x) + ηtC2σ(D2φt(x)).

We define recursively the family of functions Ht, Ĥ1,t, and Ĥ2,t where each neuron belongs. We denote by
Pα ∈ Rd the projection vector to α-th coordinate.

H0
def
= {Pα : X → R | α ∈ {1, . . . , d}},

Ĥ1,t
def
= {σ(d>1,t·) : X → R | d1,t ∈ Rd, ‖d1,t‖1 ≤ ΛD1 },

Ĥ2,t
def
= {σ(d>2,tφt) : X → R | φt ∈ Hdt , d2,t ∈ Rd, ‖d2,t‖1 ≤ ΛD2 },

Ht+1
def
= {(1− ηt)φαt + ηtc

>
1,tψ1,t + ηtc

>
2,tψ2,t : X → R | φαt ∈ Ht, ψj,t ∈ Ĥdj,t, ‖cj,t‖1 ≤ ΛCj , cj,t ∈ Rd, j ∈ {1, 2}}.

Then, the family of predictors of y ∈ Y can be written as

GT,y
def
= {w>y φT : X → R | φ ∈ HdT , wy ∈ Rd, ‖wy‖1 ≤ Λw}.

Note that GT = {(fy)y∈Y | fy ∈ GT,y, y ∈ Y}.

Let us evaluate Rademacher complexities of these sets. For H0, since ‖Pj‖2 = 1, we have

<̂S(H0) =
1

n
E(σi)ni=1

[
sup

α∈{1,...,d}

n∑
i=1

σiPαxi

]

≤ 1

n
E(σi)ni=1

[
sup

α∈{1,...,d}
‖Pα‖2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]

=
1

n
E(σi)ni=1

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
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≤ 1

n

E(σi)ni=1

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2

 1
2

=
1

n

(
n∑
i=1

‖xi‖22

) 1
2

≤ Λ∞√
n
,

where we used the independence of σi when taking the expectation.

As for Ĥ1,t, we immediately get from Lemma A,

<̂S(Ĥ1,t) ≤ ΛD1 <̂S(H0) ≤ ΛD1 Λ∞√
n

.

From these relationships, 1-Lipschitz continuity of σ, and Lemma A, we get

<̂S(Ht) ≤ (1− ηt−1)<̂S(Ht−1) + ηt−1ΛC1 <̂S(Ĥ1,t−1) + ηt−1ΛC2 <̂S(Ĥ2,t−1)

≤ (1− ηt−1 + ηt−1ΛC2 ΛD2 )<̂S(Ht−1) +
ηt−1ΛC1 ΛD1 Λ∞√

n

≤ <̂S(H0)

t−1∏
s=0

(
1− ηs

2

)
+

t−1∑
u=0

ηuΛC1 ΛD1 Λ∞√
n

t−1∏
s=u+1

(
1− ηs

2

)
≤ Λ∞√

n

(
1 +

t−1∑
u=0

ηuΛC1 ΛD1

t−1∏
s=u+1

(
1− ηs

2

))
,

<̂S(GT,y) ≤ Λw<̂S(HT ),

where we used ηs ≤ 1, ΛC2 ΛD2 ≤ 1/2, and used that recursive inequality: at+1 ≤ γtat + bt leads to,

at ≤ a0

t−1∏
s=0

γs +

t−1∑
u=0

bu

t−1∏
s=u+1

γs.

We set ΠGT = {fy(·) : X → R | f ∈ GT , y ∈ Y}. Noting that <̂S(ΠGT ) ≤
∑
y∈Y <̂S(GT,y), we get

<̂S(ΠGT ) ≤ cΛwΛ∞√
n

(
1 +

T−1∑
t=0

ηtΛ
C
1 ΛD1

T−1∏
s=t+1

(
1− ηs

2

))
, (14)

Thus, combining Lemma B, C with (14), we finish the proof.

We give the proof of key proposition which ensures that kernel smoothing of functional gradient leads to a
sufficient reduction of the objective function in the function space.

Proof of Proposition 2. For simplicity, we omit the index t and set f = w>φ. We first evaluate ‖∇fLn(f)‖Lc
1(νX

n )

as follows. Since y-th element of ∇fLn(f)(xi) is

∂ζy l(f(xi), yi) = −1[y = yi] +
exp(fy(xi))∑

y′∈Y exp(fy′(xi))
,

where ζy denotes the y-th element of the first argument of l(ζ, y), we get

‖∇fLn(f)‖Lc
1(νX

n ) =
1

n

n∑
i=1

1− exp(fyi(xi))∑
y′∈Y exp(fy′(xi))

+
∑
y 6=yi

exp(fy(xi))∑
y′∈Y exp(fy′(xi))


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=
1

n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))
+ 1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}

=
2

n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}
. (15)

We next focus on Z1 = ‖Tke1∇Rn(φ)‖Hd
ke1

. For ψn ∈ conv(DK1), there exists αs > 0 and ξs ∈ DK1 (s ∈
{1, . . . ,m}) such that

∑
s αs = 1 and ψn =

∑
s αsξs. From Assumption 2-(A2) and the symmetry of DK1 , for

∀s ∈ {1, . . . ,m},

Z2
1 =

〈
∇φRn(φ), Tke1∇Rn(φ)

〉
Ld

2(νX
n )

= −Z1 〈∇φRn(φ), ι1〉Ld
2(νX

n )

≥ Z1

2
〈∇φRn(φ),−ξs〉Ld

2(νX
n ) .

Hence, we get from
∑
s αs = 1,

‖Tke1∇Rn(φ)‖Hd
ke1

≥ 1

2
〈∇φRn(φ),−ψn〉Ld

2(νX
n ) . (16)

We set vi = ψn(xi)
>w and denote by vi,y y-th element of vi. We get from Assumption-(A3) and ∇φRn(φ) =

w∇fLn(f),

〈∇φRn(φ),−ψn〉Ld
2(νX

n ) = − 1

n

n∑
i=1

ψn(xi)
>w∇fLn(f)(xi)

= − 1

n

n∑
i=1

vi∇fLn(f)(xi)

= − 1

n

n∑
i=1

∑
y∈Y

vi,y∂ζy l(f(xi), yi)

=
1

n

n∑
i=1

vi,yi
(

1− exp(fyi(xi))∑
y′∈Y exp(fy′(xi))

)
−
∑
y 6=yi

vi,y
exp(fy(xi))∑

y′∈Y exp(fy′(xi))


≥ 1

n

n∑
i=1

(Mn + γn)

(
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

)
−
∑
y 6=yi

Mn
exp(fy(xi))∑

y′∈Y exp(fy′(xi))


=

1

n

n∑
i=1

{
(Mn + γn)

(
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

)
−Mn

(
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

)}

=
γn
n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}
(17)

Therefore, combining equations (15), (16), and (17), we get

‖Tke1∇Rn(φ)‖Hd
ke1

≥ γn
4
‖∇fLn(f)‖Lc

1(νX
n )

≥ γn
4Σw
‖∇φRn(φ)‖Ld

1(νX
n ),

where we used ‖∇φRn(φ)‖Ld
1(νX

n ) ≤ Σw‖∇fLn(f)‖Lc
1(νX

n ) which can be confirmed in a straight manner.

We next provide the proof of proposition which gives upper bounds on norms of parameters of a resblock ι and
‖ι(z)‖2.
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Proof of Proposition 3. We show (12) and (13) only for i = 1 because we can also show for i = 2 in the same
manner.

‖(A1F1)α,∗‖1 =
∑
j

|(A1)>α,∗(F1)∗,j |

≤
∑
j

‖(A1)α,∗‖2‖(F1)∗,j‖2

≤ ΛF1 ‖(A1)α,∗‖2

=
ΛF1
nZ1

∥∥∥∥∥
n∑
i=1

(∇φRn(φt)(xi))αe
>
1 (xi)

∥∥∥∥∥
2

≤ ΛF1
√
K

nZ1

n∑
i=1

|(∇φRn(φt)(xi))α|

≤ ΛF1
√
K

nZ1

n∑
i=1

‖∇φRn(φt)(xi)‖2

=
ΛF1
√
K

Z1
‖∇φRn(φt)‖Ld

1(νX
n )

≤ 4

γn
ΣwΛF1

√
K,

where we used Proposition 2 for the last inequality.

We next give the following bound. For ∀i ∈ {1, . . . , n},

‖Tke1∇φRn(φt)(xi)‖2 =

∥∥∥∥∥∥ 1

n

n∑
j=1

ke1(xi, xj)∇φRn(φt)(xj)

∥∥∥∥∥∥
2

≤ K

n

n∑
j=1

‖∇φRn(φt)(xj)‖2

= K‖∇φRn(φt)‖Ld
1(νX

n )

≤ 4

γn
ΣwZ1K.

Therefore, we get

‖ι1‖Ld
2(νX

n ) =

∥∥∥∥∥Tke1∇φRn(φt)

Z1

∥∥∥∥∥
Ld

2(νX
n )

=
1

Z1

√√√√ 1

n

n∑
i=1

‖Tke1∇φRn(φt)(xi)‖22

≤ 4

γn
ΣwK.

We here give the proof of Theorem 2.

Proof of Theorem 2. For arbitrary ε > 0, there exists a convex combination ψε =
∑m
s=1 αsξs ∈ conv(DK1)

(ξs ∈ DK1
, αs > 0,

∑m
s=1 αs = 1) such that Rn(ψε) ≤ R∗n + ε. By Assumption 2-(A2) and the symmetry of DK1,

it follows that for ∀s ∈ {1, . . . ,m},

−〈∇φRn(φt), ιt〉Ld
2(νX

n ) ≥ 〈∇φRn(φ),−ξs〉Ld
2(νX

n ) .
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Hence, we have
〈∇φRn(φt), ιt〉Ld

2(νX
n ) ≤ 〈∇φRn(φ), ψε〉Ld

2(νX
n ) . (18)

By the induction hypothesis, we can easily show that

‖φt‖Ld
2(νX

n ) ≤ max

{
Λ∞,

8ΣwK

γn

}
≤ Λ∞ +

8ΣwK

γn
. (19)

Indeed, ‖φ0‖Ld
2(νX

n ) =
√

1
n

∑n
i=1 ‖xi‖2 ≤ Λ∞ and

‖φt+1‖Ld
2(νX

n ) = ‖(1− ηt)φt + ηtιt‖Ld
2(νX

n )

≤ (1− ηt)‖φt‖Ld
2(νX

n ) + ηt‖ιt‖Ld
2(νX

n )

≤ (1− ηt) max

{
Λ∞,

8ΣwK

γn

}
+

8ηtΣwK

γn

= max

{
(1− ηt)Λ∞,

8ΣwK

γn

}
,

where we used Proposition 3 for the second inequality.

From Proposition 1, 3 and the above equations (18) and (19), we have

Rn(φt+1) = Rn((1− ηt)φt + ηtιt)

= Rn(φt + ηt(ιt − φt))

≤ Rn(φt) + ηt 〈∇Rn(φt), ιt − φt〉Ld
2(νX

n ) +
η2
tL

2
‖ιt − φt‖2Ld

2(νX
n )

≤ Rn(φt) + ηt 〈∇Rn(φt), ψε − φt〉Ld
2(νX

n ) +
η2
tL

2
‖ιt − φt‖2Ld

2(νX
n )

≤ Rn(φt) + ηt(Rn(ψε)−Rn(φt)) +
η2
tL

2
‖ιt − φt‖2Ld

2(νX
n )

≤ (1− ηt)Rn(φt) + ηtRn(ψε) +
η2
tL

2

(
Λ∞ +

16ΣwK

γn

)2

.

where for the first inequality, we used Assumption 1-(b) and Proposition 1.

By subtracting Rn(ψε) from both sides of this inequality, we get

Rn(φt+1)−Rn(ψε) ≤ (1− ηt)(Rn(φt)−Rn(ψε)) +
η2
tL

2

(
Λ∞ +

16ΣwK

γn

)2

.

We set

at = Rn(φt)−Rn(ψε), b =
L

2

(
Λ∞ +

16ΣwK

γn

)2

, C = max{t0a0, 4b}

and consider the recursive inequality: at+1 ≤ (1− ηt)at + bη2
t

Then, we show that by the induction hypothesis,

at ≤
C

t+ t0
. (20)

By the definition C, a0 ≤ C/t0 holds, clearly. Assuming (20) holds for t, we get

at+1 ≤
(

1− 2

t+ t0

)
C

t+ t0
+

4b

(t+ t0)2

=
(t+ t0 − 2)C

(t+ t0)2
+

4b

(t+ t0)2
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=
(t+ t0 − 1)C

(t+ t0)2
− C

(t+ t0)2
+

4b

(t+ t0)2

≤ C

t+ t0 + 1
,

where we used (t+ t0)2 > (t+ t0 + 1)(t+ t0 − 1) and 4b ≤ C for the last inequality. Thus, (20) holds for t+ 1.
Namely, it follows that

Rn(φT )−Rn(ψε) ≤
1

T + t0
max

{
t0(Rn(φ0)−Rn(ψε)), 2L

(
Λ∞ +

16ΣwK

γn

)2
}
.

Since this inequality holds for ∀ε > 0, we get

Rn(φT )−R∗n ≤
1

T + t0
max

{
t0(Rn(φ0)−R∗n), 2L

(
Λ∞ +

16ΣwK

γn

)2
}
.

We here prove a main result (Corollary 1). To do so, we give the following proposition which provides a bound on
an empirical functional gradient norm by the loss function.
Proposition A. For ∀f ∈ F , it follows that

Ln(f) ≥ 1

2
‖∇fLn(f)‖Lc

1(νX
n ).

Proof. By substituting z =
exp(ζyi )∑

y′∈Y exp(ζy′ )
into the inequality: − log(z) ≥ (1− z) for z ∈ (0, 1), we get

l(ζ, y) = − log

(
exp(ζy)∑

y′∈Y exp(ζy′)

)
≥ 1− exp(ζy)∑

y′∈Y exp(ζy′)
.

Thus, we get

Ln(f) ≥ 1

n

n∑
i=1

{
1− exp(fyi(xi))∑

y′∈Y exp(fy′(xi))

}
=

1

2
‖∇fLn(f)‖Lc

1(νX
n ),

where we used equation (15) for the last equality.

The following is the proof for the main result in this study.

Proof for Corollary 1. We set fT = w>φT . From Proposition A, we get

Rn(φT ) = Ln(fT ) ≥ 1

2
‖∇fLn(fT )‖Lc

1(νX
n ).

Combining the inequality in Theorem 2, we get

‖∇fLn(fT )‖Lc
1(νX

n ) = 2Rn(φT )

≤ 2

(
R∗n +

C

T + t0

)
≤ 2

(
εn +

C

T + t0

)
. (21)

We next focus on the second term in the skeleton of generalization bound in Theorem 1. From the definition of
ηs, we have

T−1∏
s=t+1

(
1− ηs

2

)
=

T−1∏
s=t+1

s+ t0 − 1

s+ t0
=

t+ t0
T − 1 + t0

.
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Therefore, applying a norm bound on Ci = AiFi in Proposition 3 and Di = Gi, we see that,

2c3ΛwΛ∞
δ
√
n

(
1 +

T−1∑
t=0

ηtΛ
C
1 ΛD1

T−1∏
s=t+1

(
1− ηs

2

))
=

2c3ΛwΛ∞
δ
√
n

(
1 +

T−1∑
t=0

2ΛC1 ΛD1
T − 1 + t0

)

=
2c3ΛwΛ∞
δ
√
n

(
1 +

2TΛC1 ΛD1
T − 1 + t0

)
≤ 2c3ΛwΛ∞

δ
√
n

(
1 + 2ΛC1 ΛD1

)
≤ 2c3ΛwΛ∞

δ
√
n

(
1 +

8ΣwΛF1 ΛG1
√
K

γn

)
. (22)

Note that since t0 ≥ 2 and ΛC2 ΛD2 = 4ΣwΛF2 ΛG2
√
K/γn ≤ 1/2, we can apply Theorem 1. Thus, combining (21)

and (22) with Theorem 1, we get an explicit generalization bound and finish the proof.
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