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Abstract

Automatic methods for Neural Architecture
Search (NAS) have been shown to produce state-
of-the-art network models. Yet, their main draw-
back is the computational complexity of the
search process. As some primal methods opti-
mized over a discrete search space, thousands of
days of GPU were required for convergence. A
recent approach is based on constructing a differ-
entiable search space that enables gradient-based
optimization, which reduces the search time to a
few days. While successful, it still includes some
noncontinuous steps, e.g., the pruning of many
weak connections at once. In this paper, we pro-
pose a differentiable search space that allows the
annealing of architecture weights, while gradu-
ally pruning inferior operations. In this way, the
search converges to a single output network in
a continuous manner. Experiments on several vi-
sion datasets demonstrate the effectiveness of our
method with respect to the search cost and accu-
racy of the achieved model. Specifically, with
0.2 GPU search days we achieve an error rate of
1.68% on CIFAR-10.

1 Introduction

Over the last few years, deep neural networks highly suc-
ceed in computer vision tasks, mainly because of their au-
tomatic feature engineering. This success has led to large
human efforts invested in finding good network architec-
tures. A recent alternative approach is to replace the man-
ual design with an automated Network Architecture Search
(NAS) (Elsken et al., 2018). NAS methods have succeeded
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in finding more complex architectures that pushed forward
the state-of-the-art in both image and sequential data tasks.

One of the main drawbacks of some NAS techniques is
their large computational cost. For example, the search for
NASNet (Zoph et al., 2018) and AmoebaNet (Real et al.,
2018), which achieve state-of-the-art results in classifica-
tion (Huang et al., 2018), have required 1800 and 3150
GPU days respectively. On a single GPU, this corresponds
to years of training time. More recent search methods,
such as ENAS (Pham et al., 2018) and DARTS (Liu et al.,
2018b), reduced the search time to a few GPU days, while
not compromising much on accuracy. While this is a major
advancement, there is still a need to speed up the process
to make the automatic search affordable and applicable to
more problems.

In this paper we propose an approach that further reduces
the search time to a few hours, rather than days or weeks.
The key idea that enables this speed-up is relaxing the dis-
crete search space to be continuous, differentiable, and an-
nealable. For continuity and differentiability, we follow
the approach in DARTS (Liu et al., 2018b), which shows
that a continuous and differentiable search space allows for
gradient-based optimization, resulting in orders of mag-
nitude fewer computations in comparison with black-box
search, e.g., of (Zoph and Le, 2017; Real et al., 2018). We
adopt this line of thinking, but in addition we construct the
search space to be annealable, emphasizing strong connec-
tions during the search in a continuous manner. We back
this selection theoretically and demonstrate that an anneal-
able search space implies a more continuous optimization,
and hence both faster convergence and higher accuracy.

The annealable search space we define is a key factor to
both reducing the network search time and obtaining high
accuracy. It allows gradual pruning of weak weights, which
reduces the number of computed connections throughout
the search, thus, gaining the computational speed-up. In
addition, it allows the network weights to adjust to the ex-
pected final architecture, and choose the components that
are most valuable, thus, improving the classification accu-
racy of the generated architecture.
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Figure 1: Comparison of CIFAR-10 error vs search days of
top NAS methods. size and color are correlated with the
memory footprint.

We validate the search efficiency and the performance
of the generated architecture via experiments on multiple
datasets. The experiments show that networks built by
our algorithm achieve either higher or on par accuracy to
those designed by other NAS methods, even-though our
search requires only a few hours of GPU rather than days
or weeks. See for example results on CIFAR-10 in Fig. 1.
Specifically, searching for 4.8 GPU-hours on CIFAR-10
produces a model that achieves a mean test error of 1.68%.

2 Related Work

Architecture search techniques. A reinforcement learn-
ing based approach has been proposed by Zoph et al. for
neural architecture search (Zoph and Le, 2017). They use a
recurrent network as a controller to generate the model de-
scription of a child neural network designated for a given
task. The resulted architecture (NASnet) improved over the
existing hand-crafted network models at its time. An alter-
native search technique has been proposed by (Real et al.,
2017, 2018), where an evolutionary (genetic) algorithm
has been used to find a neural architecture tailored for a
given task. The evolved neural network (Real et al., 2018),
AmoebaNet, improved further the performance over NAS-
net. Although these works achieved state-of-the-art results
on various classification tasks, their main disadvantage is
the amount of computational resources they demanded.

To overcome this problem, new efficient architecture search
methods have been developed, showing that it is possible,
with a minor loss of accuracy, to find neural architectures
in just few days using only a single GPU. Two notable ap-
proaches in this direction are the differentiable architecture
search (DARTS) (Liu et al., 2018b) and the efficient NAS
(ENAS) (Pham et al., 2018). ENAS is similar to NAS-

net (Zoph et al., 2018), yet its child models share weights of
their shared operations from the large computational graph.
During the search phase child models performance are esti-
mated as a guiding signal to find more promising children.
The weight sharing significantly reduces the search time
since the child models performance are estimated with a
minimal fine-tune training.

In DARTS, the entire computational graph, which includes
repeating computation cells, is learned all together. At the
end of the search phase, a pruning is applied on connections
and their associated operations within the cells, keeping
those having the highest magnitude of their related archi-
tecture weights multipliers (which represents the connec-
tions’ strength). These architecture weights are learned in
a continuous way during the search phase. While DARTS
achieves good accuracy, our hypothesis is that the harsh
pruning which occurs only once at the end of the search
phase is sub-optimal and that a gradual pruning of connec-
tions can improve both the search efficiency and accuracy.

In YOSO (Zhang et al., 2018), they apply sparsity regular-
ization over architecture weights and in the final stage they
remove useless connections and isolated operations.

While both of these works (Xie et al., 2019; Zhang et al.,
2018) propose an alternative to the DARTS connections se-
lection rule, none of them managed to surpass its accuracy
on CIFAR-10. In our solution we improve both the accu-
racy and efficiency of the DARTS searching mechanism.

Neural networks pruning strategies. Many pruning tech-
niques exist for neural networks, since the networks may
contain meaningful amount of operations which provides
low gain (Han et al., 2015).

The methods for weight pruning can be divided into two
main approaches: pruning a network post-training and per-
forming the pruning during the training phase. In post-
training pruning the weight elimination is performed only
after the network is trained to learn the importance of the
connections in it (LeCun et al., 1990; Hassibi and Stork.,
1993; Han et al., 2015). One selection criterion removes the
weights based on their magnitude. The main disadvantage
of post-training methods is twofold: (i) long training time,
which requires a train-prune-retrain schedule; (ii) pruning
of weights in a single shot might lose some dependence be-
tween some of them that become more apparent if they are
removed gradually.

Pruning-during-training as demonstrated in (Zhu and
Gupta, 2017; Alvarez and Salzmann, 2017) helps to re-
duce the overall training time and get a sparser network.
In (Zhu and Gupta, 2017), a method for gradually prun-
ing the network has been proposed, where the number of
pruned weights at each iteration depends on the final de-
sired sparsity and a given pruning frequency. Another work
suggested a compression aware method that encourages the



Noy, Nayman, Ridnik, Zamir, Doveh, Friedman, Giryes, Zelnik-Manor

weight matrices to be of low-rank, which helps in pruning
them in a second stage (Alvarez and Salzmann, 2017).

In the context of neural architecture search, XNAS (Nay-
man et al., 2019) suggested a ’Wipeout’ mechanism for dy-
namic pruning of network connections with relatively poor
performance, leading to faster and improved convergence.

3 Method
Our goal is to design an efficient algorithm for architecture
search. We start by defining a differentiable search space
that allows gradient-based optimization. A key characteris-
tic of the search space we define is allowing for annealing
of architecture weights.

Annealing of the architecture weights and pruning weak
ones is a key for converging to a single architecture. How-
ever, too fast annealing schedule or too strict pruning policy
could end with convergence to inferior architectures.
We provide a theory for selecting the critical combination
of annealing schedule and pruning policy, which guaran-
tees that the pruning will not affect the quality of the final
cell, as only inferior operations will be pruned along the
search. Selecting a combination according to the theory
will provide the advantages of annealing and pruning, con-
verging to a better architecture, faster.

This theory provides us with some insights as to the impor-
tance of using an annealing schedule. Yet, as it requires a
relatively slow schedule for the guarantees in it, we suggest
afterwards another gradual pruning schedule that empiri-
cally leads to faster convergence in the network search.

3.1 ASAP: Architecture Search, Anneal and Prune

Our approach can be viewed as a generalization of
DARTS (Liu et al., 2018b) into an annealable search space.
The key idea behind DARTS is the definition of a contin-
uous search space that facilitates the definition of a differ-
entiable training objective. DARTS continuous relaxation
scheme leads to an efficient optimization and a fast conver-
gence in comparison to previous solutions.

The architecture search in DARTS focus on finding a re-
peating structure in the network, which is called cell. They
follow the observation that modern neural networks consist
of one or few computational blocks (e.g. res-block) that are
stacked together to form the final structure of the network.
While a network might have hundreds of layers, the struc-
ture within each of them is repetitive. Thus, it is enough
to learn one or two structures, which is denoted as cell, to
design the whole network.

A cell is represented as a directed acyclic graph, consisting
of an ordered sequence of nodes. Every node x(i) is a fea-
ture map and each directed connection (i, j) is associated
with some operation o(i,j) ∈ O that transforms x(j) and
connects it to x(i). Intermediate nodes are computed based

on their predecessors,

x(i) =
∑
j<i

o(i,j)
(
x(j)

)
(1)

In particular, in DARTS, they search for two types of cells:
normal and reduction. In normal cells the operations pre-
serve the spatial dimensions, while in reduction cells the
operations adjacent to the input nodes are of stride two, so
the spatial dimensions at the output are halved.

The goal of the search phase is to select the operations
o(i,j) which yield an overall architecture with the best per-
formance. There are seven candidate operations: 3x3 and
5x5 separable and dilated separable convolutions, 3x3 max-
pooling, 3x3 average-pooling and an identity.

This scheme does not encourage convergence towards
a reasonably sized architecture, and produces an over-
parametrized network. Therefore, hard pruning is applied
over the network connections in order to derive the final
child network. As shown in (Xie et al., 2019), this intro-
duces a relaxation bias that could result in a significant
drop in accuracy between the un-pruned network and the
final child network.

To overcome this limitation we define a search space that
allows gradual pruning via annealing. Our search con-
verges gradually to the final child network without requir-
ing a hard thresholding at the end of the search.

We construct an architecture by stacking normal and re-
duction cells, similarly to DARTS and ENAS. Also here,
we connect nodes using the a mixed operation ō(i,j) edge.
Yet, now we allow architecture weights annealing in it via
a temperature parameter T :

ō(i,j)(x;T ) =
∑
o∈O

Φo(α
(i,j);T ) · o(x) (2)

where α(i,j)
o is the architecture weight associated with op-

eration o ∈ O at edge (i, j), and Φo forms a probability
distribution. The function Φo should be designed such that
it guides the optimization to select a single operation out of
the mixture in a finite time. Initially Φo should be a uni-
form distribution, allowing consideration of all the opera-
tions. As the iterations continue the temperature is reduced
and Φo should converge into a degenerated distribution that
selects a single operation. Mathematically, this implies that
Φo should be uniform for T → ∞, and sparse for T → 0.
Thus, we select the following probability distribution,

Φo(α
(i,j);T ) =

exp
{
α(i,j)
o

T

}
∑
o′∈O exp

{
α

(i,j)

o′
T

} (3)

This definition is closely related to the Gibbs-Boltzmann
distribution, where the weights α(i,j)

o correspond to neg-
ative energies, and operations o(i,j) to mixed system
states (Van Laarhoven and Aarts, 1987).
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Figure 2: An illustration of our gradual annealing and prun-
ing algorithm for architecture search depicted for a cell in
the architecture. An annealing schedule is applied over ar-
chitecture weights (top-left), which facilitates fast and con-
tinuous pruning of connections (right).

The architecture weights are updated via gradient descent,

αk ← αk − η∇αkLval
∇αkLval = Φok(α;T ) [∇ōLval · (ok − ō)] (4)

Note, that DARTS forms a special case of our approach
when setting a fixed T = 1. A key challenge here is how
to select T . Hereafter in Section 3.2, we provide a theory
for selecting it followed by a heuristic annealing schedule
strategy to further speed up the convergence of our search.
In the experiments we show its effectiveness.

We summarize our algorithm for Architecture Search, An-
neal, and Prune (ASAP), outlined in Algorithm 1 and visu-
alized in Figure 2. ASAP anneals and prunes the connec-
tions within the cell in a continuous manner, leading to a
short search time and an improved cell structure. It starts
with a few “warm-up” iterations for reaching well-balanced
weights. Then it optimizes over the network weights while
pruning weak connections, as described next.

At initialization, network weights are randomly set. This
could result in a discrepancy between parameterized op-
erations (e.g. convolution layers) and non-parameterized
operations (e.g. pooling layers). Applying pruning at this
stage with imbalanced weights could lead to wrong prema-
ture decisions. Therefore, we start with performing a num-
ber of gradient-descent based optimization steps over the
network-weights only, without pruning, i.e. grace-cycles.
We denote the number of these cycles by τ .

Once this warm-up ends, we perform a gradient-descent
based optimization for the architecture-weights, in an alter-
nating manner (with the updates ofα), after every network-

weights optimization. Throughout this iterative process,
the temperature T decays according to a predefined anneal-
ing schedule. Operations are pruned if their corresponding
architecture-weights go below a pruning threshold θ, which
is updated along the iterations. The process ends once we
meet a stopping criterion. In our current implementation
we used a simple criterion that stops when we reach a sin-
gle operation per mixed operation. Other criteria could be
easily adopted as well.

3.2 Annealing Schedule and Thresholding Policy

We now turn to describe the annealing schedule that de-
termines the temperature T through time and the threshold
policy governing the updates of θ. This choice is dom-
inated by a trade-off. On the one hand, pruning-during-
training simplifies the optimization objective and reduces
the complexity, assisting the network to converge and re-
ducing overfitting. In addition, it accelerates the search pro-
cess, since pruned operations are removed from the opti-
mization. This encourages the selection of fast temperature
decay and a harsh thresholding. On the other hand, pre-
mature pruning of operations during the search could lead
to a sub-optimal child network. This suggests we should
choose a slow temperature decay and a soft thresholding.

To choose schedule and policy that balance this trade-off,
we suggest Theorem 2 that provides a functional form for
(Tt, θt). It views the pruning performed as a selection prob-
lem, i.e., pruning all the inferior operations, such that the
ones with the highest expected architecture weight remains,
in a setup where only the empirical value is measured. The
theorem guarantees under some assumptions with a high
probability, that Algorithm 1 prunes inferior operations out
of the mixed-operation along the run (lines 7-8) and out-
puts the best operation (line 14)). More formally, we fol-
low Definition 1 of [10] and prove that Algorithm 1 is a
(ε, δ)-Probably Approximately Correct (PAC) algorithm.

Definition 1 ((ε, δ)-PAC) An algorithm that outputs an ε-
optimal operation with probability of at least 1−δ is (ε, δ)-
PAC.

In our case, we are able to prove that with high probability
Algorithm 1 outputs the best operation, that is ε = 0.

Theorem 2 Assuming∇αt,iLval(ω,α;Tt) is independent
through time and bounded by L in absolute value for all t
and i, then Algorithm 1 with a threshold policy,

θt = νte
−t (5)

νt ∈ Υ =

{
νt | νt ≥ 0; lim

t→∞

log (νt)

t
= 0

}
(6)

and an annealing schedule,
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T (t) = ηLρt

√
8

t
log

(
π2Nt2

3δ

)
(7)

ρt =
t

t+ log
(

1
Nνt

) (8)

is (0, δ)-PAC.

In other words, the theorem shows that with a proper an-
nealing and thresholding the algorithm has a high likeli-
hood to prune only sub-optimal operations. A proof sketch
appears below in Section 3.3. The full proof is deferred to
the supplementary material.

While these theoretical results are strong, the critical sched-
ule they suggest is rather slow, because PAC bounds tend
to be overly pessimistic in practice. Therefore, for practical
usage we suggest a more aggressive schedule. It is based
on observations explored in Simulated Annealing, which
shares a similar tradeoff between the continuity of the op-
timization process and the time required for deriving the
solution (Busetti, 2003). Among the many alternatives we
choose the exponential schedule:

T (t) = T0β
t, (9)

which has been shown to be effective when the optimiza-
tion steps are expensive, e.g. (Ingber, 1989; Nourani and
Andresen, 1998; Kirkpatrick et al., 1983). This schedule
starts with a relatively high temperature T0 and decays fast.
As for the pruning threshold, we chose the simplest solu-
tion of a fixed value Θ ≡ θ0. We demonstrate the effective-
ness of our choices via experiments in Section 4.

Algorithm 1 ASAP for a single Mixed Operation
1: Input: Operations oi ∈ O i ∈ {1, .., N},

Annealing schedule Tt,
Grace-temperature τ ,
Threshold policy θt,

2: Init: αi ← 0, i ∈ {1, .., N}.
3: while |O| > 1 do
4: Update ω by descent step over∇ωLtrain(ω,α;Tt)
5: if Tt < τ then
6: Update α by descent step over∇αLval(ω,α;Tt)
7: for each oi ∈ O such that Φoi (α;Tt) < θt do
8: O = O \ {oi}
9: end for

10: end if
11: Update Tt
12: Update θt
13: end while
14: return O

3.3 Theoretical Analysis

The proof of the theorem relies on two main steps: (i) Re-
ducing the algorithm to a Successive-Elimination method

(Even-Dar et al., 2006), and (ii) Bounding the probability
of deviation of α from its expected value. We sketch the
proof using Claim 1 and Theorem 3 below.

Claim 1 The pruning rule (Step 7) in Algorithm 1 is equiv-
alent to pruning oi ∈ O at time t if,

αt,i
t

+ βt <
α∗t
t
− βt, (10)

where α∗t = maxi {αt,i} and βt = Tt
2ρt

.

Although involving the empirical values of α, the condi-
tion in Claim 1 avoids the pruning of the operation with
the highest expected α. For this purpose we bound the
probability for the deviation of each empirical α from its
expected value by the specified margin βt. We provide
Theorem 3, which states that for any time t and operation
oi ∈ O, the value of αt,it is within βt of its expected value
ᾱt,i
t = 1

t

∑t
s=1 E [gs,i], where,

gt,i = −η∇αt,iLval(w,α;Tt) ∈ [−ηL, ηL]. (11)

Theorem 3 For any time t and operation {oi}Ni=1 ∈ O, we
have,

P
{

1

t
|αt,i − ᾱt,i| ≤ βt

}
≥ 1− δ

N
. (12)

Requiring this to hold for all the N operations, we get that
the probability of pruning the best operation is below 1−δ.
Choosing an annealing schedule and threshold policy such
that βt goes to zero as t increases, guarantees that eventu-
ally all operations but the best one are pruned. This leads to
the desired result. Full proofs appear in the supplementary
material.

4 Experiments
To show the effectiveness of ASAP we test it on common
benchmarks and compare to the state-of-the-art. We exper-
imented on the popular benchmarks, CIFAR-10 and Ima-
geNet, as well as on five other classification datasets, for
providing a more extensive evaluation. In addition, we
explore alternative pruning methods and compare them to
ASAP.

4.1 Architecture Search on CIFAR-10

We search on CIFAR-10 for convolutional cells in a small
parent network. Then we build a larger network by stacking
the learned cells, train it on CIFAR-10 and compare the
results against common NAS methods.

We create the parent network by stacking 8 cells with ar-
chitecture weights sharing. Each cell contains 4 ordered
nodes, each of which is connected via mixed operations to
all previous nodes in the cell and also to the two previous
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Figure 3: Relative epoch duration during search and model
1−sparsity vs epoch number. The dotted line represents
grace cycles.

cells’ outputs. The output of a cell is a concatenation of the
outputs of all the nodes within the cell.

The search phase lasts until each mixed operation is fully
pruned, or until we reach 50 epochs. We use the first-order
approximation (Liu et al., 2018b), relating to α and ω as
independent thus can be optimized separately. The train
set is divided into two parts of equal sizes: one is used for
training the operations’ weightsω and the other for training
the architecture weights α.

For the gradual annealing, we use Equation 9 with an initial
temperature of T0 = 1.3 and an epoch decay factor of β =
0.95, thus T ≈ 0.1 at the end of the search phase. Consid-
ering we have N possible operations to choose from in a
mixed operation, we set our pruning threshold to θt ≡ 0.4

N .
Other hyper-parameters follow (Liu et al., 2018b).

As the search progresses, continuous pruning reduces the
network size. With a batch size of 96, one epoch takes 5.8
minutes in average on a single GPU1, summing up to 4.8
hours in total for a single search.

Figure 3 illustrates an example of the epoch duration and
the network sparsity (1 minus the relative part of the pruned
connections) during a search. The smooth removal of con-
nections is evident. This translates to a significant de-
crease in an epoch duration along the search. Note that the
first five epochs are grace-cycles, where only the network
weighs are trained as no operations are pruned. Figures 4
and 5 show our learned normal and reduction cells, respec-
tively.

1Experiments were performed using a NVIDIA GTX 1080Ti
GPU.

Figure 4: ASAP learned normal cell on CIFAR-10.

Figure 5: ASAP learned reduction cell on CIFAR-10.

4.2 CIFAR-10 Evaluation Results

We built the evaluation network by stacking 20 cells, 18
normal cells and 2 reduction cells. We place the reduction
cells after 1/3 and 2/3 of the network, where after each re-
duction we double the amount of channels in the network.
We trained the network for 1500 epochs using a batch size
of 128 and SGD optimizer with nesterov-momentum. Our
learning rate regime was composed of 5 cycles of power
cosine annealing learning rate (Hundt et al., 2019), with
amplitude decay factor of 0.5 per cycle. For regulariza-
tion we used cutout (DeVries and Taylor, 2017), auxiliary
towers (Szegedy et al., 2015), scheduled drop-path (Lars-
son et al., 2016), label smoothing, AutoAugment (Cubuk
et al., 2018) and weight decay. To understand the effect
of the network size on the final accuracy, we chose to test
3 architecture configurations with 36, 44 and 50 initial net-
work channels, which we named respectively ASAP-Small,
ASAP-Medium and ASAP-Large.

Table 1 shows the performance of our learned models com-
pared to other state-of-the-art NAS methods. Figure 1 pro-
vides an even more comprehensive comparison in a graph-
ical manner.

Table 1 and Figure 1 show that our ASAP based network
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Architecture Test
error(%)

Param
(M)

Search
cost↓

AmoebaNet-A (Real et al., 2018) 3.34 ± 0.06 3.2 3150
AmoebaNet-B (Real et al., 2018) 2.55 ± 0.05 2.8 3150
NASNet-A (Zoph et al., 2018) 2.65 3.3 1800
PNAS (Liu et al., 2018a) 3.41 3.2 150
SNAS (Xie et al., 2019) 2.85 ± 0.02 2.8 1.5
DSO-NAS (Zhang et al., 2018) 2.95 ± 0.12 3 1
PARSEC (Casale et al., 2019) 2.81 ± 0.03 3.7 1
DARTS(2nd) (Liu et al., 2018b) 2.76 ± 0.06 3.4 1
PC-DARTS (Laube, 2019) 2.51± 0.09 4.0 0.82
DARTS+ (Liang et al., 2019) 2.37± 0.13 4.3 0.6
ENAS (Pham et al., 2018) 2.89 4.6 0.5
DARTS(1nd) (Liu et al., 2018b) 2.94 2.9 0.4
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3
DARTS(1nd) (Liu et al., 2018b) 2.94 2.9 0.4
NAONet-WS (Luo et al., 2018) 3.53 2.5 0.3
ASAP-Small 1.99 2.5 0.2
ASAP-Medium 1.75 3.7 0.2
ASAP-Large 1.68 6.0 0.2

Table 1: Classification errors of ASAP compared to state-
of-the-art NAS methods on CIFAR-10. The Search cost is
measured in GPU days.

outperforms previous state-of-the-art NAS methods, both
in terms of the classification error and the search time.

4.3 Transferability Evaluation

Using the cell found by ASAP search on CIFAR-10, we
preformed transferability tests on 6 popular classification
benchmarks: ImageNet, CINIC10, Freiburg, CIFAR-100,
SVHN and Fashion-MNIST (FMNIST).

ImageNet For testing ASAP cell transferability perfor-
mance on larger datasets, we experimented on the popular
ImageNet dataset (Deng et al., 2009). The network was
composed of 14 stacked cells, with two initial stem cells.
We used 50 initial channels, so the total number of network
FLOPs is below 600[M], similar to other ImageNet archi-
tectures with small computation regime(Liu et al., 2018b).
We trained the network for 250 epochs using a nesterov-
momentum optimizer. The results are presented in Table 2.
It can be seen that the cell found by ASAP transfers well
to ImageNet - accuracy second only to (Real et al., 2018),
with significant faster search time.

Other classification datasets We further extend our trans-
ferability testing by training our ASAP cell and other
top published NAS cells on 5 additional benchmarks:
CINIC10, Freiburg, CIFAR-100, SVHN and Fashion-
MNIST. Datasets details appear in 6.2.2. For a fair com-
parison, we trained all of the cells using the publicly avail-
able DARTS training code 2, with exactly the same network
configuration and hyperparameters, except from the cell it-
self. Results are presented in Table 2.

Table 2 shows that our ASAP cell transfers well to other

2https://github.com/quark0/darts

computer vision datasets, surpassing all other NAS cells
in four out of five datasets tested, while having the lowest
search cost. In addition, note that on two datasets, CINIC-
10 and FREIBURG, our ASAP network accuracy is better
than previously known state-of-the-art.

4.4 Other Pruning Methods

In addition to comparisons to other SotA algorithms,
we also evaluate alternative pruning-during-training tech-
niques. We select two well known pruning approaches and
adapt those to the neural architecture search framework.
The first approach is magnitude based. It naively cuts con-
nections with the smallest weights, as is the practice in
some network pruning strategies, e.g. (Han et al., 2015;
Zhu and Gupta, 2017) (as well as in (Liu et al., 2018b), yet
with a harsh single pruning-after-training step). The sec-
ond approach (Lis, 2018) prunes connections with the low-
est accumulated absolute value of the gradients of the loss
with respect toα. Our evaluation is based on the number of
operations to prune in each step, according to the formula
suggested in (Zhu and Gupta, 2017):

st = sf + (si − sf )

(
1− t− t0

n∆t

)p
(13)

where p ∈ {1, 3}, t ∈ {t0, t0 + ∆t, ..., t0 + n∆t}, sf is
the final desired sparsity (the fraction of pruned weights),
si is the initial sparsity, which is 0 in our case, t0 is the
iteration we start the pruning at, and Ef = t0 + n∆t is the
total number of iterations used for the search. For p = 1
the pruning rate is constant, while for p = 3 it decreases.
The evaluation was performed on CIFAR-10 with t0 = 20
and Ef in the range from 50 to 70. Table 3 presents the
results. We can see from Table 3 that both pruning methods
achieved lower accuracy than ASAP on CIFAR-10, with a
larger memory footprint.

4.5 Search Process Analysis
In this section we wish to provide further insights as to
why ASAP leads to a higher accuracy with a lower search
time. To do that we explore two properties along the iter-
ative learning process: the validation accuracy and the cell
entropy. We compare ASAP to two other efficient meth-
ods: DARTS (Liu et al., 2018b), and the reinforcement-
learning based ENAS (Pham et al., 2018). We further com-
pare to the pruning alternative based on accumulated gra-
dients described in Section 4.4, as it achieved better results
on CIFAR-10 them magnitude pruning, as shown in Table
3. We compare with both p ∈ {1, 3}.

Figure 6 presents the validation accuracy along the archi-
tecture search iterations. ENAS achieves low and noisy ac-
curacy along the search, inferior to all differentiable-space
based methods. DARTS accuracy climbs nicely across iter-
ations, but then significantly drops at the end of the search
due to the relaxation bias following the harsh prune. The
pruning-during-training methods suffer from perturbations
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Architecture CINIC-10
Error(%)

FREIBURG
Error(%)

CIFAR-100
Error(%)

SVHN
Error(%)

FMNIST
Error(%)

ImageNet
Error(%)

Search
cost ↓

Known SotA 8.6 21.1 8.7 1.02 3.65 15.7 -
AmoebaNet-A 7.18 11.8 15.9 1.93 3.8 24.3 3150
NASNet 6.93 13.4 15.8 1.96 3.71 26.0 1800
PNAS 7.03 12.3 15.9 1.83 3.72 25.8 150
SNAS 7.13 14.7 16.5 1.98 3.73 27.3 1.5
DARTS-Rev1 7.05 11.4 15.8 1.94 3.74 26.9 1
DARTS-Rev2 6.88 10.8 15.7 1.85 3.68 26.7 1
ASAP 6.83 10.7 15.6 1.81 3.73 24.4 0.2

Table 2: Transferability classification error of ASAP, compared to top NAS cells, on several vision classification datasets.
Error refers to top-1 test error. Search cost is measured in GPU days. Known state of the art results: CINIC-10 (Darlow
et al., 2018) FREIBURG (Jund et al., 2016), CIFAR-100 (Huang et al., 2018), SVHN (Cubuk et al., 2018), FMNIST (Zhong
et al., 2017), and ImageNet (Huang et al., 2018).

Figure 6: Search validation accuracy for ENAS, DARTS,
ASAP and Accum-Grad over time (scaled to [0, 1]).

Figure 7: The total normalized entropy during search of
normal and reduction cells for ENAS, DARTS, ASAP
and Accum-Grad vs the time scaled to [0, 1].

Architecture type Test error
Top-1(%)

Params
(M)

DARTS(2st) 2.76 3.4
Magnitude prune 2.9 4.4
Accum-Grad prune 2.76 4.3
ASAP-Small 1.99 2.5

Table 3: Comparison of pruning methods on CIFAR-10.

in accuracy following pruning, however, ASAP’s perturba-
tions are frequent and smaller, as its architecture-weights
which get pruned are insignificant. Its validation accu-
racy quickly recovers due to the continuous annealing of
weights. Therefore, With reduced network complexity, it
achieves the highest accuracy at the end. Figure 7 illus-
trates the average cell entropy over time, averaged across
all the mixed operations within the cell, normalized by
ln (|O|). While the entropy of DARTS and ENAS re-
main high along the entire search, the entropy of the prun-
ing methods decrease to zero as those do not suffer from
a relaxation bias. The high entropy of DARTS when fi-
nal prune is done leads to a quite arbitrary selection of a

child model, as top architecture weights are of compara-
ble value. It can be seen that the entropy of ASAP de-
creases gradually, hence allowing efficient optimization in
the differentiable-annealable space. This provides further
motivation to the advantages of ASAP.

5 Conclusion

In this paper we presented ASAP, an efficient state-of-the-
art neural architecture search framework. The key contribu-
tion of ASAP is the annealing and gradual pruning of con-
nections during the search process. This approach avoids
hard pruning of connections that is used by other meth-
ods. The gradual pruning decreases the architecture search
time, while improving the final accuracy due to smoother
removal of connections during the search phase.

On CIFAR-10, our ASAP cell outperforms other published
cells, both in terms of search cost and in terms of test er-
ror. We also demonstrate the effectiveness of ASAP cell by
showing good transferability quality compared to other top
NAS cells on multiple computer vision datasets.
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