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Abstract

We revisit the structure learning problem for
dynamic Bayesian networks and propose a
method that simultaneously estimates contem-
poraneous (intra-slice) and time-lagged (inter-
slice) relationships between variables in a
time-series. Our approach is score-based, and
revolves around minimizing a penalized loss
subject to an acyclicity constraint. To solve
this problem, we leverage a recent algebraic
result characterizing the acyclicity constraint
as a smooth equality constraint. The result-
ing algorithm, which we call DYNOTEARS,
outperforms other methods on simulated data,
especially in high-dimensions as the number
of variables increases. We also apply this al-
gorithm on real datasets from two di↵erent
domains, finance and molecular biology, and
analyze the resulting output. Compared to
state-of-the-art methods for learning dynamic
Bayesian networks, our method is both scal-
able and accurate on real data. The simple
formulation and competitive performance of
our method make it suitable for a variety of
problems where one seeks to learn connections
between variables across time.

1 Introduction

Graphical models are a popular approach to under-
standing large datasets, and provide convenient, inter-
pretable output that is needed in today’s high stakes ap-
plications of machine learning and artificial intelligence.
In particular, with the growing need for interpretable

†
Contributed during an internship at QuantumBlack. Pro-

ceedings of the 23
rd
International Conference on Artificial

Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.

PMLR: Volume 108. Copyright 2020 by the author(s).

models and causal insights about an underlying process,
directed acyclic graphs (DAGs) have shown promise in
many applications. The edges in a DAG provide users
with important clues about the relationship between
variables in a system. When these edges are not known
based on prior knowledge, it is necessary to resort to
structure learning, namely, the problem of learning the
edges in a graphical model from data. Broadly speak-
ing, structure learning can be divided into static (i.e.
equilibrium) and dynamic models, the latter of which
explicitly model temporal dependencies. Static models
make sense for independent and identically distributed
data. Many applications, however, exhibit strong tem-
poral fluctuations that we are interested in modeling
explicitly. The problem of learning graphical structures
from temporal data collected from dynamic systems
has received significant attention from the machine
learning (Koller and Friedman, 2009), econometrics
(Lütkepohl, 2005), and neuroscience (Rajapakse and
Zhou, 2007) communities.

In this paper, we revisit the problem of learn-
ing dynamic Bayesian networks (DBNs) (Dean and
Kanazawa, 1989; Murphy, 2002) from data. DBNs
have been used successfully in a variety of domains
such as clinical disease prognosis (Van Gerven et al.,
2008; Zandonà et al., 2019), gene regulatory network
(Linzner et al., 2019), facial and speech recognition
(Meng et al., 2019; Nefian et al., 2002), neuroscience
(Rajapakse and Zhou, 2007), among others. DBNs
are the standard approach to modeling discrete-time
temporal dynamics in directed graphical models. In
econometrics, they are also known as structural vector
autoregressive (SVAR) models (Demiralp and Hoover,
2003; Swanson and Granger, 1997).

We propose a simple, score-based approach for learning
these models that scales gracefully to high-dimensional
datasets. To accomplish this, we cast the problem as
an optimization problem (i.e. score-based learning),
and use standard second-order optimization schemes
to solve the resulting program. Our approach is based
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on the recent algebraic characterization of acyclicity
in directed graphs from Zheng et al. (2018), which
makes the formulation simple and amenable to di↵erent
modeling choices.

Contributions The main contributions of this paper
are the following:
• We develop a score-based approach to learning
DBNs and use standard optimization routines to
optimize the resulting program. The resulting
method, which we call DYNOTEARS, can be used
to learn time series of arbitrary order, without
any implicit assumptions on the underlying graph
topologies such as bounded in-degree or treewidth.

• We validate our approach with extensive simula-
tion experiments, exhibiting the accuracy of our
approach in learning both intra-slice and inter-slice
relationships in dynamic models.

• We apply our method to two real datasets: A
financial dataset consisting of daily stock returns
(d = 97) and the DREAM4 dataset (d = 100)
(Marbach et al., 2009). These examples illustrate
the importance of modeling both temporal trends
as well as steady state relationships and achieve
competitive accuracy among other DBN methods.

The resulting method simultaneously achieves three
important goals: 1) Accuracy on high-dimensional data
with d > n, which allows for application to real world
data 2) Robustness to complex graph topologies, and
3) A simple, plug-n-play algorithm for learning based
on black-box optimization.

Related work There are many methods for learn-
ing DBNs in the literature. Some approaches ignore
contemporaneous dependencies and recover only time-
lagged relationships (Haufe et al., 2010; Song et al.,
2009). Others learn both types of relationships in-
dependently (Haufe et al., 2010; Song et al., 2009).
Many methods follow a two-step approach of first learn-
ing inter-slice weights and then estimating intra-slice
weights from the residuals from the first step (Chen and
Chihying, 2007; Hyvärinen et al., 2010; Moneta et al.,
2011). There are also hybrid algorithms that combine
conditional-independence tests and local search to im-
prove the score (Malinsky and Spirtes, 2018, 2019).
While all of these methods can achieve good structure
recovery on small graphs, they su↵er from the curse of
dimensionality. More discussion and comparison can be
found in Section 2.3. There is also an extensive litera-
ture on learning SVAR models in the econometrics and
statistics literature (Demiralp and Hoover, 2003; Lanne
et al., 2017; Reale and Wilson, 2001, 2002; Swanson
and Granger, 1997; Tank et al., 2019).

Since algorithms for learning DBNs typically rely in-
ternally on calling methods for learning static BNs, it
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Figure 1: Illustration of intra-slice (solid lines) and
inter-slice (dashed lines) dependencies in a DBN with
d = 3 nodes and autoregression order p = 2. For clarity,
we display edges that do not influence the variables at
time t in a lighter shade.

is worth briefly reviewing this here. These methods
can be classified into constraint-based methods and
score-based methods, as well as hybrid methods that
combine these two approaches. Constraint-based meth-
ods use conditional independence tests to recover the
Markov equivalence class of DAGs under the assump-
tion of faithfulness (e.g. Colombo et al., 2012; Spirtes
and Glymour, 1991). While this yields fast algorithms,
these methods are sensitive to the underlying graph
structure and su↵er from error propagation (Spirtes,
2010). Score-based methods, on the other hand, use
a score function to find the best DAG that fits the
given data (e.g. Heckerman et al., 1995; Chickering,
2002; Bouckaert, 1993). Examples of scores include
the BIC, BDe, and BDeu (Spirtes et al., 2000). Score-
based methods are computationally expensive due to
the acyclicity constraint and the vast number of DAGs
to search over (Robinson, 1977). The recent work of
Zheng et al. (2018) expresses the acyclicity of a DAG by
a smooth equality constraint, which makes it possible to
formulate structure learning as a smooth minimization
problem subject to this equality constraint.

2 Dynamic Structure Learning

2.1 Formulation

Consider M independent realizations of a station-
ary time series, with the mth time series given by
{xm,t}t2{0,...,T} for xm,t 2 Rd, where d represents the
number of variables in the dataset. We assume that
variables influence each other in both a contemporane-
ous and a time-lagged manner, as illustrated in Figure 1.
We call these intra-slice and inter-slice dependencies,
respectively.

We model the data using the following standard SVAR
model (Demiralp and Hoover, 2003; Kilian, 2011; Swan-
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son and Granger, 1997):

x
>
m,t = x

>
m,tW+x

>
m,t�1A1+. . .+x

>
m,t�pAp+z

>
m,t (1)

for t 2 {p, . . . , T} and for all m 2 {1, . . . ,M}, where
p is the autoregressive order, and zm,t is a vector of
centered error variables, which are independent within
and across time. The error variables are not assumed
to be Gaussian. Extensions to nonlinear models are
also possible, but not explored here, see Section 5 for
more discussion.

The matrices W and Ai (i 2 {1, . . . , p}) represent
weighted adjacency matrices with nonzero entries cor-
responding to the intra-slice and inter-slice edges, re-
spectively. When W is acyclic, as we will assume
throughout this paper, these matrices parametrize a
DBN. We also assume that this network structure is
constant across time. This allows us to write Equa-
tion (1) in matrix form as

X = XW +Y1A1 + . . .+YpAp + Z, (2)

where X is an n⇥ d matrix whose rows are x
>
m,t, and

the matrices Y1, . . . ,Yp are time-lagged versions of X.
The number n of rows is our e↵ective sample size, and
we have n = M(T + 1� p).

Let Y = [ Y1 | · · · | Yp ] be the n⇥pd matrix of time-
lagged data. Additionally, let A = [ A>

1 | · · · | A>
p ]>

be the pd⇥ d matrix of inter-slice weights. With this
notation, the SEM in (2) takes the compact form:

X = XW +YA+ Z . (3)

This general formulation makes it possible to consider
scenarios in which the time-lagged data matrix Y does
not necessarily cover a contiguous sequence of time
slices (i.e., from t� p to t� 1). For instance, in time
series that exhibit known seasonality patterns, one can
include in the lagged data matrix Y only those time
points that have an impact on the variables at time t.

Identifiability Identifiability in SVAR models is a
central topic of the econometrics literature (see Kil-
ian, 2011 for a review). Identifiability of A follows
from standard results on vector autoregressive (VAR)
models, whereas identifiability of W is more di�cult
to establish. We focus on two special cases where
identifiability holds:

• The errors zm,t are non-Gaussian. Identifiabil-
ity in this model is a well-known consequence
of Marcinkiewicz’s theorem on the cumulants
of the normal distribution (Kagan et al., 1973;
Marcinkiewicz, 1939) and independent component
analysis (ICA), see Hyvärinen et al. (2010); Lanne
et al. (2017); Moneta et al. (2011).

• The errors zm,t are standard Gaussian, i.e. zm,t ⇠
N (0, I). Identifiability of this model is an imme-
diate consequence of Theorem 1 of Peters and
Bühlmann (2013) and the acyclicity of W.

In what follows, we assume that one of these two con-
ditions on zm,t holds.

2.2 Optimization problem

Given the data X and Y, our goal is to estimate
weighted adjacency matrices W and A that correspond
to DAGs. The edges in A go only forward in time and
thus they do not create cycles. In order to ensure
that the whole network is acyclic, it thus su�ces to
require that W is acyclic. Minimizing the least-squares
loss with the acyclicity constraint gives the following
optimization problem:

min
W,A

`(W,A) s.t. W is acyclic , (4)

where `(W,A) =
1

2n
kX�XW �YAk2F .

To enforce the sparsity of W and A, we also intro-
duce `1 penalties in the objective function. Let the
regularized optimization problem be

min
W,A

f(W,A) s.t. W is acyclic , (5)

with f(W,A) = `(W,A) + �WkWk1 + �AkAk1 ,

where k·k1 stands for the element-wise `1 norm. Regu-
larization is especially useful in cases with much fewer
samples than variables, n ⌧ d. For example, for static
BNs, the least-squares loss has been shown to be con-
sistent in high-dimensional settings for learning DAGs
(van de Geer et al., 2013; Aragam et al., 2015).

The key di�culty in solving the optimization problem
(5) is the acyclicity constraint on W. To deal with this,
we use an equivalent formulation of acyclicity via the
trace exponential function, due to Zheng et al. (2018).
They show that the function h(W) = tr eW�W � d
satisfies h(W) = 0 if and only if W is acyclic. Here, �
denotes the Hadamard product of two matrices. Re-
placing the acyclicity constraint in (5) with the equality
constraint h(W) = 0, the resulting equality constrained
program can be solved as in Zheng et al. (2018), using
the augmented Lagrangian method. This translates
the problem to a series of unconstrained problems of
the form

min
W,A

F (W,A) (6)

where F is the following smooth augmented objective:

F (W,A) = f(W,A) +
⇢

2
h(W)2 + ↵h(W) . (7)

By writing W = W+ �W� such that W+ � 0 and
W� � 0 (and analogously for A), we transform (6) to
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a quadratic program with non-negative constraints and
twice the number of variables. The resulting problem
can be solved using standard solvers such as L-BFGS-B
(Zhu et al., 1997).

Following Zheng et al. (2018), in order to reduce the
e↵ect of numerical error from computing h(W), we
eliminate weights close to 0 by thresholding the entries
of W and A. Overall, DYNOTEARS has 4 hyper-
parameters: the regularization constants �W and �A,
and the weight thresholds ⌧W and ⌧A.

2.3 Alternative formulations

An alternative approach to jointly minimizing (6) over
(W,A) is to use a two-stage optimization procedure,
similar to those in Chen and Chihying (2007); Demiralp
and Hoover (2003); Hyvärinen et al. (2010). We can
rewrite Equation (2) as the structural VAR (SVAR)

XA0 = Y1A1 + . . .+YpAp + Z , (8)

where A0 = I � W. With the acyclicity constraint,
W can be written as an upper triangular matrix. It
follows that A0 has full rank and is invertible. Right-
multiplying (8) by A

�1
0 gives

X = Y1B1 + . . .+YpBp + e , (9)

where Bi = AiA
�1
0 (i 2 {1, . . . , p}) and e = ZA

�1
0 is

a noise term whose elements are correlated (for fixed t).
Equation (9) is now a reduced-form VAR that we can
fit using least-squares (Amisano and Giannini, 2012).
This produces estimates of the matrices Bi and of the
residuals e. Recall that

eA0 = Z , e(I�W) = Z , e = eW + Z , (10)

so we can estimate W by applying static NOTEARS
to the matrix of residuals e.

One disadvantage of the two-step approach is that
enforcing sparsity via `1 regularization is no longer
straightforward, as Bi and Ai do not necessarily have
the same sparsity patterns. Moreover, any errors in
estimating the Bi at the right sparsity levels propagate
to the residuals e, which directly a↵ects the estimation
of W. In turn, this a↵ects the final step of the process,
where one calculates Ai = Bi(I�W). See Appendix A
for additional discussion.

3 Experiments

To validate the e↵ectiveness of the proposed method,
we performed a series of simulation experiments for
which the ground truth is known in advance. We focus
here on the main results; more detailed results can be
found in Appendix B.

3.1 Setup

To benchmark DYNOTEARS against existing ap-
proaches, we simulate data according to the SEM from
(3). There are three steps to this process: 1) generating
the weighted graphs GW and GA, 2) generating data
matrices X and Y consistent with these graphs, and
3) running all algorithms on X and Y and computing
performance metrics. See Appendix B.4 for a detailed
description of steps 1) and 2).

There are three algorithms that we use for benchmark-
ing. The first algorithm is based on a general approach
from Murphy (2002); here, we use static NOTEARS
and Lasso regression to estimate W and A indepen-
dently. The second algorithm is the SVAR estimation
method based on LiNGAM (Hyvärinen et al., 2010).
The third algorithm is tsGFCI (Malinsky and Spirtes,
2018). For details, see Appendix B.1.

3.2 Results

We start by illustrating the typical performance of
DYNOTEARS on one simulated dataset in Figure 2.
We follow the process from Appendix B.4 to generate
data with Gaussian noise, n = 500 samples, d = 5
variables, and p = 3 autoregressive terms. The intra-
slice DAG is an ER graph with mean degree equal to 4
(counting edges in either direction), and the inter-slice
DAG is an ER graph with a mean out-degree equal to 1.
The base of the exponential decay of inter-slice weights
is ⌘ = 1.5. We run DYNOTEARS on this dataset with
regularization parameters �W = �A = 0.05 and weight
thresholds ⌧W = ⌧A = 0.01. The low values for the
thresholds are intentional, as we want to highlight that
the algorithm recovers a structure close to the ground
truth even without tweaking these parameters. We
consider here the case where the autoregressive order
p is known, however, see Appendix B.5 for details on
how to estimate p when it is unknown. As Figure 2
shows, estimated weights are close to the true weights
for both W and A. The only significant omission is a
missing entry in the third row and third column of A2.
Performance is similar without `1 regularization and
for larger values of p.

In Figure 3, we compare the performance of
DYNOTEARS to that of three other algorithms (see
Appendix B.1). We consider two distributions for the
noise, Gaussian and Exponential, and two choices for
the number of samples, n 2 {50, 500}. Within each
of the four panels, each column corresponds to one
choice of intra-slice graph model and mean degree;
for instance, ER2 indicates that we used an Erdős–
Rényi graph model with a mean degree of 2. Similarly,
each row corresponds to one choice of inter-slice graph
model and mean degree. For each individual plot,
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Figure 2: Example results using DYNOTEARS for data with Gaussian noise, n = 500 samples, d = 5 variables,
and p = 3 autoregressive terms. We set the regularization parameters �W = �A = 0.05 and the weight thresholds
⌧W = ⌧A = 0.01. Our algorithm recovers weights that are close to the ground truth.

we generate n data samples with autoregression or-
der p = 1 for five choices of the number of variables,
d 2 {5, 10, 20, 50, 100}. The vertical axis indicates the
performance of each algorithm in terms of the F1 score,
which we calculate separately for intra-slice and inter-
slice matrices. We discuss the selection of hyperparame-
ter values for the four algorithms in Appendix B.3. The
relative ranking of the four algorithms is not especially
sensitive to these hyperparameters. In particular, the
regularization parameters are largely irrelevant when
there is su�cient data (n � dp).

DYNOTEARS is the best-performing algorithm in
Figure 3, with F1 scores close to 1 for n = 500.
DYNOTEARS is also the best-performing algorithm
when the number of variables exceeds the number of
samples (see panels (c) and (d) for d = 100). This
high-dimensional case is especially di�cult, yet com-
mon in applications, and we discuss one such example
in Section 4.2. The second-best algorithm is tsGFCI.
However, its performance tends to degrade as we add
more edges to the ground-truth graphs; see Figure B.3
in the Appendix. The variance in performance is also
larger for tsGFCI than for the other algorithms. As
expected, learning intra-slice and inter-slice structure
separately with NOTEARS + Lasso underperforms
DYNOTEARS. In particular, we find that the Lasso
step falsely identifies some intra-slice edges as inter-slice.
LiNGAM is an algorithm designed for non-Gaussian
data, so its poor performance in panels (a) and (c)
of Figure 3 is not surprising. However, even on data
with exponential noise (panels (b) and (d) of Figure 3),
its performance degrades significantly as d increases.
Appendix B.7 contains additional figures that compare
the performance of the four algorithms using metrics

other than the F1 score.

4 Applications

Our approach allows us to detect whether contempora-
neous or time-lagged relationships are more meaningful
in a given dataset. We discuss two examples for which
each type of interaction is dominant.

4.1 S&P 100 stock returns

We apply DYNOTEARS to a financial dataset of daily
stock returns of companies in the S&P 100. The dataset
was obtained using the yahoofinancials

1 Python
package and consists of daily closing prices from 1 July
2014 to 30 June 2019, inclusive. To account for non-
stationarity in the stock price data, we use log-returns,
defined as the temporal di↵erence of the logarithms of
the stock prices. We test the stationarity of the transfor-
mation using the Augmented Dick-Fuller test and reject
the Null hypothesis of a unit-root with pvalue < 0.01.
We normalise the log-returns so that they have zero
mean and unit variance. If we did not perform this
step, the regularization would favor low-variance stocks,
whose (linear) weights would be relatively larger than
for high-risk stocks.

The resulting dataset contains n = 1257 samples (i.e.,
trading days) and d = 97 variables (i.e., stocks). We
apply DYNOTEARS with p = 1, �W = 0.1, and
�A = 0.1. The values are selected via grid search; see
Figure C.1 in the supplement. We hold out the final
400 data points of the series for validation (⇡ 32%)
and we discard 2 trading days to avoid validation-set

1
https://pypi.org/project/yahoofinancials/
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(a) Gaussian noise, n = 500 (b) Exponential noise, n = 500

(c) Gaussian noise, n = 50 (d) Exponential noise, n = 50

Figure 3: F1 scores for di↵erent noise models (Gaussian, Exponential) and di↵erent sample sizes (n 2 {50, 500}.).
Each panel contains results for two di↵erent choices of intra-slice graphs (columns) and inter-slice graphs (rows).
Every marker corresponds to the mean performance across 5 algorithm runs, each on a di↵erent simulated dataset.
F1 scores for intra-slice and inter-slice edges appear in continuous and dashed lines, respectively. DYNOTEARS
typically outperforms the other algorithms. Note that the ICA step in LiNGAM does not work for n < d, so the
corresponding markers for d = 100 are missing from panels (c) and (d).

contamination. Running DYNOTEARS on the whole
dataset took 3.8 minutes on a laptop, with 25.8 minutes
total CPU time.

The final graph does not contain inter-slice edges.
This means that the best prediction of future returns
is the current return. This could be evidence for
the e�cient market hypothesis, which says that asset
prices contain all information available (Fama, 1970).
While there are no inter-slice edges, the validation
loss for DYNOTEARS is slightly smaller than for
static NOTEARS with the same �W value, 167.387 <

167.784. Comparing the two graphs, the biggest di↵er-
ence is that the edge between GOOGL and GOOG flips.2

The dynamic parametrization helps to find a better
local optimum.

Figure 4 provides a visualization of the estimated intra-
slice weights matrix W. When we order the stocks
by industry sector, we obtain an approximately block-
diagonal structure. Thus, two stocks are more likely to

2
Both shares are issued by Alphabet, the holding com-

pany of Google, and they are equal in terms of dividends.

However, only GOOGL includes shareholder voting rights.
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Figure 4: Estimated intra-slice matrix W, with rows and columns sorted by sector. A row is the source stock,
a column is the target stock. Stocks in the same sector tend to have larger edge weights between them. The
normalized mutual information between a community-induced partition and the sector-based partition indicates
agreement between the estimated network and the sectors.

influence each other if they belong to the same sector
than if they are from di↵erent sectors. The weight of
96% of all identified edges is positive, so most stocks
move together. This percentage is roughly the same
for edges within and between sectors. One noteworthy
feature in Figure 4 is that Amazon (AMZN), which is
part of the Consumer Cyclicals sector, is connected
to many of the technology stocks, including Facebook,
Netflix, NVIDIA, Google, and Microsoft.

To quantify the sector relationship, we apply the Lou-
vain method (Blondel et al., 2008), a community detec-
tion algorithm and a form of graph clustering, to W.3

This partitions the set of stocks into subsets that corre-
spond to densely-connected subgraphs in the estimated
Bayesian network. The normalized mutual information
(NMI, Li et al., 2001) between this community-induced
partition and the sector-based partition is approxi-
mately 0.79, which indicates close agreement.4

3
We use the python-louvain package from https://pypi.

org/project/python-louvain/.
4
An NMI value of 1 corresponds to identical partitions,

whereas a value of 0 corresponds to independent partitions.

4.2 DREAM4 gene expression data

We benchmark DYNOTEARS on the DREAM4 net-
work inference challenge (Marbach et al., 2009), in
which the objective is to learn gene regulatory net-
works from gene expression data. DREAM4 consists
of 5 independent datasets, each with 10 di↵erent time-
series recordings for 100 genes across 21 time steps.
We preprocess our data and choose hyperparameters
�A and �W through 10-fold cross validation, details
of which can be found in Appendix D.1. In Lu et al.
(2019), the authors compared di↵erent approaches to
learning these networks, including methods based on
mutual information, Granger causality, dynamical sys-
tems, decision trees, Gaussian processes (GPs), and
DBNs. Unsurprisingly, their results indicate that flexi-
ble nonparametric methods such as GPs and decision
trees perform the best. It is nonetheless instructive to
compare the performance of DYNOTEARS to these
methods for two reasons: 1) This gives us a sense of
how much is lost in assuming the linear model (1),
and 2) For an apples-to-apples comparison, we can still
compare DYNOTEARS to the DBN methods (six in
total) tested by Lu et al. (2019).

As in the original DREAM4 challenge, we use mean
AUPR and AUROC across the 5 datasets to compare
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Algorithm Mean AUPR Mean AUROC

DYNOTEARS 0.173 0.664
G1DBN 0.110 0.676

ScanBMA 0.101 0.657
VBSSMb 0.096 0.618
VBSSMa 0.086 0.624
Ebdbnet 0.043 0.643

Table 1: AUPR and AUROC scores of DBN algorithms
on the DREAM4 dataset. Values for methods other
than DYNOTEARS are from Lu et al. (2019).

DYNOTEARS to the 23 algorithms presented in Lu
et al. (2019). The results are as follows:

• DYNOTEARS achieves an average AUROC of
0.664 and an average AUPR of 0.173. Among the
six DBN methods tested, this ranks 1st and 2nd

in AUPR and AUROC, respectively, as shown in
Table 1.

• Furthermore, DYNOTEARS is within one stan-
dard deviation of the best performing method
(G1DBN) based on AUPR, and no other method
is within one standard deviation of DYNOTEARS
based on AUROC.

• Overall, this ranks 4th in AUPR and 8th in
AUROC (see Table D.2 and Table D.1, respec-
tively). While the top performing methods were
based on nonparametric models such as GPs,
DYNOTEARS still outperforms several other non-
parametric methods despite its use of the linear
model (1).

5 Discussion

In this paper, we proposed DYNOTEARS, an algo-
rithm for learning dynamic Bayesian networks, in-
spired by recent work on structure learning for static
Bayesian networks using di↵erentiable acyclicity con-
straints (Zheng et al., 2018). Our algorithm learns
both intra-slice and inter-slice dependencies between
variables simultaneously, in contrast with some existing
methods that perform these estimations in succession.

An important feature of DYNOTEARS is its simplicity,
both in terms of formulating an objective function and
in terms of optimizing it. It performs well on simulated
data across a wide range of parameter choices in the
data-generation process.

We also applied DYNOTEARS to two empirical
datasets from di↵erent application domains, finance
and molecular biology. The results reveal insightful
patterns in the data. Both of these applications have
d ⇡ 100, confirming that DYNOTEARS can be ap-
plied to larger datasets than those considered in most

existing work on DBNs.

To conclude, we briefly discuss some limitations and
possible extensions of DYNOTEARS.

Assumptions We have assumed that the structure
of the DBN is fixed through time and is identical for
all time series in the data (i.e., it is the same for all
m 2 {1, . . . ,M}). It would be useful to relax these
assumptions in various ways, for example by allowing
the structure to change smoothly over time (Song et al.,
2009) or at discrete change points that we infer from
the data (Grzegorczyk and Husmeier, 2011). Another
topic for future work is to investigate the behaviour of
the algorithm on nonstationary or cointegrated time
series (Malinsky and Spirtes, 2019), or in situations
with confounders (Huang et al., 2015; Malinsky and
Spirtes, 2018). A possible approach is to apply a post-
processing step to the output of DYNOTEARS so as to
remove spurious relationships between variables (e.g.,
by using statistical tests).

Undersampling As pointed out by a reviewer, as
with most DBN models, we implicitly assume that the
sampling rate of the process is at least as high as the
fluctuations in the underlying causal process. See for
example Gong et al. (2015); Hyttinen et al. (2016);
Plis et al. (2015); Cook et al. (2017). As a check on
the sensitivity of DYNOTEARS to this (strong) as-
sumption, we tested a modification of our approach for
undersampled data adapted from Cook et al. (2017).
In essence, by running DYNOTEARS on the data
and then post-processing any intra-slice edges by mak-
ing them bi-directed, we can obtain a graph which is
comparable to the methods suggested in Cook et al.
(2017). Although our method was not designed to
handle undersampling, it achieves lower false-negative
rates compared to other methods. Of course, more
careful modifications to handle undersampling is an
interesting direction for future work.

Nonlinear dependence Finally, we emphasize that
linear assumption in (1-2) is made purely for simplicity,
in order to keep the focus on the most salient dynamic
and temporal aspects of this problem. For example,
using the general approach outlined in Zheng et al.
(2019), it is possible to model complicated nonlinear
dependencies via neural networks or orthogonal basis
expansions. Furthermore, it is straightforward to re-
place the least squares loss with the logistic loss (or
more generally, any exponential family log-likelihood)
to model binary data. It is also possible to go a step
further and consider combinations of continuous and
discrete data (Andrews et al., 2019), which is important
for many real-world applications.
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