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Abstract

We present an interpretable companion
model for any pre-trained black-box classi-
fiers. The idea is that for any input, a user
can decide to either receive a prediction from
the black-box model, with high accuracy
but no explanations, or employ a compan-
ton rule to obtain an interpretable prediction
with slightly lower accuracy. The companion
model is trained from data and the predic-
tions of the black-box model, with the objec-
tive combining area under the transparency—
accuracy curve and model complexity. Our
model provides flexible choices for practition-
ers who face the dilemma of choosing between
always using interpretable models and always
using black-box models for a predictive task,
so users can, for any given input, take a step
back to resort to an interpretable prediction
if they find the predictive performance satis-
fying, or stick to the black-box model if the
rules are unsatisfying. To show the value of
companion models, we design a human eval-
uation on more than a hundred people to in-
vestigate the tolerable accuracy loss to gain
interpretability for humans.

1 Introduction

The growing real-world needs for model understand-
ability have triggered unprecedented advancement in
the research in interpretable machine learning. Vari-
ous forms of interpretable models have been created
to compete with black-box models. Given a pre-
dictive task, users need to choose between a black-
box model with high accuracy but no interpretability
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and an interpretable model with compromised perfor-
mance. However, in many practices, the end-users,
instead of the model designers, need to have the flex-
ibility of choosing between whether they need an in-
terpretable prediction with the slightly compromised
predictive performance or a non-interpretable predic-
tion but higher task performance, based on the input
case they have.

We design a new mechanism of making a prediction
in this paper. For any input, we provide users two
options, to use a black-box model with high accuracy
or to use a companion rule, which offers understand-
able prediction but with slightly lower accuracy. It is
up to the user which type of prediction s/he prefers
for any input. The rules are embedded in an “if-else”
logic structure with decreasing accuracy. Therefore,
if a user goes deeper into the list, more companion
rules will be activated to cover more instances, gain-
ing higher model transparency, but more considerable
performance loss is incurred.

Our model is different from the current mainstream
works in interpretable machine learning that focus on
stand-alone interpretable models such as rule-based
models (Wang et al., 2017) and linear models (Zeng
et al., 2017), or develops external black-box explana-
tion methods (Ribeiro et al., 2016; Lundberg & Lee,
2017) to provide posthoc analysis. The former mod-
els may suffer from possible loss in accuracy since,
aside from optimizing predictive performance, they
also need to optimize model interpretability in par-
allel, which often conflicts with model fitness to the
data. The latter type of methods, on the other hand,
undergo heated debate on whether they consistently
and truthfully reflect the underlying synergies between
features inside a black-box (Rudin, 2019).

Our model, Companion Rule List (CRL), takes a dif-
ferent route to avoid the possible weaknesses in the ap-
proaches above. Motivated by recent works on combin-
ing multiple models (Wang & Lin, 2019; Wang et al.,
2015), we pair a rule list with a pre-trained black-box
model. Unlike previous hybrid models that create a
fixed partition of the data space such that it is pre-
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determined which inputs will be processed by which
model, we provide more flexibility to users by allowing
users to switch between rules and the black-box, based
on their task-specific and user-specific requirement for
interpretability and predictive accuracy.

Figure 1 shows an example of CRL for evaluating cus-
tomer credit. In CRL, we assume a black-box model
with superior predictive performance is already ob-
tained. CRL is designed to bring transparency into
the decision making process as well as providing the
freedom of selecting the rule-based and the black-box
predictions. In the figure, decision makers face four
scenarios: i) using a completely black-box model; ii)
adopting one rule that can explain 40% of the inputs
but with losing accuracy for 0.2% and forwarding the
rest 60% to the black-box; iii) adopting two rules that
can explain 70% of the inputs but with losing accuracy
for 0.3% and forwarding the rest 30% to the black-
box; iv) adopting a completely transparent rule list
but with losing accuracy for 2.8%. The final choice
is made upon the users’ preference on the trade-off
between the transparency and the accuracy loss. For
example, one may prefer adopting the scenario iii) as
a compromising solution to the trade-off.

Note that, the goal of CRL is not to train a stand-alone
accurate rule list, but to train a rule list with a pro-
ductive collaboration with the black-box model such
that they achieve an efficient trade-off between inter-
pretability and predictive performance. To train CRL
with a superior trade-off, we propose a novel training
algorithm that can take the knowledge of the black-
box model into account. Specifically, our algorithm
is based on the area under the trade-off curve as the
training objective function.

In the experiments, we demonstrate that the knowl-
edge of the black-box partner during the training stage
obtains a better performance for CRL, compared with
other rule lists, such as CORELS (Angelino et al.,
2017) and SBRL (Yang et al., 2017) that are trained
independently without knowledge of their black-box
partner and paired with a black-box afterward.
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Figure 1: An example of evaluating customer credlt with CRL. The users have four choices, i), ii), iii), and iv),
for balancing the rule-based and the black-box predictions.
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To investigate whether users are willing to use compan-
ion rules instead of a black-box model despite possible
performance loss, we conduct a carefully designed hu-
man evaluation on 154 participants with various back-
ground to study the conditions when a user would
switch to a companion rule, specifically, how much
accuracy a user is willing to give up in exchange for
interpretability.

1.1 Preliminaries

Notation For any statement a, we denote the indi-
cator function by 1(a) where 1(a) = 1 if the statement
a is true, and 1(a) = 0 otherwise.

Rule List Let (z,y) € & x {0,1} be an observation
consisting of an input feature vector x in a domain X
and the output class label y. The rule list describes
its prediction process in a "if-else-” format. Let the
decision function d be a map from & to the Boolean
domain, i.e. d : X — {True,False}. We refer to the
pair of a decision function d and an output z € {0,1}
as a rule r := (d, z). Here, we read the rule r as “if
d(z) = True for an input z, then the output § = 2”.
d(z) = True means x satisfies the conditions in the
rule. The rule list of length M consists of the sequence
of M rules R := (1, = (dm,2zm))M_,. The rule list
returns the prediction § based on the following format.

if dy(z) = True, then § = z;
else if da(z) = True, then § = 25

else if dy;(x) = True, then § = zj,

We denote the prediction by § = R (z; R). We also
define the cover of the rule list as follows.

Definition 1 (Cover). We say that the m-th rule
Tm = (dpm, 2m ) covers the input x if d,,, () = True and
di(z) = False for any of the previous rule r, = (dg, zx)
with & < m. For the rule 7, and the input z, we define
covers(ry,, x) by

covers(ry,x) := 1 ((m/i —\dk(a?)> Adm(gc)) . (D)

k=1
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Note that covers(ry,,z) = 1 if the input z is covered
by 7m, and covers(r,,,z) = 0 otherwise. Thus, each
input z is assigned to the first rule it satisfies.

2 Related Work

In this section, we first elaborate distinctions from
current interpretable machine learning researches and
then discuss the similarity with techniques we inherit
from existing works.

Distinction from Black-box Explainers CRL is
not a black-box explainer. The rules are not designed
to explain or approximate black-boxes like the rule-
based explainers do (Ribeiro et al., 2018; Guidotti
et al., 2018). CRL is constructed to compete with and
locally replace a black-box with competitive perfor-
mance. We emphasize this distinction because black-
box explainers serve the purpose of providing post-hoc
analysis and approximations to the decision maker,
which may not represent the true interactions of fea-
tures inside the black-box (Rudin, 2019; Aivodji et al.,
2019a). CRL, on the other hand, is the decision maker
itself, and thus it truly represents how the decision is
made.

Rule-Based Models Our CRL consists of decision
rules. Rules are a well-adopted form of interpretable
models for their language-like presentation and simple
logic. Many state-of-the-art interpretable models are
rule sets (Wang et al., 2017; Wang, 2018; Dash et al.,
2018; Lakkaraju et al., 2016) or rule lists (Angelino
et al., 2017; Yang et al., 2017; Aivodji et al., 2019b)
constructed via various learning algorithms like sim-
ulated annealing (Kirkpatrick et al., 1983). The idea
is to propose a new model by making small changes
to the current model, accept it with decreasing proba-
bility which is a function of how good the proposal is
and the current temperature, until the maximum iter-
ations are met or the solution converges. We design
our training algorithm builds upon the prior wisdom
from the works above and incorporate new strategies
exploiting the unique structure of CRL.

Hybrid Models CRL is one type of companion
models. Wang et al. (2015) proposed to divide feature
spaces into regions with sparse oblique trees and then
assign black-box local experts to each region. Nan &
Saligrama (2017) designed a low-cost adaptive system
by training a gating and prediction model that lim-
its the utilization of a high-cost model to hard input
instances and gates easy-to-handle input instances to
a low-cost model. The work closest to ours is hybrid
models (Wang & Lin, 2019; Wang, 2019) that parti-
tion the feature space into transparency areas that are
covered by rules and black-box area where rules fail to
characterize.

Compared with our CRL, the models mentioned above
create a fixed partition when the model is built. Thus
it is determined at the training stage, by the model
designer, which predictions will be processed by which
model, and what level of transparency will be pro-
vided. CRL, on the other hand, leaves this decision
to the end-user of the model, who may switch to dif-
ferent transparency and accuracy pairs for different
inputs, accounting for various task-specific complica-
tions. Such flexibility is very critical and practical in
domains where the final decision maker is human.

3 Companion Rule List

We propose Companion Rule List (CRL) as a collabo-
ration framework for the interpretable and the black-
box models. The advantage of our CRL lies in its
flexibility that the users can choose which model to
adopt for any inputs.

3.1 The Proposed Framework

Let f, be a pre-obtained black-box model, such as the
ensemble models or deep neural networks, that have
superior predictive performance. CRL is a collabo-
ration framework for the rule list and the black-box
model. CRL is expressed in the following form.

if di(x) = True, then § = z; or § = fp(x)
else if do(z) = True, then § = 2z or § = fp(x)

else if dys(x) = True, then § = z) or § = fi(x)

Note that CRL is flexible by its design. For any input
x, if  is covered by the m-th rule as d,,(x) = True,
the users have a choice of adopting the output § = z,,
from the rule list or the output § = fp(z) from the
black-box model.

As we pointed out in Section 2, the hybrid rule set
(HRS) (Wang & Lin, 2019; Wang, 2019) also provides
a framework for the collaboration of the interpretable
and the black-box models. Despite the similarity, we
would like to emphasize that HRS is not flexible. The
rule set in the HRS covers a pre-determined fraction of
the inputs. The end-users cannot choose between rules
and the black-box model based on their own needs.

3.2 A Naive Implementation

A straightforward way to implement a companion
model is to combine an independently trained rule list
with the black-box model. For example, one can train
a rule list by using CORELS (Angelino et al., 2017)
and SBRL (Yang et al., 2017). Then, simply com-
bining the trained rule list with the black-box model
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yields a companion model. This approach is straight-
forward, but the result can be suboptimal, as will be
demonstrated by experiments. This is because the col-
laboration with the black-box model is not taken into
account when training the rule list.

4 The Learning Framework for CRL

We discuss how we will construct a CRL to better
collaborate with a black-box. To do that, we propose
a novel objective function so that the interpretable and
the black-box models collaborate more effectively than
the naive implementation.

In what follows, we assume that an observation
(z,y) € X x {0,1} is sampled independently from an
underlying distribution p. We also denote a set of in-
dependent observations (z,y) from p as the data set
D, and denote its size by | D).

4.1 Area Under the Transparency—Accuracy
Trade-off Curve (AUTAC)

We propose the area under the transparency—accuracy
trade-off curve (AUTAC) as a metric for general com-
panion models.

Recall that we expect a companion model to be flexi-
ble so that the users can freely switch between the in-
terpretable and the black-box models. Suppose that a
user is willing to use the interpretable model for 100t%
of the observations (with 0 < ¢t < 1), and the black-
box model for the remaining observations. Here, we
refer to ¢ as transparency of the companion model,
which is a fraction of observations explained by the
interpretable model. Note that a user preferring small
t favors the black-box model because of its higher ac-
curacy, while a user preferring large ¢t favors the inter-
pretable model. The difficulty here is that such a user’s
preference on t is unknown in practice. To bypass this
difficulty, we adopt the following principle.

Maximum Accuracy Principle For any trans-
parency t, a user prefers high accuracy.

From this principle, an ideal companion model is one
that maximizes the accuracy for all transparency t. To
this end, we propose the area under the transparency—
accuracy trade-off curve (AUTAC) as the goodness
measure of a companion model. Formally, let ¢; be
a companion model whose transparency is t, and let
A(cr) = E(gy)~pll(y = c(z)] be an accuracy of c;.
We can then draw a curve (¢, A(c;)) representing the
transparency—accuracy trade-off. The area under the
curve, or AUTAC, is then defined by

AUTAC = / 1 A(cy)dt. (2)
1=0
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Figure 2: An example of the transparency—accuracy
trade-off curve and the AUTAC of a Stochastic CRL
with length M = 3.

4.2 AUTAC of CRL

We first define some important notions, and then de-
rive AUTAC of CRL. Note that we generate rule lists
with decreasing accuracy of rules. Thus, the maxi-
mum accuracy principle above implies that the users
always adopt the first m consecutive rules in CRL as
the interpretable model, where m can vary depending
on their preferences on t.

Definition 2 (Transparency of Rule List). For a rule
list Ry (R) with a sequence of rules R = (r,, =
(dm, 2m))M_,, the transparency of the first m rules is
the probability of observations covered by these rules,
defined by

T = B y)~p l]l <\/ covers(rk,x)>] .3

k=1

Note that T, takes a value between zero and one.
The value one indicates that all observations can be
explained by the first m rules, and thus its decision
process is completely transparent. The value zero in-
dicates that none of the observations are covered by
the first m rules.

Definition 3 (Stochastic CRL). Let m! :=
maxr,, <¢m be the maximum number of rules whose
transparency is at most t. We define a Stochastic CRL
with a transparency ¢ by

if \/km;1 covers(ry, ) = True, then y = Ry (x; R)
t

else if \/ZL;H covers(ry, x) = False, then y = f,(x)
Zmt if ¢ > ¢

else y = .
fo(x) otherwise
where ¢, = ———mt— ¢ [0,1], and ¢ is a uniform
A Tt y1— T r

random variable in [0, 1].

In Stochastic CRL, the users stochastically determine
which model to adopt based on the transparency ¢
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and the random variable . Note that, the expected
transparency of the Stochastic CRL with respect to
e can be easily verified as ¢Tnia1 + (1 — @) T =

t_Tm,ﬂ T7nt+1_t o
Tty =Tt Tmt'H T Tt ™ T = 2.

Defining AUTAC for CRL We define the AUTAC
of CRL by adopting Stochastic CRL as the compan-
ion model ¢,. Here, we use Stochastic CRL because
its expected transparency ¢ is continuous and the in-
tegral (2) is well-defined, while the transparency of
the original CRL is defined only on discrete points
T1,T5,...,Ty. Let the accuracy of the Stochastic
CRL be A, := E.A(cr,)]. We can then draw
the transparency—accuracy trade-off curve as shown in
Figure 2. Moreover, it is clear from the figure that
AUTAC can be computed as follows.

Proposition 4 (AUTAC of Stochastic CRL). The
AUTAC (2) with Stochastic CRL as ¢; is given by

M
Z (Am + Am—l)(Tm - m—l)-

m=1

AUTAC,;(R) =

N | =

Here, we expressed the dependency of AUTAC to the
sequence of the rules R and its length M, explicitly.

4.3 Learning Objective

‘We propose to train CRL so that the AUTAC is max-
imized. As a training objective, we use the following
estimation of the AUTAC.

M
— 1 ~ o ~ N
AUTACN (R) = 5 7;(% t A1) Ty — Tro1),
where
T =155,
Am = |_$| Z(m,y)esm ]]‘[y = Rm(x7 R)]

+ 157 Legens., 1y = fo(@)],
Sm = {(,y) | Vi, covers(ry, #) = True, (z,y) € D}.
The training of CRL is then formulated as

maxmax Opr.a(R) = AUTACy(R) — aM,  (4)

where o > 0 is a parameter that penalizes the length
of the rule list. Here, the additional term cvM enforces
the rule list to be sufficiently short so that it exhibits
good interpretability.

5 Training Algorithm

We now design a training algorithm for CRL. Note
that the problem (4) is a combinatorial optimization

problem and finding a global optimum can take ex-
ponential time. We therefore take an alternative ap-
proach based on the heuristc search. Specifically, we
adopt the stochastic local search for our training algo-
rithm, which is effective for training high-quality rule
models (Lakkaraju et al., 2016; Wang, 2019).

The proposed training algorithm is shown in Algo-
rithm 1. At the initilization step, we first apply FP-
Growth (Han et al., 2000) to the data set D, and find
both the frequent positive rules and the frequent neg-
ative rules with the minimum support bounded by -,
and construct the set of rules I''. We then initial-
ize the rule list with three rules chosen (possible ran-
domly) from I'. After the initialization is completed,
we iteratively update the model using the stochastic
local search. There are four possible operations for the
model update: add, remove, swap, and replace.

e Add: We randomly select one rule from I'. We
then insert the selected rule into a random posi-
tion in the current rule list.

e Remove: We randomly select one rule from the
current rule list, and remove it from the list.

e Switch: We randomly select two rules in the cur-
rent list, and swap their positions.

e Replace: We randomly select one rule from I'.
We also select one rule from the current rule list.
We then replace these two rules.

In each wupdate step, one of the four opera-
tions is randomly chosen and applied to the rule
list. The model update is accepted with probabil-

ity exp (OM’“(R["H])_OM'“(R["])) which gradually de-

Co/log,(14n)
creases as the iteration n increases due to annealing.

6 Experiments

In the first part of this section, we test the perfor-
mance of CRL? on public datasets and compare it with
two independently trained rule lists CORELS (An-
gelino et al., 2017) and SBRL (Yang et al., 2017). In
the second part, a human evaluation of transparency—
accuracy trade-off is conducted.

6.1 Experiments on Public Datasets

We evaluate the transparency—accuracy trade-off of
CRL on eight public data sets from UCI machine learn-
ing repository (Dua & Graff, 2017) or ICPSR, listed in
Table 1. Six data sets are associated with medical, fi-
nancial, and judicial areas that have intensive demands

!Other rule miners such as Apriori or Eclat can also be
used instead of FP-Growth.

2 An example code is available at https://github.com/
danqingpan/Companion-rule-1list
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Algorithm 1 Stochastic Local Search for CRL

Input: f, D, a,Cy

>Initialization

I' = ((d;, zj))szl + FPGrowth(D, minsupp = v)
> mine candidate rules from D

ROV« ((dj.2j))31. R*  ((dj, 25))3—y, M 3

> initialize the rule list and the best solution

>Stochastic Local Search
forn=1,2,...,N do
0 ~ random/()
if 6 <1 then »Add
R+« add one rule to R from T
M~ M+1
else if § < % then
RI"*1] « remove one rule from R
M<—M-—1

else if § < % then

RI"H] « swap two rules in R
else PReplace

RI"H] « replace a rule in R™ with a rule in I’
end if

>Model Update
€ ~ random()

>Remove

>Swap

. Om.o(R" Y0, o (R

if € > exp( M (go/log)z(l-i]-\i;) (B )> then
Rln+1]  RIn]

end if

R* < argmaxpepinti gy Om,a(R)
> update the best model
end for

output Rjs(z; R*) »>Trained Rule List

for interpretable models. The other two data sets are
associated with physics and commerce.

Preprocessing We preprocess the data by turning
raw input into binary features so that rule mining
is applicable. To do that, we convert numerical fea-
tures to categorical features by using the quantile-
based quantization®. We then apply one-hot encoding
for categorical features (including the ones converted
from the numerical features) to obtain binary features.

Baselines As discussed in section 3.2, we adopt the
two rule list training algorithms, CORELS* (Angelino
et al., 2017) and SBRL® (Yang et al., 2017) as the base-
line methods to be compared with. Note that, these
algorithms does not utilize the information of their
black-box partner when training the rule list. Thus,
the obtained models from these training algorithms

3We use quantile_transform in scikit-learn with the
number of quantiles set to seven.

"https://github.com/fingoldin/pycorels

Shttps://github.com/Hongyuy/sbrimod

Table 1: Data Sets: N, d, and d’ denote the number
of instance, the number of features, and the number
of binary features after preprocessing, respectively.

datasets  category N d d
messidor medical 1151 19 202
german finance 1000 20 160
adult finance 48842 14 126
juvenile justice 4023 55 315
frisk justice 80755 26 92
recidivism  justice 11645 106 641
magic physics 19020 10 140
coupon commerce 3996 95 95

will become suboptimal, and will be outperformed by
our proposed training algorithm. We also apply deci-
sion trees, C4.5 (Quinlan, 2014) and CART (Breiman,
2017), to work as stand-alone interpretable baselines
because they are one of the most popular interpretable
models.

Setup To obtain a black-box f;, we train Ran-
domForest (Breiman, 2001), AdaBoost (Freund &
Schapire, 1997), and XGBoost (Chen & Guestrin,
2016). For the rule mining in Algorithm 1, we set
the caridinality of each rule to be two and minimal
support to be 0.05 so that rules capturing too few ob-
servations are eliminated. We also set the temperature
Cyp = 0.001 and the training iteration N = 50,000.
For all the models, we tuned their hyper-parameters
so that the maximum number of rules to be less than
20%. All the models were trained and tested on a 5-
fold cross validation. In each fold, we trained all the
models using 80% of the data as train set, and eval-
uated their transparencies and the accuracies on the
held out 20% test set.

Result We show the average transparency—accuracy
trade-off curves for the eight data sets in Figure 3.
Because the results are similar for all the black-box
models, we selected RandomForest”. In the figures,
for each of CRL, CORELS, and SBRL, we draw the
average of the 5-fold as solid lines and the standard
deviation as the shaded regions. The horizontal axis
represents the transparency, and the vertical axis rep-
resents the accuracy. The average accuracies of CART
and C4.5 are shown as markers.

It is clearly observed that the curves of CRL are the
highest in the figures for almost all data sets. This im-
plies that the proposed CRL could provide the users
with a flexible choice of the output with high accura-
cies. The lower curves of CORELS and SBRL indicate
that these models are suboptimal because they did not
collaborate with the black-box model f;, during train-
ing. It is also interesting to observe that CRL has
comparable performance as other rule-based models

6See Appendix A for the detailed parameter setups.
"See Appendix B for AdaBoost and XGBoost.
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Figure 3: The transparency—accuracy trade-off (with RandomForest as fp): The solid lines denote average
trade-off curves, while the shaded regions denote + standard deviations evaluated via 5-fold cross validation.

Table 2: AUTACS for all models. The numbers in the
parenthesis denote standard deviations. Bold fonts
denote the best results (underlined), and the results
which was not significantly different from the best re-
sult (t-test with the 5% significance level).

CRL CORELS SBRL
messidor 688 (.016) .682 (.022) .669 (.026)
german .749 (.013) .736 (.012) .742 (.010)
adult 851 (.001) .835(.004)  .847 (.005)
juvenile 898 (.008) .887 (.014) .884 (.005)
frisk 688 (.003) .684 (.003)  .681 (.003)
recidivism  .761 (.004) .742 (.006) 757 (.005)
magic 865 (.006) .842 (.006)  .854 (.007)
coupon .740 (.014) .716 (.017) 742 (.021)

such as CART and C4.5 when reaching transparency
of 100%. That is, the use of CRL as a stand-alone
rule list is still a solid choice for the users. Thus, CRL
alone satisfies users’ need to go from transparency of
0% to 100%.

Table 2 summarizes AUTACSs on all the data sets. The
table shows the clear advantage of the proposed CRL
that it successfully attained the better trade-off over
CORELS and SBRL. This result confirms the effec-
tiveness of the proposed training algorithm that can
seek for a good collaboration of the rule list and the
black-box.

An example In Table 3 we show an example of CRL
model trained on the juvenile dataset, which predicts

whether a child will commit delinquency, based on his
prior growing-up experience. The data was collected
via a survey where a child was asked to provide infor-
mation about his prior exposure to violence from his
friends, family, or community.

6.2 Human Evaluation of
Transparency—Accuracy Trade-off

We evaluate the trade-off between transparency and
accuracy for humans, specifically, how much is a per-
son willing to sacrifice accuracy for transparency.

For this purpose, we designed a survey where we
showed CRL models learned from three datasects,
adult, german, and recidivism. For each prediction,
we showed two options, a companion rule and a black-
box model, and the estimated accuracy for both of
them. Then we asked the participants to choose one
from them. See the Appendix C for an example of the
questions we designed. We designed 18 questions and
randomly showed 12 of them for each participant.

We collected responses from 154 subjects in total and
removed ten responses that fail the validation ques-
tions. The average age of the participants was 28,
from the youngest 20 to the oldest 68. 41% of them
were male. The majority of the participants were un-
dergraduate and graduate students from the computer
science department and business schools, who are cur-
rent and future users of machine learning models. The
rest were researchers from different domains, includ-
ing business, medicine, and pharmacy, where inter-
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Table 3: An example of CRL on juvenile dataset (BLX represents black-box model)

Companion Rule Y Rule Rule BLX
cover acc.  acc.
if “Have your friends ever broken into a vehicle or building to steal something” 0 83.7% 93.3% 93.3%

= “No” and “Has anyone-including your family members or friends - ever
attacked you with a gun, knife or some other weapon?”=*“Yes”

else if Sex = Male and “Have you ever tried cigarette smoking, even one or two 1 6.6% 66.0% 69.7%
puffs?” = “Yes”
else if “Have your friends ever used prescription drugs such as amphetamines or 0 6.8% 61.8% 67.3%
barbiturates when there was no medical need for them” = “No” and hard
drug =0
else if “Have your friends ever used alcohol” and Witness violence = TRUE 1 2.6% 52.4% T71.4%
" . .
£ 1 . model sel.ecfmon at the end'—user level, not the designer
g o level. This is what CRL aims to do.
a8 °®
£ E 08| 0®® i ]
g . 7 Conclusion
A
IR o™ a
- & ° ® We proposed the companion rule list (CRL) for users
; ?é 041 ° N to freely switch between the interpretable and the
= 0.2 * ‘ ‘ ‘ ‘ black-box models. CRL is flexible enough so that
~ Z0.25 —0.20 —0.15 —0.10 —0.05 0.00 0.05 users can choose whether to adopt the rule-based pre-

Relative accuracy loss if using a rule

Figure 4: Human evaluated trade-off between model
transparency and accuracy

pretability is highly appreciated.

Figure 4 reports the percentages of participants who
chose a companion rule over the black-box at different
loss of accuracy of using a rule. The accuracy is re-
ported in relative, i.e., the reduced accuracy for using
a companion rule instead of the black-box divided by
the accuracy of the black-box. The relative reduction
in accuracy ranged from -25% to 5%, with the positive
being rules that were better than the black-box model
and negative being the ones that were worse. Results
show that 80% of the participants were tolerable up
to 4% accuracy loss or less. Increasing that loss to 5%
lost about another 20% of the participants.

Findings The results point out two interesting find-
ings. First, while people desire interpretability, they
are still very strict about accuracy. Interpretable mod-
els that lose too much accuracy are unlikely to be
adopted in practice, which opens up opportunities for
hybrid models like ours. Second, different users’ pref-
erence for interpretability and accuracy can be so dra-
matically different: the curve covers a large range of
accuracy drop while still having at least 30% users who
prefer an interpretable model even at the loss of 25%
of accuracy®. It is therefore important to leave the

8We also observed that the younger group are more
likely to choose interpretable rules over black-box models

diction or the black-box prediction for any of the in-
put, based on their preferences on the interpretability
and the accuracy. We also designed a novel objective
function, the area under the transparency—accuracy
trade-off curve (AUTAC), for training a high-quality
CRL, which we optimized by using the stochastic lo-
cal search, utilizing information from the collaborative
black-box model to form better collaboration between
rules and the black-box model. Our result confirms
that this collaborative training yields better compan-
ion rules than those rule lists trained independently.

Another main contribution of our paper is that we con-
ducted an extensive human evaluation on 154 partici-
pants to study humans’ views on model transparency
versus accuracy. From the data we collected, we can
understand how tolerable are humans to accuracy loss
to gain model transparency. Results suggest that in
practice, a stand-alone interpretable model will not
be used by users if they drop too much in predictive
performance. In addition, different people have a di-
verse preference for transparency, so the model selec-
tion should be made at the end-user level. Both open
up opportunities for companion models.

We believe that combining an interpretable model with
a black-box model is a promising framework that can
easily trade-off between interpretability and accuracy.
The current CRL will be suitable mostly for structured
tabular data because the rules need to use semantic
features. Extending the current framework of CRL to
several data domains such as images, audios, and texts
would be an important future direction.

than the older group. See Appendix C.
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