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Abstract

Interaction events among multiple entities are
ubiquitous in real-world applications. Although
these interactions can be naturally represented by
tensors and analyzed by tensor decomposition,
most existing approaches are limited to multilin-
ear decomposition forms, and cannot estimate
complex, nonlinear relationships in data. More
importantly, the existing approaches severely un-
derexploit the time stamps information. They
either drop/discretize the time stamps or set a lo-
cal window to ignore the long-term dependency
between the events. To address these issues, we
propose a Bayesian nonparametric factorization
model for high-order interaction events, which
can flexibly estimate/embed the static, nonlinear
relationships and capture various long-term and
short-term excitations effects, encoding these ef-
fects and their decaying patterns into the latent
factors. Specifically, we use the latent factors to
construct a set of mutually excited Hawkes pro-
cesses, where we place a Gaussian process prior
over the background rates to estimate the static,
nonlinear relationships of the entities and propose
novel triggering kernels to embed the excitation
strengths and their time decaying rates among the
interactions. For scalable inference, we derive a
fully-decomposed model evidence lower bound
to dispose of the huge covariance matrix and ex-
pensive log summation terms. Then we develop
an efficient stochastic optimization algorithm. We
show the advantage of our approach in four real-
world applications.
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1 Introduction

Interactions of multiple entities are ubiquitous in real world.
For example, purchase behaviours can be considered as
three-way interactions between customers, commodities and
stores. Many applications have presented massive data for
interaction events, which record the time stamps when a
variety of (high-order) interactions occurred. These events
reflect not only complex relationships of the entities, but
also rich and long-term temporal influences between their
interactions. To analyze these data, we consider extracting
a set of latent factors to represent each participating entity.
With the factor representations, we can look into the hidden
structures of the entities, e.g., communities and anomalies,
and extract discriminative features to make predictions, e.g.,
predicting missing/future interactions.

While high-order interactions can be represented by ten-
sors and we can use various tensor decomposition meth-
ods (Tucker, |1966; Harshmanl, [1970; |(Chu and Ghahramani,
2009; [Kang et al.,[2012;|Choi and Vishwanathan| |[2014) to
estimate the factors, these methods mainly use a multilinear
decomposition form, hence might be inadequate to capture
more complex, nonlinear relationships of the entities. More
importantly, these methods severely underexploit the time
stamps information. They either ignore the time stamps of
the interactions and aggregate the observations into a count
tensor (Chi and Kolda, 2012; Hansen et al.,|2015; Hu et al.,
2015b), or discretize the time stamps into rough steps, such
as weeks or months, and overlook the dependencies of the
interactions in the same step (Xiong et al.l |2010; [Schein
et al.,[2015,/2016)). Very recently, Zhe and Du(2018) used
Hawkes processes to estimate the fine-grained, local trigger-
ing effects among the interactions. However, they used a
small window to limit the range of the dependent events so
as to compromise with the computational cost, and hence
cannot capture the full-spectrum of temporal effects, espe-
cially those long-term ones, from the previous interactions.
Therefore, they may still miss important temporal patterns.

To address these issues, we propose a nonparametric
Bayesian factorization model for high-order interaction
events, which not only is flexible enough to estimate the
static, nonlinear relationships of entities, but also can cap-
ture the full-spectrum, long-term excitation effects among
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the interactions, encoding these effects and their time-
decaying patterns into the latent factors to reveal the struc-
tures within the complex temporal dependencies. Specifi-
cally, we use the latent factors to construct a set of mutually
excited Hawkes processes, where each process samples the
occurrences of a particular interaction. We use a Gaussian
process (GP) prior to sample the background rate of each
interaction as a (nonlinear) function of the latent factors
of the participating entities, so as to capture and embed
the complex yet static relationships between those entities.
We then propose a novel triggering function that uses the
kernel (similarity) of the latent factors to model the trig-
gering strengths and their (time) decaying rates for all the
previously happened events. In this way, various excitation
(causal) patterns are encoded into the latent factors, from
which we can discover clustering structures in terms of the
excitation effects. For scalable inference, we use the vari-
ational sparse GP framework (Hensman et al.| [2013)) and
Jensen’s equality on the log rate function, to derive a fully-
decomposed log model evidence lower bound. Based on the
bound, we develop an efficient stochastic optimization algo-
rithm. Its complexity is only proportional to the mini-batch
size, and still estimates all the long-term excitation effects.

For evaluation, we examined our approach on four real-
world datasets. Our model often largely improves upon the
prediction accuracy of the existing methods that use Poisson
processes, discrete time factors, and local time dependency
window to incorporate the temporal information. The learn-
ing curves show that our inference algorithm converges fast
and is immune to overfitting. Finally, we looked into the
learned factors by our approach on crime reports data, and
found interesting clustering structures, such as neighbouring
patrol areas and strongly associated crime types.

2 Notations and Background

Suppose we observe K-way interactions that involve K
types of entities (e.g., customers, items and stores). In each
type k, the number of entities is di. We index each entity
of type k by iy (1 < i < di). Furthermore, we use a tuple
i = (i1,...,ix) to index a particular interaction of the
K types’ entities. We denote a sequence of [V interaction
events by S = [(s1,11),...,(sn,in)], Wwhere 517 < ... <
sy are the time stamps of the events, and each i, is the
index of the interaction for event n (1 < n < NN). Note
that there can be (many) duplicated indices in [iy,...ix],
because one interaction can occur multiple times. From the
observed interaction events S, we aim to learn the latent
factor representations for all the participant entities. We
denote the latent factors for each entity j of type k by an ry,
dimensional vector u?. Correspondingly, we can introduce
K latent factor matrices, = {U?,... UK}, to represent
all the entities. Each U¥* is dj, x rj, and its rows are the
latent factors for the entities of type k.

To estimate the latent factors from S, a straightforward
approach is to use tensor decomposition algorithms. We
can introduce a K-mode tensor ) € R%1%--Xdx \here
the k-th mode includes the dj, entities of type k. To con-
vert the events S into a tensor, a commonly used strat-
egy is to drop the time stamps, and count the occur-
rence of each interaction. We then set each tensor entry
Y(i1,...,ik) to the frequency of the corresponding interac-
tion. Given the tensor ), a classical decomposition approach
is Tucker decomposition (Tucker} [1966), which assumes
Y =W x; Ul xg... xg UK, where W € R 1% X7k
is a parametric tensor, and X is the mode-k tensor ma-
trix product (Kolda, 2006), which resembles the ordinary
matrix-matrix product. When we set all r, = r, and con-
strain W to be diagonal, Tucker decomposition becomes
CANDECOMP/PARAFAC (CP) decomposition (Harshman,
1970). While numerous tensor decomposition methods have
been proposed, e.g., (Chu and Ghahramani, [2009; Kang
et al., 2012;|Cho1 and Vishwanathan, [2014)), most of them
are inherently based on the CP or Tucker decomposition
form. To conduct count tensor decomposition, a Poisson
process likelihood is usually chosen to model the interaction
frequency in each entry i, p(y;) o exp(—MNT)A{* where
T is the total time span, and Tucker/CP decomposition is
applied to the rates {\;} or log rates {log(A;)} (Chi and
Koldal, 2012; Hu et al., |2015b). Despite their convenience,
both the Tucker/CP forms are mutilinear to the latent fac-
tors and hence cannot capture more complicated, nonlinear
relationships between the entities.

More importantly, dropping the time stamps and perform-
ing count tensor decomposition can ignore the temporal
dependencies among the events, which are crucial to cap-
ture the temporal patterns. A more refined strategy is to
discretize the time stamps into a few steps, e.g., weeks or
months, augment the count tensor with a time mode (Xiong
et al.l 2010; Schein et al., 2015 2016)), and then jointly
estimate the time factors {t1,to,...}. To allow a smooth
transition between the consecutive time factors, a condi-
tional Gaussian prior can be further assigned over each
tr, p(trlte—1) = N(tr|tp—_1,02I) (Xiong et al., 2010).
Nonetheless, the events within the same step are still consid-
ered to occur independently (i.e., Poisson process), hence
they still overlook their temporal influences on each other
and may miss interesting and important temporal patterns.

3 Model

To overcome the problems of the existing approaches, we
propose a Bayesian nonparametric factorization model for
the high-order interaction events, which can not only cap-
ture/embed the static, nonlinear relationships between differ-
ent entities, but also estimate various short-term/long-term
triggering (or causal) effects among the events, encoding
these effects and their decaying patterns into the latent fac-
tors. Our model is presented as follows.
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3.1 Hawkes Processes for Events Modeling

First, while Poisson processes (PPs) are commonly used
to model events data due to their convenience and ele-
gance (Schein et al.| [2015)), they assume independent in-
crements, namely, the events happened in (any) distinct
time ranges are independent to each other. Hence, Poisson
processes cannot capture the rich and subtle temporal de-
pendencies between the events. To overcome this limit, we
use Hawkes processes (HPs) (Hawkes, |1971), a much more
flexible point process for events modeling. In general, a
Hawkes process samples a sequence of events {¢1,...,tx}
according to a rate function of time ¢,

At = 2o+ 37 bt~ ta),

Ly <t

where )¢ is the static, background rate, and h(A;) is the
triggering kernel/function, describing the strength that a
previously happened event s,, triggers or causes the occur-
rence of an event at ¢t. The triggering effects usually decay
in time; hence a commonly used triggering function is the
exponential decay function,

M) = aexp(~ )

where « controls the strength, and 7 determines the decay-
ing rate. Given the event sequence {t1, ..., ¢y}, the joint
probability of the Hawkes process is

N
p{ts,.. ta}) = e o O T Ay) )

j=1

where 7' is the total time span over all the events. Therefore,
Hawkes processes separate the static (i.e., the background
rate) and temporal components (i.e., the triggering function)
that drives the occurrence of events, and is flexible enough to
capture all kinds of short-term/long-term excitation effects
from previously happened events, with their time stamps
taken into account. Hence, we will ground our model in the
Hawkes process framework.

3.2 Interaction Events Factorization

To factorize the observed high-order interaction events, we
use latent factors to construct a set of mutually excited
Hawkes processes. For each interaction i = (i1, ...,ix),
we use a Hawkes process to sample its event sequence.
The occurrence of i can be triggered/caused by not only
the same interaction happened before, but also different
previous interactions sampled by other Hawkes processes.
Specifically, the rate function of each interaction i is defined
as

A1) =X+ > i, it — sn), )

Sn <t

where \? is the background rate and h;, ;i (A;) is the trig-
gering kernel that describes the strength that each previously
occurred interaction i,, encourages/causes interaction i to
occur at time ¢. Note that i,, can be the same as or different
from i.

We now use the latent factors to model the background
rate and the triggering kernel. First, in order to capture
the static, nonlinear relationships between the entities that
participate in each interaction i, we model the background
rate )\? as a (nonlinear) function of their latent factors as-
sociated with i, x; = [u] ;...;uff ]. To allow a flexible
function estimation and to ensure the positiveness of the
background rate, we place a GP prior over its logarithm,
g(x;) = log Ao(x;) ~ GP(-|0, k(xi,%3)), where k(-,-) is
the covariance (kernel) function. Suppose we have m dis-
tinct interactions @ = {ji,...,jm} in total, the function
values g = [g(%j,), - - -, 9(X;,,, )] hence follow a multivari-
ate Gaussian distribution,

p(gld) = N(g|0,K,im) 3)

where K,,,, is the covariance (kernel) matrix on
Xo = [Xj,---,X%j,, ], and each element [K,.m]rc
k(x;,,%;5.)(1 < r,c < m) is a covariance (kernel) func-
tion of the latent factors associated with the corresponding
interactions.

Next, in order to estimate a variety of the excitation effects
between the interactions and their decaying patterns, we
define the triggering function as

Ay

hi—i(A¢) = ka1 (%4, %) 'eXp(_m

) @

where k1 (-, ) and ks (-, -) are two kernel functions that mea-
sure the similarity between x;, and x;. In our model, the
excitation strength between two types of interactions i,, and
i, as well as how fast it decays along with time are deter-
mined by the similarity/closeness between the associated
entities. The closeness is measured by the kernel functions
(k1 and k») of the latent factor representations. The closer
the entities that participate in two interactions, the stronger
and longer the excitation effect. In this way, the excita-
tion effects and their time decaying patterns are encoded
into the latent factors, which enables us to uncover hid-
den structures underlying these temporal influences — e.g.,
clusters/communities of entities that more strongly and per-
sistently trigger each other to interact with other groups of
entities, e.g., “ordering the same types of food” and “buying
similar styles of bags/clothes”.

We assign a standard Gaussian prior over each latent
factor. Given the observed interaction events S =
[(s1,11),. .., (sn,1n)], the joint probability of our model,
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according to (), (3) and @), is given by

HHN (g\O Kinm)
T exp{- /

ieQ

p(S, g, U

(t)dt} H i, (5n)

where each \{ = exp (g(xi)).
4 Algorithm

We now present the model estimation algorithm. The exact
inference for our model is computationally infeasible for
large data due to the GP likelihood in (3), which requires us
to compute an m x m kernel matrix K,,,,, and its inverse.
When the number of distinct interactions (i.e., m) is large,
the computation is infeasible. Moreover, the calculation of
each \;, (sp) (see (9)) needs the triggering kernel from all
the previously happened events {s1,...,s,—1} (see (2)),
and hence is very expensive when the number of observed
events (i.e., V) is large. To scale up to both large m and
N, we use sparse variational GP framework (Titsias| 2009
Hensman et al. |2013)) and Jensen’s inequality to derive a
fully-decomposable model evidence lower bound (ELBO),
based on which we develop an efficient stochastic optimiza-
tion algorithm.

4.1 Fully-Decomposable Evidence Lower Bound

Specifically, to use sparse GP, we first introduce a small
set of pseudo inputs Z = [z1,...,7]| where | < m. We
denote the values of the latent function g on Z by b =
[9(z1),...,9(z;)]. Since g(-) is sampled from GP, we have
its projection on Z and X, (the latent factors associated
with all the distinct interactions, see @), namely b and g,
jointly follow a multi-variate Gaussian distribution where
the covariance matrix is a kernel matrix on both Z and X,.
We can further decompose their joint probability by

p(b,g) = p(b)p(g/b) (6)

where p(b) = N (b|0,Ky) and p(g|b) is a conditional
Gaussian distribution, p(g|b) = N (g|K,u K}, 'b, Kppm —
Klel_llKlm). Here K; is the covariance (kernel) matrix
on Z, K,,; is the cross covariance matrix between X and
Z where each element K|, = k(x;,,2.), and K;,,, =
K;l. We now can augment the joint probability of our
model with the pseudo outputs b,

p(b)p(g/b)p(S,U|g) @)

where p(S,U|g) = Hk: sz N(ufk |07 I) HieQ exp{ -
fOT Ai(t)dt} TIN ) A, (s5). Note that when we marginal-
ize out b, we recover the original probability (5). Based on
(@), we now construct a variational evidence lower bound
to avoid computing the full covariance matrix K,,,,, and its

p(S,g,b,U) =

inverse which are prohibitively expensive for large m. To
this end, we introduce a variational posterior for b and g,

q(b,g) = q(b)p(g|b) ®)

where q(b) = N (b|u, X) is a Gaussian distribution. To en-
sure the positive definiteness of 3 and to ease computation,
we further parameterize 3 by its Cholesky decomposition,
3 = LLT where L is a lower triangular matrix. Then we
can derive the variational lower bound from

p(Sa g, ba u) }

q(b, g)
From (7)) and (8], we can see that the conditional Gaussian
term p(g|b) is cancelled in the fraction inside of the loga-
rithm. This is the key step to reduce the cost, because the

conditional covariance is a giant m X m matrix that includes
K,,». We can arrange the terms and obtain

L =log (p(d)) — KL(q(b)||p(b TZE ey(x,)
ieQ

_ Z Z/ i, —i(t — sp)dt + Z Eq[IOg ()\in (Sn))}v

ieQn=1v5n n=1

L =Eypg[log

()]

where p(U) = T[,I[;, N(u}[0,1) and KL is the
Kullback-Leibler divergence. Note that to calculate each
expectation term, we do not need to use the full variational
posterior ¢(b, g), because it only involves one particular
interaction and all the other elements in g are marginalized
out. Take E, [e9*1)] for an example. We only need to use
q(b, g(xi)) = q(b)p(g(xi)|b) to calculate the expectation.
Here p(g(x;)|b) = N (g(xi)|7i(b), 0f) is a scalar condi-
tional Gaussian distribution, where ~;(b) = kilellb, and
0‘i2 = ki — kilKﬁlkli, ky = [k(Xi, Zl), ceey ]{Z(Xi, Zl)] and
k= kiTl. Hence the computation is cheap.

However, it is still expensive to calculate each log rate func-

tion log (i, (s,)) in @). According to (2), this is a log
summation term, and we have

N
=log (A, + D 8(s; < sn)hi, i, (Anj))
j=1

log ()‘ln ( ))

where §(-) is an indicator function and A,,; = s, — s;.
Hence, the complexity is proportional to the number of
observed events N. When N is large, it is very costly.
To address this issue, we can partition the events into
mini-batches of size M, B = {Bi,...,By/n}. Then

we have \;, (s,) = AP+ M S A S L 6(s; <
sn)hi, i, (A ;). We can view the rate as an expectation,
i, (Sn) = Ep( )[ X7, where p(k) = 4L, k can take values

from {1,...,N/M}, and

N
Xp=x + 7 > 6(sj < sn)hiysi, (Anj). (10)
JEBg



Zhimeng Pan, Zheng Wang, Shandian Zhe

Therefore, we can use Jensen’s inequality to obtain

log ()\ln( )) = IOg(EP(k) [(X%]) > Epk) [log(X})]-

We substitute this lower bound for each log rate term
log (Ai, (sn))in (@), and obtain a fully-decomposable ev-
idence lower bound,

) =T Ey[e?™V]

£! =log (p(U1)) — KL(q(b)|Ip(b
ie@

N

—ZXMPWﬂ )+ S By By flog (K]

ieQn=1 n=1
(11)

In this way, we move most of the summation in each
log ()\in (Sn,)) to the outside of log, leaving a tiny amount of
summation (over the mini-batch) inside, i.e., X;'. Based on
the fully-decomposed new bound, we can develop efficient
stochastic optimization for model estimation.

4.2 Stochastic Optimization

We aim to maximize the evidence lower bound £ in (TT)) to
estimate the variational posterior g, the latent factors and the
other parameters. Despite the decomposed form of £/, it is
expensive to compute because of the summation and double
summation terms. In order to develop an efficient optimiza-
tion algorithm, we further partition the distinct interactions
Q into mini-batches of size D, Q = {Q1,...,Qm/p}. We
partition the events into mini-batches of size F'. Note that
we can re-use the previous partition B or choose a new one.
We leave the flexibility here, and denote the event batches
by C = {C1,...,Cn/r}. Now we arrange L/ as

ZZ

£/ = —KL(q(b)|p(b

IEQJ
m . o
S (i in, sa) + log (p(1)

D F
22N
jot i€Q;,neCy
F M
TEAY T

neCy,keBy

69 x,)

N ,
+Eqlog(XP), (12)

where ¢(i, 1,,, sp,) f hi, —i(t—s,)dt and X[ is defined
in (T0). Then the bound can be viewed as the expectation of
a stochastic objective,

Ll = = Epk),p(e), P(U)[Ek o) (13)

where p(v) = 2,0 € {1,...,m/D}, p(a) = &, a €
{1,...,N/F}, and
£ o =108 (1)) = KL(g(b) p(b))
_ Mg o] _ mN
T.Z DIEq[eg ] | 3 5 0 in.sn)
16Qu IEQzunECa
N n
+ Z qu log(X7). (14)
neCy,kEBy,

Now, we can develop a stochastic optimization algorithm
based on (T3)). Each time, we first sample a mini-batch Q,,,
By, and C’a, and then compute the gradient of the stochastic
bound £ kw10 (T4) as an unbiased stochastic gradient of
£7. Note that E, [e9*4)] is analytical and so is the gradient.
However, the expectation term [E,[log(X})] is intractable
to compute, because the exponential of the latent function
value, )\O = e9in) is inside the log (see (10)). To address
this problem we use the reparameterization trick (Kingma
and Welling| 2013)). We first generate a parameterized sam-
ple b = p + Lz where p ~ N(0,1). Then, we generate a
parameterized sample for g(x; ), G, = ¥i(b) + oie where
e ~ N(0,1). We substitute g;,, for g(x;, ) in each X, and
hence can obtain an unbiased stochastic estimate of E£ v
We then calculate the gradient of that estimate, which will
be an unbiased stochastic gradient of lji’a , and in turn
an unbiased stochastic gradient of £/. Then we can use
any stochastic optimization algorithm to maximize £7, so
as to jointly update the variational posteriors ¢(b), latent
factors U, kernel parameters and the other parameters. The
computation of the stochastic gradient (see (14)) restricts
the double summation to be across the mini-batches only,
and hence can largely reduce the cost.

4.3 Algorithm Complexity

The time complexity of our algorithm is O(Dg Fy + Fo Mo+
(Do + Fy)I3) where Dy, Fy and M are the mini-batch
sizes of Q, C and B respectively. Therefore, the compu-
tational cost is proportional to the mini-batch sizes. The
space complexity is O (1% + Zle dyry) which is to store
the covariance matrix of the pseudo outputs b and latent
factors U.

5 Related Work

High-order interactions are naturally represented by multi-
dimensional arrays, or tensors, and analyzed by tensor de-
composition. Canonical tensor decomposition approaches
include CP (Harshman, [1970) and Tucker (Tucker, |1966)
decompositions, based on which many other models or algo-
rithms have been developed (Shashua and Hazan, 2005}, |Chu
and Ghahramanil 2009} \Sutskever et al., 2009} |Acar et al.|
2011}, Hoff, 2011} [Kang et al.| 2012} [Yang and Dunson),
2013t Rai et al.l 2014; |Choi and Vishwanathan, 2014} Hu
et al.,|2015a; Rai et al., [2015), just to name a few. Recently,
a few nonparametric Bayesian decomposition methods (Xu
et all 2012; Zhe et al., 2015} 2016) were proposed to esti-
mate nonlinear relationships in data, and have been shown
improved prediction accuracy upon the the multilinear meth-
ods. When dealing with temporal information, traditional
methods either simply decompose the counts (Chi and
Koldal 2012} [Hansen et al., 2015; [Hu et al.l 2015b), or dis-
cretize the time stamps into a few time steps, and perform
the count decomposition across the time steps (Xiong et al.
2010;/Schein et al.}2015,2016)). Although very useful, these
methods overlook rich and subtle temporal dependencies
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among the interactions, and may miss important temporal
patterns. Recently, Zhe and Dul (2018)) used the Hawkes
processes to capture the local triggering effects between the
interactions.They set a time window, and assume only the
preceding events in the window have the excitation effects.
To ensure their inference algorithm to be scalable, they have
to set the window size to be small enough, say, a few hun-
dreds. By contrast, our model does not impose a window,
and estimates the excitations from all the preceding events,
short-term and long-term. In addition, Zhe and Du| (2018)
assumes the triggering kernel has a constant decaying rate
across all the interactions. Our approach assumes heteroge-
neous decaying rates and hence is more flexible. We model
the decaying rate as another kernel of the latent factors, and
hence can encode more temporal effects into the latent factor
representations. Our approach can be considered a natural
generalization of Zhe and Du|(2018))’s model.

Hawkes processes (HPs) are a popular family of point pro-
cess models to study the mutual triggering relationships
for all kinds of events. There have been many works that
use HPs to uncover temporal relationships in different ap-
plications, such as (Blundell et al.| 2012; Tan et al., [2016}
Linderman and Adams) 2014; |Du et al., 2015; [He et al.,
2015; [Wang et al.l 2017). Meanwhile, many works have
also been proposed for general learning of HPs, such as non-
parametric triggering kernel estimation (Zhou et al., 2013)),
learning the Granger causality (Xu et al., [2016), learning
short doubly-censored event sequences (Xu et al.,[2017) and
online estimation (Yang et al.,2017). Recently,[Mei and Eis+
ner| (2017) proposed neural Hawkes processes, which can
model all kinds of complex temporal dependency among
the event through a continuous LSTM. Different from these
excellent works, our work places a factorization model in
a Hawkes process framework, so as to capture and embed
abundant, short-term and long-term excitation effects from
high-order interaction events.

6 Experiment

6.1 Predictive Performance

Datasets. We first examined the predictive performance
of our approach. To this end, we used the following four
real-world datasets. (1) UF d_l the reports of UFO sightings
over the last century. We extracted the list of two-way
interactions (UFO shape, city). The unique numbers of UFO
shapes and cities are 28 and 13,713, respectively. We have
70,418 observed interactions from which 45,045 are distinct
from each other. (2) Articleﬂ a 12-month log (03/2016 -
02/2017) extracted from CI&T’s Internal Communication
platform (DeskDrop), including the user operation history
on the shared articles, such as LIKE and FOLLOW. We

lhttps://www.kaggle.com/NUFORC/ufof
sightings/data

“www.kaggle.com/gspmoreira/articles—
sharing-reading-from-cit-deskdrop/data

extracted the list of three-way interaction (user, operation,
article id). The number of unique users, operations and
articles are 1895, 5 and 2, 987, respectively. The number
of the observed events is 72, 312 in which there are 50, 938
distinct interactions. (3) SLC-Crim police case reports
from Salt Lake City, Utah, in the year of 2014. We extracted
the events of two-way interactions (beat, crime type) where
each beat represents a police patrol area. The occurrence
of one interaction means one particular type of crime was
reported in the specific patrol area (i.e., beat). We have 24
different beats and 26 crime types. The number of observed
events is 58,680 and there are 597 unique interactions. (4)
Chicago—Crimeﬂ police case reports from Chicago, 2018.
Similar to SLC-Crime, we extracted the events of (beat,
crime type). In Chicago, we have 276 different beats and 32
crime types. The total number of occurred interactions is
262,698 in which 5,757 are unique.

Competing approaches. We compared our method with
the following classical and/or state-of-the-art tensor factor-
ization approaches that incorporate the temporal informa-
tion. (1) CP-PTF, the homogeneous Poisson process (PP)
tensor decomposition that uses CP to decompose the event
rate of each entry. We applied CP to the logarithm of the
rates to ensure positive predictions, without the need for
extra constraints on the latent factors. (2) CPT-PTF, which
is similar to (Schein et al., 2015). We discretized the time
points into steps and augmented the tensor with a time mode.
We then introduced time factors for each step. Inside each
time step, we still used PPs to decompose the logarithm of
event rates. Following (Liang Xiong, 2010), we assigned
a conditional Gaussian prior to capture the dependency be-
tween the time factors. (3) CP-NPTF, non-homogeneous
Poisson process tensor factorization where the event rate
of each entry i is defined as \;(t) =t - exp (CP(i)). Here
CP(i) is the CP decomposition of the entry i. (4) GP-PTF,
the PP tensor factorization using GPs to model the logarithm
of event rate as a (nonlinear) function of the latent factors.
This is the same formulation of our approach in modeling
the background rate. (5) GP-NPTF, non-homogeneous PP
tensor factorization using a GP to replace the CP decompo-
sition in the rate defined for CP-NPTF. (6) HP-Local (Zhe
and Dul [2018)), Hawkes process event-tensor decomposition
that uses a local window to define the rate function so to
capture the local excitation effects between neighbouring
interaction events.

Experimental settings. We varied the number of latent
factors from {2, 5, 8, 12}. For all the methods that involve
GPs, we used the same variational sparse GP framework
as in our approach, and set the number of pseudo inputs
to 128; we used SE-ARD kernel. We implemented our

3https ://opendata.utah.gov/browse?
category=Public%20Safety

dhttps://data.cityofchicago.org/Public-
Safety/Crimes—-2018/313m-jwuy
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Figure 1: Test log likelihood on each dataset with different numbers of latent factors (top row), and the learning curve when
the number of latent factors is set to 8 (second row). CPT-PTF-T{5,10,20} denote running CPT-PTF with 5, 10 and 20 time
steps. HP-Local-{100, 300} means running HP-Local with window size 100 and 300.

approach with TensorFlow (Abadi et al.} [2016), and used
ADAM (Kingma and Bal, 2014) for stochastic optimization.
We set the mini-batch size to 64. We chose the learning
rate from {5 x 1074,1073,3 x 1073,5x 1073, 1072}. We
ran each method for 50 epochs, which has already shown
convergence. For HP-Local, we used the original MATLAB
implementatiorﬂ for UFO, Article and SLC-Crime. How-
ever, it was too slow on Chicago-Crime, which includes
a much larger number of events; so we re-implemented
HP-Local with TensorFlow and used ADAM for stochastic
optimization. We chose the same settings, e.g., the mini-
batch size and range of learning rates, as in our method.
All the other approaches were implemented with MATLAB.
For training, we used the first 40K, 50K, 40K and 200K
events from UFO, Article, SLC-Crime and Chicago-Crime,
respectively. We used the remaining 30.4K, 22.3K, 18.7K
and 62.7K events for test. For CPT-PTF, the number of
time steps was varied from {5, 10, 20}. For HP-Local, we
examined the window size from {100, 300}. Note that we
used very long test event sequences to examine our method’s
performance in capturing long-term temporal effects. We
calculated the test log-likelihood of each method, and report
the results in Figure[I]

Results. As we can see from Figure [Th-d (top row), our
approach consistently outperforms all the competing meth-
ods, in many cases by a large margin (e.g., see the results
on UFO, Article and SLC-Crime). Hence, it demonstrates

Shttps://github.com/yishuaidu/Stochastic—
Nonparametric—Event-Tensor-Decomposition

the advantages of our factorization approach in terms of
prediction accuracy. Note that the second best method is
always HP-Local (see the top sub-figures in Figure [Th-d),
showing that capturing the temporal dependencies among
the interactions is critical to achieve superior predictive per-
formance. The test log-likelihoods of many baselines are
close and so their curves overlap. However, in general, CP
based approaches are comparable to or worse than GP-based
methods (see CP-NPTF, represented by the green curve, for
an example in Figure[Th-d). Therefore, it confirms the ad-
vantage of the nonlinear decomposition, and also implies the
presence of the nonlinear relationships between the entities
in the data.

We also examined the learning behaviour of our approach,
as shown in Figure [ e-h. As we can see, our algorithm
converges fast. On each dataset, the test log-likelihood
achieved the maximum value around 35 epochs and kept
stable until the total 50 epochs were finished (although in
some cases with mild perturbations). Overall, there are
no obvious over-fitting phenomena. The reason might be
that our training objective is a lower bound of the model
evidence (so is HP-Local), which can effectively prevent
our model from over-fitting the training data.

6.2 Structure Investigation

Next, we looked into the hidden structures that can be dis-
covered by our approach. To this end, we set the number
of latent factors to 2, and run our algorithm on SLC-Crime
and Chicago-Crime. We first ran the k-means algorithm
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Figure 3: Clusters of the latent factors of the crime types in
Chicago-Crime data.

on the learned factors of different beats (i.e., police patrol
areas) from SLC-Crime, and found 5 clusters. Note that we
used BIC to select the optimal cluster number. As shown in
Figure[2]a, these latent factors have clear structures. Inter-
estingly, these clusters are adjacent successively rather than
stay away from each other, implying that their actual loca-
tions might be neighbouring as well. To verify this and also
examine the distribution of the clusters of the beats in real
world, we drew the locations (i.e., latitudes and longitudes)
of all the crime events in the data. The locations that belong
to the same beat were drawn with the same color, which is
consistent with the whole cluster the beat belongs to. As
we can see from Figure |z| b, the beats in the same cluster
are often neighbouring each other, and further expand to a
larger region. This is reasonable, because the crimes can

trigger each other in neighbouring areas, for example, gang-
sters often fight in same or nearby blocks for revenge or
competing particular turfs. From Figure[2]b, we can also see
that different clusters of beats, forming larger regions, are
adjacent successively — this is consistent with the cluster
locations in terms of the factor representations.

Next, we ran the k-means algorithm on the latent factors of
the 32 crime types from Chicago-Crime. Again, we used
BIC to identify the optimal cluster number, and found 5
clusters. From Figure[3] we can see the structures are very
clear, implying an interesting relationships of different types
of crimes. For example, STALKING and SEX OFFENSE
are in cluster 1. The two crimes are strongly associated —
many victims were sexually offended after being stalked,
and in California, people who stalk will be registered as a sex
offendelﬂ For another example, ARSON and ROBBERY
are in the same cluster as well — the two crimes can be
associated as well, after robbery, the criminals might commit
arson to distract the police so as to find more time to escape.

7 Conclusion

We have presented a Bayesian nonparametric model to fac-
torize high-order interaction events. Our model can capture
and embed nonlinear relationships between different entities,
as well as various long-term/short-term excitation effects
among the events and their decaying patterns. In addition,
our model estimation algorithm is efficient and scalable to a
large number of events and interaction types.

®https://victimsofcrime.org/our-programs/
past-programs/stalking-resource-center/
stalking-laws/criminal-stalking-laws-by—
state/california
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