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Appendix A Proof of Theorem 1

The following lemma formalizes to prove Eq. (16) in the paper. First, let ✏⇤ = ✏0
PM�1
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Lemma 2 Suppose network parameter w⇤ learned by minimizing LGen-CUDE satisfies Assumption 2. Then,
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Proof: We have the following chain of equations.
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in which (2) follows from Lemma 1 and (1), (3) follows from the Cauchy-Schwarz inequality, and (4) follows from

the fact that L2-norm is smaller than the L1-norm, and (5) follows from Assumption 2.
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Lemma 3 Let R�(·) denote the quantizer that rounds each component of the argument probability vector to the
nearest integer multiple of � in (0, 1]. For M > 0 and � > 0, denote P̂� = R�(P̂). Then,
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Therefore,
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From Lemma 3, we can expect that for the su�ciently small �, performance of the denoisers using P̂�
and P̂

respectively, for computing the Bayes response will be close to each other.

Lemma 4 Consider P̂(X0|Y k
�k) and ✏⇤ defined in Lemma 2 and the performance target Dk
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where the E(·) in (8) stands for the conditional expectation with respect to P(X0|yk�k), which is the posterior

distribution induced from P k
xn ⌦ C. Now, the following inequality holds for each yk�k:
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in which (11) follows from the definition of the Bayes response. Therefore,
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in which (14) follows from Lemma 2. Note that di↵erence between two expected loss of denoiser based on the

Bayes response is bounded with the di↵erence between two probability vectors.
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Lemma 5 Consider P̂(X0|Y k
�k) and ✏⇤ defined above and define P̂�

= R�(P̂) as in Lemma 3. Then,
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Proof: We have the following chain of inequalities:
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in which (15) follows from the triangular inequality, (16) follows from (13) and replacing P̂ with P̂�
in (7), (17)

follows from applying the triangular inequality once more, (18) follows from Lemma 3, and (19) follows from

(14). Note that probability vectors P, P̂ in Lemma 4 replaced P̂, P̂�
in Lemma 5 respectively.
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Proof: We have the following:
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Note that if |i � j| > 2k, ⇤(xi, gk(Y
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di↵erence between empirical loss and expected loss is vanishing with high probability.
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Proof: We have
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in which (22) follows from considering the uniform convergence, (23) follows from the union bound, and (24)

follows from the crude upper bound on the cardinality |Gk
� |. Note that the window size k in the superscript of

upper bound for the cardinality ([
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distinction between them follows from di↵erence in modeling where Gen-CUDE tries to directly model the

marginal posterior distribution with neural network rather than the joint posterior of (2k + 1)-tuple.

Now, we prove our main theorm.
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Proof of theorem 1: We utilize all the Lemmas given above to prove the theorem. We have
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where (25) follows from the definition of LX̂�
NN

(xn, Y n
) and Dk

xn , (26) follows from triangle inequality, (27) follows

from applying Lemma 5 and Lemma 4, and (28) follows from Lemma 7. Thus, we proved the theorem.
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Appendix B Noise Channel Densities

Here, we show the noisy channel density {fx(y)}x2O used for the experiments in Section 5.2 and Section 5.3 of

the paper. Figure 3 shows the channel densities for the synthetic data experiments in Section 5.2, and Figure 4

shows the channel densities for the 454 and Ion Torrent data experiments in Section 5.3.

(a) |A| = 2 (b) |A| = 4

(c) |A| = 10

Figure 3: Noisy channel densities used for the synthetic data experiments.

(a) 454 Pyrosequencing (b) Ion Torrent

Figure 4: Probability ensities of the flowgram-values for the homopolymer lengths in each DNA sequencer. For

Ion Torrent, we estimated channel density using Gaussian kernel density estimation with bandwidth=0.6 on the

separated holdout dataset.
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Appendix C Normalized Error Rate Graph for DNA Experiments

Figure 5 shows the denoising performance measured by the Hamming loss. Note the similarity score in the

paper is computed after converting the integer-valued denoised sequence (homopolymer length) back to a DNA

sequence. We observe the error patterns are similar to those in Figure 2 of the paper.

(a) 454 Pyrosequencing (b) Ion Torrent

Figure 5: Normalized error rate for DNA source data.
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Appendix D Error Rate Graph for Randomized Quantizers

We note that the quantizer Q(·) can be freely selected for Gen-CUDE as long as the induced DMC, ⇧, is

invertible. To show the small e↵ect of the quantizer to the final denoising performance, we designed two additional

experiments for the |A| = 4 case of Figure 1(a) in the paper. As described in the first paragraph of Section

5.2, the source symbol was encoded as {+3,+1,�1,�3} and the decision boundaries of the original Q(·) was

{�2, 0,+2}.

(a) Normalized Error Rate

(b) Average Error Rate

Figure 6: Error Rate for Five Randomized Quantizers

In Figure 6(a), we show the results of using five randomized quantizers, of which decision boundaries were ob-

tained by uniform sampling from the intervals, [�3,�1], [�1,+1], [+1,+3], respectively. The 5 di↵erent resulting

quantizers’ decision boundaries were the following:

• Seed 0 : [�1.59, 0.73, 2.09]

• Seed 1 : [�1.18, 0.27, 2.46]

• Seed 2 : [�2.29,�0.59, 2.49]

• Seed 3 : [�1.96,�0.41, 1.12]

• Seed 4 : [�1.13, 0.81, 1.61].

The five figures in Figure 6(a) show the performance for each quantizer, and Figure 6(b) shows the average

error rate of them, which looks quite similar the one shown in Figure 1(a). We can clearly observe that the

di↵erent quantizers have little e↵ect in the final denoising performance for Gen-CUDE. In contrast, we observe

that Gen-DUDE or Quantize+DUDE have more sensitivity to the choice of the quantizer.
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Figure 7: Average Error Rate for Non-square Channel Matrix Case

Furthermore, we note that our Gen-CUDE does not require to have the same number of the quantized symbols

as the input symbols, either. In such cases, the ⇧�1
can be simply replaced with a pseudo-inverse as long as

⇧ has full row-rank. Figure 7 is the result of averaging the performances of using five randomized quantizers,

of which decision boundaries are randomly selected from the intervals [�2.7,�2.3], [�1.7,�1.3], [�0.7,�0.3],
[0.3, 0.7], [1.3, 1.7], [2.3, 2.7], respectively. (Thus, Q(·) has 7 regions.) The used boundaries are as following:

• Seed 0 : [�2.42,�1.35,�0.48, 0.57, 1.44, 2.36]

• Seed 1 : [�2.34,�1.45,�0.41, 0.55, 1.55, 2.32]

• Seed 2 : [�2.56,�1.62,�0.4, 0.59, 1.56, 2.55]

• Seed 3 : [�2.49,�1.58,�0.68, 0.59, 1.49, 2.51]

• Seed 4 : [�2.33,�1.34,�0.58, 0.5, 1.67, 2.64].

Again, we see little di↵erence in the performance for Gen-CUDE compared to Figure 7 and Figure 1(a) (|A| = 4

case) in the manuscript.


