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A PROOFS

Proof for Definition 1 We write a proof in the case
where & = {R?}. If K > 1, the proof can be applied
independently on each set of the partition.

Let (fn)nen be such that f,(0) =0 for all n € N and
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Let g € supp(u). Then there exists C' > 0 such that
for all n € N, ||V fn(20)|| < C. Indeed, suppose this is
not true. Take r > 0 such that V := u[B(xo,r)] > 0.
By Prokhorov theorem, there exists R > 0 such that
v[B(0,R)] > 1— 4. Then for C > 0 large enough,
there exists an n € N such that:
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which contradicts the definition of f,, when C' is suffi-
ciently large.
Then for z € RY,

IVn(@)|l < iz =zl + [V fu(zo) || < Lllz — o+ C.

Since (Vfp)nen is equi-Lipschitz, it converges uni-
formly (up to a subsequence) to some function g by
Arzela—Ascoli theorem. Note that g is L-Lipschitz.
Let € > 0 and let N € N such that n > N =
IV fn—gllo <€ Then for n > N and = € R9,

(@) = \ / <an<m>,x>dt] < lell(lglleo + )

so that (f(z)) converges up to a subsequence. Let ¢, 1)
be two extractions and «, 3 such that fum,)(z) = «
and fyn)(z) — B. Then
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This shows that (fy,)nen converges pointwise to some
function f,. In particular, f, is convex. For z € R?,
using Lebesgue’s dominated convergence theorem,
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so fy is differentiable and V f, = g. Using Lebesgue’s
dominated convergence theorem, uniform (hence point-
wise) convergence of (Vfp)nen to Vf, shows that
(Vin)ape — (Vfo)gp. Then classical optimal trans-
port stability theorems e.g. (Villani, 2009, Theorem
5.19) show that

Wa [(V f)epav] = Tim Wi [(Vf,)epv]
= inf Wal(V)ur],

i.e. f, is a minimizer.

Proof of Theorem 1 For f € Fore, Viip =
S 0y f(s,)- Writing z; = V f(x;), we wish to mini-
mize W$ (37", a;85,,v) over all the points z1,...,2, €
R? such that there exists f € Fo..e with Vf(z;) =2
for all ¢ € [n]. Following (Taylor, 2017, Theorem 3.8),
there exists such a f if, and only if, there exists u € R"
such that for all k € [K] and for all i, 5 € I,
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Then minimizing over f € Fy 1 ¢ is equivalent to mini-
mizing over (z1,...,2,,u) under these interpolation
constraints.

The second part of the theorem is a direct application
of (Taylor, 2017, Theorem 3.14).

Proof of Proposition 1 Let f : R — R. Then
f € Fore if and only if it is convex and L-smooth
on each set Ey, k € [K], i.e. if and only if for any
ke[K],0< f"|g, < L.

For a measure p, let us write F}, and ), the cumulative
distribution function and the quantile function (i.e.
the generalized inverse of the cumulative distribution
function). Then Qvy,, = VfoQ,.

Using the closed-form formula for the Wasserstein dis-
tance in dimension 1, the objective we wish to minimize
(OVQI‘ f S ‘F&L,g) is:

W2(fip.v) = / 0 Qut) — Qu(t)) dt.
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Suppose p has a density w.r.t the Lebesgue measure.
Then by a change of variable, the objective becomes
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Indeed, @, o F}, is the optimal transport map from p
to v, hence its own barycentric projection. The result
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follows.

Suppose now that p is purely atomic, and write p =
St aiby, with 2 < ... < x,. For 0 <14 < n, put
a; =Y p_ ax with ag = 0. Then
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Since Y i 1fo” Q.(t) zdt——(fa‘ Q.(t) dt) does

not depend on f, minimizing W3 (fﬁ,u, v) over [ €
Fo,1,e is equivalent to solve
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There only remains to show that 7(z;) =
i L Qu(t)dt. Using the definition of the condi-
tlonal expectation and the definition of :
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Proof of Proposition 2 Since & = {R}, and using
the triangular inequality for the Wasserstein distance,

Wa(p,v) = Wa(u, V)‘ = (Wa(p,v) = Wa(u, anw)‘
< W, (vfnw, 1/)
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We now successively upper bound terms (4), (5), (6).

Since V fn is L-Lispchitz, almost surely:

(4) = Wa (Vfugts Vugiin) < LWa (s fin) — 0
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since almost surely, fi,, — p and p has compact support,
cf. (Santambrogio, 2015, Theorem 5.10). For the same
reason, almost surely:

(6) =W, (ﬁ»my) — 0.
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Finally, since f, € F; ¢ and an is an optimal SSNB
potential, it almost surely holds:

(5) = Wa (¥ fugfins ) < Wa ( Fugiin, i)
e Wy (Vf*u,u,u) =0

because (fin,0n) —
Vf*ﬁﬂf = V.

(1, v), and by definition of f,,
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