
Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

Appendix to
Uncertainty in Neural Networks:

Approximately Bayesian Ensembling

A Proofs

Definition 1. Data likelihood and parameter likelihood

We take care to define two versions of the likelihood, one in output space, PD(D|✓✓✓) (data likelihood), and one
in parameter space, P✓✓✓(D|✓✓✓) (parameter likelihood). Both return the same values given some data set D and
parameter values ✓✓✓, and hence are exchangeable, but their forms are subtly di↵erent.

The data likelihood, PD(D|✓✓✓), is defined on the output domain. Typically the log of this, log(PD(D|✓✓✓)), might be
optimised as the cross entropy loss or (negative) mean squared error.

In contrast, P✓✓✓(D|✓✓✓) defines a likelihood function in the parameter domain.

Illustrative Example

Consider a linear regression model with dataset, D, consisting of tuples, {x, y}; a vector of predictor variables
x 2 Rp, predicting a single scalar y 2 R. If the model is of the form, ✓✓✓

Tx, a Gaussian data likelihood with
variance �

2

✏ on the output might be assumed.

This leads to a data likelihood for the target, y,

PD(D|✓✓✓) = N (y|✓✓✓
Tx, �

2

✏). (10)

For this linear model, the corresponding parameter likelihood is a multivariate normal distribution,

P✓✓✓(D|✓✓✓) / N (✓✓✓|µµµlike,⌃⌃⌃like). (11)

where, µµµlike 2 Rp & ⌃⌃⌃like 2 Rp⇥p, can be found analytically. They are implicitly functions of the dataset, D,
although to lighten notation we do not write this. Subsequently we also drop the explicit referral to ✓✓✓.

Note that whilst both the data and parameter likelihood follow a normal distribution, they are defined in di↵erent
domains.

The correspondence between a Gaussian data likelihood and multivariate normal parameter likelihood is only exact
for a linear regression model. For non-linear models with Gaussian data likelihoods, and other data likelihoods,
the parameter likelihood is not in general multivariate normal. Nevertheless it can be convenient to model it as
such.

Standard Result 1. Product of two multivariate Gaussians (§8.1.8, The Matrix Cookbook, 2008)

N (µµµlike,⌃⌃⌃like)N (µµµprior,⌃⌃⌃prior) / N (µµµpost,⌃⌃⌃post) (12)

⌃⌃⌃post = (⌃⌃⌃�1

prior + ⌃⌃⌃�1

like)
�1

, (13)

µµµpost = ⌃⌃⌃post⌃⌃⌃
�1

priorµµµprior + ⌃⌃⌃post⌃⌃⌃
�1

likeµµµlike. (14)

Standard Result 2. A�ne transform of a normal random variable (§8.1.4, The Matrix Cookbook, 2008)

x ⇠ N (µµµ,⌃⌃⌃), (15)

y = Ax + b, (16)

y ⇠ N (Aµµµ + b,A⌃⌃⌃AT). (17)

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

Theorem 1. Assume that a model’s parameter likelihood follows a multivariate normal distribution, P✓✓✓(D|✓✓✓) /

N (µµµlike,⌃⌃⌃like), and the prior also, P (✓✓✓) = N (µµµprior,⌃⌃⌃prior). The posterior is then also multivariate normal,

P (✓✓✓|D) = N (µµµpost,⌃⌃⌃post).

Further assume availability of some function which returns MAP parameter estimates taking as input the location

of the prior centre, fffMAP(✓✓✓anc). In order that, P (fffMAP(✓✓✓anc)) = P (✓✓✓|D), then the required distribution of ✓✓✓anc is

also multivariate normal, P (✓✓✓anc) = N (µµµanc,⌃⌃⌃anc), where, µµµanc = µµµprior, and, ⌃⌃⌃anc = ⌃⌃⌃prior +⌃⌃⌃prior⌃⌃⌃
�1

like⌃⌃⌃prior.

Proof. Consider a model’s parameters having a multivariate normal prior,

P (✓✓✓) = N (µµµprior,⌃⌃⌃prior), (18)

where, ✓✓✓ 2 Rp, µµµprior 2 Rp, ⌃⌃⌃prior 2 Rp⇥p.

This theorem makes the assumption that the form of the parameter likelihood (def. 1) is multivariate normal,

P✓✓✓(D|✓✓✓) / N (µµµlike,⌃⌃⌃like) (19)

where, µµµlike 2 Rp, ⌃⌃⌃like 2 Rp⇥p. Here / is used since it is not a true probability distribution in ✓✓✓ so need not
sum to 1.

The posterior is calculated by Bayes rule. Recalling that data likelihood and parameter likelihood are exchangeable
(def. 1), and using Standard Result 1,

P (✓✓✓|D) =
PD(D|✓✓✓)P (✓✓✓)

P (D)
=

P✓✓✓(D|✓✓✓)P (✓✓✓)

P (D)
/ N (µµµlike,⌃⌃⌃like)N (µµµprior,⌃⌃⌃prior) / N (µµµpost,⌃⌃⌃post), (20)

where, µµµpost & ⌃⌃⌃post are given by eq. 14 & 13.

We introduce a further distribution, termed ‘anchor distribution’, which we enforce as multivariate normal,

P (✓✓✓anc) = N (µµµanc,⌃⌃⌃anc). (21)

It will be used as described in the main text (see figure 2 and algorithm 1) so that samples are drawn from the
anchor distribution, ✓✓✓anc ⇠ P (✓✓✓anc), with a prior then recentred at each sample, denoted Panc(✓✓✓),

Panc(✓✓✓) = N (✓✓✓anc,⌃⌃⌃prior). (22)

Note that this anchor distribution is in the same position as a hyperprior on µµµprior, but will have a subtly di↵erent
role. ⌃⌃⌃prior is unchanged from eq. 18,

Denote fffMAP(✓✓✓anc) as the MAP estimates given this recentred prior and the original likelihood from eq. 19.

fffMAP(✓✓✓anc) := argmax✓✓✓Panc(✓✓✓)P✓✓✓(D|✓✓✓) (23)

In order to prove the theorem, three things regarding fffMAP(✓✓✓anc) must be shown:

1. Its distribution is multivariate normal - denote mean and covariance µµµ
RMS

post ,⌃⌃⌃RMS

post ,

P (fffMAP(✓✓✓anc)) = N (µµµRMS

post ,⌃⌃⌃RMS

post), (24)

2. That µµµanc & ⌃⌃⌃anc can be selected in such a way that the mean of the distribution is equal to that of the
original posterior

µµµ
RMS

post = µµµpost, (25)

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

3. And also so that the covariance of the distribution is equal to that of the original posterior

⌃⌃⌃RMS

post = ⌃⌃⌃post. (26)

For a multivariate normal distribution, the MAP solution is simply equal to the mean of the posterior, µµµpost. For
the typical case this is given by eq. 14. In our procedure, the location of the prior mean has been replaced by
✓✓✓anc, so the MAP solution is given by,

fffMAP(✓✓✓anc) = ⌃⌃⌃post⌃⌃⌃
�1

prior✓✓✓anc + ⌃⌃⌃post⌃⌃⌃
�1

likeµµµlike (27)

= A1✓✓✓anc + b1 (28)

where two constants have been defined for convenience,

A1 = ⌃⌃⌃post⌃⌃⌃
�1

prior (29)

b1 = ⌃⌃⌃post⌃⌃⌃
�1

likeµµµlike, (30)

which is the same form as eq. 16. Hence, from Standard Result 2, if ✓✓✓anc is normally distributed, fffMAP(✓✓✓anc)
will also be normally distributed.

Regarding the mean of fffMAP(✓✓✓anc), we have,

E[fffMAP(✓✓✓anc)] = E[A1✓✓✓anc + b1] (31)

= A1E[✓✓✓anc] + b1. (32)

By choosing the anchor distribution to be centred about the original prior, E[✓✓✓anc] = µµµprior, we have,

= A1µµµprior + b1 (33)

= ⌃⌃⌃post⌃⌃⌃
�1

priorµµµprior + ⌃⌃⌃post⌃⌃⌃
�1

likeµµµlike, (34)

This is consistent with eq. 14 and proves that the means of the distributions are aligned when µµµanc = µµµprior.

Finally we consider the variance of fffMAP(✓✓✓anc), which we wish to equal ⌃⌃⌃post by choosing ⌃⌃⌃anc. Using the form
from eq. 28 and applying Standard Result 2,

Var[fffMAP(✓✓✓anc)] = Var[A1✓✓✓anc + b1] (35)

= A1Var[✓✓✓anc]A
T
1

(36)

= A1⌃⌃⌃ancA
T
1

(37)

We require Var[fffMAP(✓✓✓anc)] = ⌃⌃⌃post.
⌃⌃⌃post = A1⌃⌃⌃ancA

T
1
. (38)

Note that transposes of covariance matrices may be ignored since they are symmetric.

⌃⌃⌃anc = A1
�1⌃⌃⌃postA1

�1T (39)

= (⌃⌃⌃post⌃⌃⌃
�1

prior)
�1⌃⌃⌃post(⌃⌃⌃

�1

prior⌃⌃⌃post)
�1 (40)

= ⌃⌃⌃prior⌃⌃⌃
�1

post⌃⌃⌃post⌃⌃⌃
�1

post⌃⌃⌃prior (41)

= ⌃⌃⌃prior⌃⌃⌃
�1

post⌃⌃⌃prior (42)

= ⌃⌃⌃prior(⌃⌃⌃
�1

prior + ⌃⌃⌃�1

like)⌃⌃⌃prior (43)

= ⌃⌃⌃prior + ⌃⌃⌃prior⌃⌃⌃
�1

like⌃⌃⌃prior. (44)

This proves that the covariances of the two distributions are aligned when ⌃⌃⌃anc = ⌃⌃⌃prior +
⌃⌃⌃prior⌃⌃⌃

�1

like⌃⌃⌃prior.

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

Corollary 1.1. Following from theorem 1 (and under the same assumptions), set µµµanc := µµµprior and ⌃⌃⌃anc :=
⌃⌃⌃prior. The RMS approximate posterior is P (fffMAP(✓✓✓anc)) = N (µµµpost,⌃⌃⌃post⌃⌃⌃

�1

prior⌃⌃⌃post).

Proof. Independent of the choice of anchor distribution covariance ⌃⌃⌃anc, theorem 1 demonstrated that the
resulting posterior, P (fffMAP(✓✓✓anc)) is normally distributed, with mean equal to that of the true posterior µµµpost.

To discover the covariance of the resulting distribution, Var[fffMAP(✓✓✓anc)], we take eq. 37 and simply set,
⌃⌃⌃anc := ⌃⌃⌃prior.

Var[fffMAP(✓✓✓anc)] = A1⌃⌃⌃ancA
T
1

(45)

= A1⌃⌃⌃priorA
T
1

(46)

= ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃prior⌃⌃⌃
�1

prior⌃⌃⌃post (47)

= ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post (48)

Lemma 1.1. Following from corollary 1.1 (and under the same assumptions), when µµµanc := µµµprior, ⌃⌃⌃anc := ⌃⌃⌃prior,

the RMS approximate posterior will in general underestimate the marginal variance compared to the true posterior,

Var[fffMAP(✓anc)] < Var[✓|D].

Proof. We consider the marginal posterior of a single parameter, ✓ := ✓✓✓i, again assuming multivariate normal
prior and parameter likelihood. First consider the following rearrangement of eq. 48, beginning by noting,
⌃⌃⌃�1

prior = ⌃⌃⌃�1

post � ⌃⌃⌃�1

like.

⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post = ⌃⌃⌃post(⌃⌃⌃
�1

post � ⌃⌃⌃�1

like)⌃⌃⌃post (49)

= (I � ⌃⌃⌃post⌃⌃⌃
�1

like)⌃⌃⌃post (50)

= ⌃⌃⌃post � ⌃⌃⌃post⌃⌃⌃
�1

like⌃⌃⌃post (51)

To show that RMS generally underestimates the marginal variance, it must hold that diagonal elements of the
true posterior covariance matrix are greater than or equal to the same diagonal element of the RMS posterior.

Var[fffMAP(✓anc)] < Var[✓|D] (52)

diag(⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post)i < diag(⌃⌃⌃post)i (53)

substituting in the diagonal of the rearrangement in eq. 51,

diag(⌃⌃⌃post)i � diag(⌃⌃⌃post⌃⌃⌃
�1

like⌃⌃⌃post)i < diag(⌃⌃⌃post)i (54)

We know that ABA
T is positive definite if A, B are positive definite, and also that the inverse of a positive definite

matrix is positive definite (§9.6.4, §9.6.10, The Matrix Cookbook, 2008). The diagonal of a positive definite
matrix is positive. Hence, diag(⌃⌃⌃post⌃⌃⌃

�1

like⌃⌃⌃post)i > 0, and we have shown that Var[fffMAP(✓anc)] < Var[✓|D].

Lemma 1.2. This lemma follows from corollary 1.1. Again parameter likelihood and prior are assumed normally

distributed. The prior is additionally assumed isotropic. When µµµanc := µµµprior, ⌃⌃⌃anc := ⌃⌃⌃prior the eigenvectors (or

‘orientation’) of the RMS approximate posterior equal those of the true posterior.

Proof. From eq. 48, Var[fffMAP(✓✓✓anc)] = ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post. If the prior is isotropic, ⌃⌃⌃prior = �
2

priorI, then,

Var[fffMAP(✓anc)] = 1/�
2

prior⌃⌃⌃
2

post. Hence the prior only scales the eigenvalues, and doesn’t a↵ect the eigenvectors.
(Note that this won’t be the case for non-isotropic ⌃⌃⌃prior.)

Consider some matrix A and a specific eigenvalue �i and eigenvector vi so that, Avi = �ivi. It then follows that
if A is squared, A

2vi = A(Avi) = �iAvi = �
2

ivi. Hence eigenvalues are squared but eigenvectors are una↵ected.
This applies to the transformation ⌃⌃⌃2

post.

Hence both the square and the multiplication of prior covariance, 1/�
2

prior⌃⌃⌃
2

post, do not modify the original
eigenvectors of ⌃⌃⌃post and its orientation is una↵ected.

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

Theorem 2. For a two parameter model with normally distributed parameter likelihood and isotropic prior, the

RMS approximate posterior will in general overestimate the magnitude of the true posterior parameter correlation

coe�cient, |⇢|. However, if |⇢| = 1, then it will recover it precisely. We set µµµanc := µµµprior,⌃⌃⌃anc := ⌃⌃⌃prior.

Proof. From corollary 1.1, we have that the RMS approximate posterior is given by ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post. Let

⌃⌃⌃prior := �
2

priorI, the RMS approximate posterior is then given by 1/�
2

prior⌃⌃⌃
2

post. Denote the true posterior
covariance as the following 2⇥2 matrix.

⌃⌃⌃post =


a b

b c

�
(55)

For general covariance matrices, the correlation coe�cient, ⇢, can be found by solving, b = ⇢
p

ac.

Our RMS approximate posterior is given as follows.

1/�
2

prior⌃⌃⌃
2

post = 1/�
2

prior


a b

b c

� 
a b

b c

�
(56)

= 1/�
2

prior


a
2 + b

2
ab + bc

ab + bc b
2 + c

2

�
(57)

The correlation coe�cient here, denoted ⇢RMS, is found by solving, ab + bc = ⇢RMS

p
(a2 + b2)(b2 + c2).

To prove the correlation coe�cient is generally overestimated, we must show that ⇢
2

RMS > ⇢
2 when ⇢

2
< 1.

⇢
2

RMS > ⇢
2 (58)

(ab + bc)2

(a2 + b2)(b2 + c2)
>

b
2

ac
(59)

(ab + bc)2ac > b
2(a2 + b

2)(b2 + c
2) (60)

(a + c)2ac > (a2 + b
2)(b2 + c

2) (61)

a
3
c + ac

3 + 2a
2
c
2

> a
2
b
2 + a

2
c
2 + b

4 + b
2
c
2 (62)

a
3
c + ac

3 + a
2
c
2

> a
2
b
2 + b

4 + b
2
c
2 (63)

We now note that from the set up of the proof, b
2 = ⇢

2
ac. Since ⇢

2
< 1, we have, b

2
/ac < 1 =) b

2
< ac. We

can use this to provide an upper bound on the right hand side of eq. 63.

a
2
b
2 + b

4 + b
2
c
2

< a
2(ac) + (ac)2 + (ac)c2 (64)

< a
3
c + a

2
c
2 + ac

3 (65)

Coincidentally, this is precisely the inequality in eq. 63, that we were proving.

Alternatively, if |⇢| = 1 =) b
2 = ac, and ⇢

2

RMS = ⇢
2.

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

Definition 2. Extrapolation Parameters

We define extrapolation parameters as model parameters which have no e↵ect on the data likelihood of a training
dataset, but which nevertheless could influence model predictions made on a new data point.

Illustrative Example

Consider a fully-connected NN trained on the MNIST digit dataset. Further consider a preprocessing such that
the pixel values by default are set to 0, and where they contain part of the digit take values (0, 1].

Certain pixels may be zero across the entire training dataset, such as those in the corners of the image. First
layer weights connected to such pixels will never receive input across the whole training dataset. Hence, the
values of these parameter weights have no e↵ect on the data likelihood. However, the weights would still
influence predictions for some test image containing values for these pixels. Hence, these are named extrapolation
parameters, since they influence extrapolation properties of the model.

The top row of figure 5 empirically shows examples of flat likelihoods for precisely these types of weights on
MNIST.

Theorem 3. For extrapolation parameters (definition 2) of a model, setting µµµanc := µµµprior, ⌃⌃⌃anc := ⌃⌃⌃prior,

means the marginal RMS approximate posterior equals that of the marginal true posterior. This holds for any

distributional form of parameter likelihood.

Proof. Extrapolation parameters (definition 2) do not have any e↵ect on the data likelihood, therefore their
parameter likelihoods are flat. This means that their marginal posterior equals their marginal prior.

This results in a posterior covariance matrix structure as follows, where parameter i is an extrapolation parameter
(here shown in the first row for convenience), so has marginal variance equal to the prior variance and is
uncorrelated with all other parameters.

⌃⌃⌃post =

2

6664

�
2

prior,i 0 . . . 0
0 a22 . . . a2D
...

...
. . .

...
0 aD2 . . . aDD

3

7775

From corollary 1.1, Var[fffMAP(✓✓✓anc)] = ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post.

Var[fffMAP(✓✓✓anc)] =

2

6664

�
2

prior,i 0 . . . 0
0 a22 . . . a2D
...

...
. . .

...
0 aD2 . . . aDD

3

7775

2

6664

1/�
2

prior,i 0 . . . 0
0 b22 . . . 0
...

...
. . .

...
0 0 . . . bDD

3

7775

2

6664

�
2

prior,i 0 . . . 0
0 a22 . . . a2D
...

...
. . .

...
0 aD2 . . . aDD

3

7775

=

2

6664

�
2

prior,i 0 . . . 0
0 c22 . . . c2D
...

...
. . .

...
0 cD2 . . . cDD

3

7775

This shows that the marginal variance of the RMS approximate posterior equals that of the true posterior,
Var[fffMAP(✓✓✓anc)]i,i = [⌃⌃⌃post]i,i, for extrapolation parameters. Note that the values of the rest of the covariance
matrices (a’s, b’s, c’s) are irrelevant since these have no e↵ect on the marginals of interest.

This proof did not assume any specific distributional form of parameter likelihood, only that it is flat for these
extrapolation parameters.

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

Theorem 4. Set µµµanc := µµµprior,⌃⌃⌃anc := ⌃⌃⌃prior. The RMS approximate posterior will exactly equal the true

posterior, ⌃⌃⌃post, when all eigenvalues of a scaled version of ⌃⌃⌃post (scaled such that the prior equals the identity

matrix) are equal to either 0 or 1. This corresponds to posteriors that are a mixture of perfectly correlated and

perfectly uncorrelated parameters.

Proof. We will initially consider a scaled version of the parameter space. This conveniently allows standard
results for idempotent matrices to apply to the posterior covariance. A reverse scaling is subsequently applied to
show that results hold for the original unscaled version. Finally, we articulate arguments allowing relaxation of
the distributional assumptions.

Corollary 1.1 showed that the RMS approximate posterior is normally distributed and centered at the true
posterior mean, but with modified variance, N (µµµpost,⌃⌃⌃post⌃⌃⌃

�1

prior⌃⌃⌃post). This proof requires specifying conditions

that allow ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post = ⌃⌃⌃post to hold.

One solution is given by ⌃⌃⌃post = ⌃⌃⌃prior, and is a trivial extension of theorem 3. Here we consider alternative
solutions.

The two inputs into the inference process are the likelihood and prior covariances. Consider a scaling ⌃⌃⌃0
like :=

⌃⌃⌃�1/2
prior⌃⌃⌃like⌃⌃⌃

�1/2
prior and ⌃⌃⌃0

prior := ⌃⌃⌃�1/2
prior⌃⌃⌃prior⌃⌃⌃

�1/2
prior = I. The posterior for this scaled version will be denoted by

⌃⌃⌃0
post, and is given as follows.

⌃⌃⌃0
post = (⌃⌃⌃0�1

like + ⌃⌃⌃0�1

prior)
�1 (66)

= (⌃⌃⌃1/2
prior⌃⌃⌃

�1

like⌃⌃⌃
1/2
prior + ⌃⌃⌃1/2

prior⌃⌃⌃
�1

prior⌃⌃⌃
1/2
prior)

�1 (67)

= ⌃⌃⌃�1/2
prior(⌃⌃⌃

�1

like + ⌃⌃⌃�1

prior)
�1⌃⌃⌃�1/2

prior (68)

= ⌃⌃⌃�1/2
prior⌃⌃⌃post⌃⌃⌃

�1/2
prior (69)

Hence, unsurprisingly the same scaling applies to the posterior covariance, ⌃⌃⌃0
post = ⌃⌃⌃�1/2

prior⌃⌃⌃post⌃⌃⌃
�1/2
prior.

We now consider conditions under which ⌃⌃⌃0
post⌃⌃⌃

0�1

prior⌃⌃⌃
0
post = ⌃⌃⌃0

post holds. From our choice of rescaling, we have

that ⌃⌃⌃0�1

prior = I. So we require that ⌃⌃⌃02
post = ⌃⌃⌃0

post.

This conveniently allows use of results for idempotent matrices - defined as a square matrix, A, for which A
2 = A.

Aside from the case when A = I (which corresponds to ⌃⌃⌃post = ⌃⌃⌃prior), a matrix is idempotent if and only if it is
singular and all eigenvalues are 0 or 1.

In order that, ⌃⌃⌃0
post⌃⌃⌃

0�1

prior⌃⌃⌃
0
post = ⌃⌃⌃0

post, it is therefore su�cient that our scaled posterior, ⌃⌃⌃0
post, is singular with

all eigenvalues 0 or 1. Any possible permutation is allowed.

Naturally, applying a reverse scaling recovers the original parameter space, ⌃⌃⌃post = ⌃⌃⌃1/2
prior⌃⌃⌃

0
post⌃⌃⌃

1/2
prior.

Remark. To summarise, we have shown that provided the RMS approximate posterior equals the true posterior

in the scaled space, it will also be equal in the original unscaled space. In order for this equality to hold, eigenvalues

must be 0 or 1 in the scaled space.

See section B.1.2 for numerical examples in a three parameter model when this condition holds.

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

A.1 MAP solution and regularisation interpretation

For completeness, we write out the MAP solution for the case of normally distributed prior, and data likelihoods
often used in regression and classification. From this derives our interpretation of the regularisation matrix, ���.

✓✓✓MAP = argmax✓✓✓P (✓✓✓|D)

= argmax✓✓✓PD(D|✓✓✓)P (✓✓✓)

= argmax✓✓✓ log(PD(D|✓✓✓)) + log(P (✓✓✓))

If prior is normally distributed, P (✓✓✓) = N (µµµ,⌃⌃⌃),

= argmax✓✓✓ log(PD(D|✓✓✓)) �
1

2
(✓✓✓ � µµµ)T⌃⌃⌃�1(✓✓✓ � µµµ) + const.

= argmax✓✓✓ log(PD(D|✓✓✓)) �
1

2
(✓✓✓ � µµµ)T⌃⌃⌃�1(✓✓✓ � µµµ).

Typically in BNNs the prior covariance is chosen as diagonal. This is sometimes set as isotropic, ⌃⌃⌃ = �I, but here
we will keep it in matrix form (but assuming it is diagonal) so that di↵erent prior variances can be assigned to
di↵erent layer weights.

= argmax✓✓✓ log(PD(D|✓✓✓)) �
1

2
k⌃⌃⌃�1/2

· (✓✓✓ � µµµ)k2
2

In the case that the prior mean is zero µµµ = 0,

= argmax✓✓✓ log(PD(D|✓✓✓)) �
1

2
k⌃⌃⌃�1/2

· ✓✓✓k
2

2
.

One is free to choose any suitable expression for log(PD(D|✓✓✓)). Next we describe the resulting forms for common
choices of log likelihood in regression and classification tasks.

Regression

For regression, a common choice is that the NN predicts the mean of the function, ŷ, and there is additive noise
on the true targets y, PD(D|✓✓✓) = N (y|ŷ, �

2

✏)

✓✓✓MAP = argmax✓✓✓ �
1

2�2
✏

kŷ � yk
2

2
+ const. �

1

2
k⌃⌃⌃�1/2

· ✓✓✓k
2

2

= argmax✓✓✓ �
1

2�2
✏

kŷ � yk
2

2
�

1

2
k⌃⌃⌃�1/2

· ✓✓✓k
2

2

Generally the mean squared error is minimised,

= argmin✓✓✓
1

N
kŷ � yk

2

2
+

1

N
k�✏⌃⌃⌃

�1/2
· ✓✓✓k

2

2

More compactly, we can define ��� := �
2

✏⌃⌃⌃
�1, as a diagonal matrix with, diag(���)i = �

2

✏ /�
2

prior,i,

= argmin✓✓✓
1

N
kŷ � yk

2

2
+

1

N
k���1/2

· ✓✓✓k
2

2

Classification

The data likelihood is commonly chosen as a multinomial distribution, PD(D|✓✓✓) /
QN

n=1

QC
c=1

ŷ
yn,c
n,c , for C classes,

and N data points, where ŷ 2 [0, 1] denotes predicted probability, and yn,c 2 {0, 1} the true targets.

✓✓✓MAP = argmax✓✓✓

NX

n=1

CX

c=1

yn,c log(ŷn,c) �
1

2
k⌃⌃⌃�1/2

· ✓✓✓k
2

2

Cross entropy is typically minimised,

= argmin✓✓✓ �

NX

n=1

CX

c=1

yn,c log(ŷn,c) +
1

2
k⌃⌃⌃�1/2

· ✓✓✓k
2

2

Here we can simply define ��� := 1

2
⌃⌃⌃�1, with diag(���)i = 1/2�

2

prior,i.

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

B Numerical Examples

B.1 Numerical Examples of Proofs

In this section we print covariance matrices that illustrate theoretical results numerically.

B.1.1 General case: Example of lemma 1.1, 1.2, theorem 2

For general ⌃⌃⌃post, RMS will return a posterior with underestimated marginal variancesa and overestimated
correlations. Since the prior is isotropic, the orientation (eigenvectors) of the RMS approximate posterior will be
unchanged. Here a three parameter is shown. Note ⌃⌃⌃post⌃⌃⌃

�1

prior⌃⌃⌃post represents the RMS approximate posterior.

⌃⌃⌃prior =

2

4
2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

3

5 ⌃⌃⌃like =

2

4
2.0 0.707 0.283

0.707 1.0 0.4
0.283 0.4 1.0

3

5

⌃⌃⌃post =

2

4
0.953 0.238 0.067
0.238 0.589 0.166
0.067 0.166 0.638

3

5 ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post =

2

4
0.485 0.189 0.073
0.189 0.215 0.11
0.073 0.11 0.22

3

5

Note, ⌃⌃⌃posti,i > ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃posti,i
, 8i.

Correlation(⌃⌃⌃post) =

2

4
1.0 0.317 0.086

0.317 1.0 0.27
0.086 0.27 1.0

3

5 Correlation(⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post) =

2

4
1.0 0.585 0.224

0.585 1.0 0.504
0.224 0.504 1.0

3

5

Note, Correlation(⌃⌃⌃post)i,j < Correlation(⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post)i,j , 8i 6= j.

Eigenvalues and eigenvectors of ⌃⌃⌃post,

� = 1.1101,v =
⇥
�0.8352 �0.471 �0.284

⇤

� = 0.6667,v =
⇥
�0.465 0.3288 0.822

⇤

� = 0.4032,v =
⇥
0.2938 �0.8186 0.4936

⇤

Eigenvalues and eigenvectors of ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post,

� = 0.6162,v =
⇥
�0.8352 �0.471 �0.284

⇤

� = 0.2222,v =
⇥
�0.465 0.3288 0.822

⇤

� = 0.0813,v =
⇥
0.2938 �0.8186 0.4936

⇤

B.1.2 Special case: Examples of theorem 3, 4

We again print out covariance matrices for a three parameter model. Firstly we provide an example where two
parameters are perfectly correlated, and one has no e↵ect on the likelihood. We print unscaled and scaled versions.
Note that all eigenvalues of the scaled posterior, ⌃⌃⌃0

post, are either 0 or 1.

⌃⌃⌃post =

2

4
1.0 1.0 0.0
1.0 1.0 0.0
0.0 0.0 2.0

3

5 ⌃⌃⌃prior =

2

4
2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

3

5 ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post =

2

4
1.0 1.0 0.0
1.0 1.0 0.0
0.0 0.0 2.0

3

5

⌃⌃⌃0
post =

2

4
0.5 0.5 0.0
0.5 0.5 0.0
0.0 0.0 1.0

3

5 ⌃⌃⌃0
prior =

2

4
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

3

5 ⌃⌃⌃0
post⌃⌃⌃

0�1

prior⌃⌃⌃
0
post =

2

4
0.5 0.5 0.0
0.5 0.5 0.0
0.0 0.0 1.0

3

5

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

Eigenvalues and eigenvectors of ⌃⌃⌃post = ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post,

� = 2.0,v =
⇥
0.7071 0.7071 0.

⇤

� = 0.0,v =
⇥
�0.7071 0.7071 0.

⇤

� = 2.0,v =
⇥
0. 0. 1.

⇤

Eigenvalues and eigenvectors of ⌃⌃⌃0
post = ⌃⌃⌃0

post⌃⌃⌃
0�1

prior⌃⌃⌃
0
post,

� = 1.0,v =
⇥
0.707 0.707 0.

⇤

� = 0.0,v =
⇥
�0.707 0.707 0.

⇤

� = 1.0,v =
⇥
0. 0. 1.

⇤

Following is the same set up as the previous case, but now all parameters are perfectly correlated. Eigenvalues of
the scaled posterior, ⌃⌃⌃0

post, are again either 0 or 1.

⌃⌃⌃post =

2

4
0.667 0.667 0.667
0.667 0.667 0.667
0.667 0.667 0.667

3

5 ⌃⌃⌃prior =

2

4
2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

3

5 ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post =

2

4
0.667 0.667 0.667
0.667 0.667 0.667
0.667 0.667 0.667

3

5

⌃⌃⌃0
post =

2

4
0.333 0.333 0.333
0.333 0.333 0.333
0.333 0.333 0.333

3

5 ⌃⌃⌃0
prior =

2

4
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

3

5 ⌃⌃⌃0
post⌃⌃⌃

0�1

prior⌃⌃⌃
0
post =

2

4
0.333 0.333 0.333
0.333 0.333 0.333
0.333 0.333 0.333

3

5

Eigenvalues and eigenvectors of ⌃⌃⌃post = ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post,

� = 2.0,v =
⇥
�0.5774 �0.5774 �0.5774

⇤

� = 0.0,v =
⇥
�0. �0.7071 0.7071

⇤

� = 0.0,v =
⇥
�0.6667 �0.0749 0.7416

⇤

Eigenvalues and eigenvectors of ⌃⌃⌃0
post = ⌃⌃⌃0

post⌃⌃⌃
0�1

prior⌃⌃⌃
0
post,

� = 1.0,v =
⇥
0.577 0.577 0.577

⇤

� = 0.0,v =
⇥
0. �0.707 0.707

⇤

� = 0.0,v =
⇥
�0.521 �0.284 0.805

⇤

Now we detail an example of a non-isometric prior.

⌃⌃⌃post =

2

4
1.818 0.0 1.818
0.0 2.0 0.0

1.818 0.0 1.818

3

5 ⌃⌃⌃prior =

2

4
20.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

3

5 ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post =

2

4
1.818 0.0 1.818
0.0 2.0 0.0

1.818 0.0 1.818

3

5

⌃⌃⌃0
post =

2

4
0.091 0.0 0.287
0.0 1.0 0.0

0.287 0.0 0.909

3

5 ⌃⌃⌃0
prior =

2

4
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

3

5 ⌃⌃⌃0
post⌃⌃⌃

0�1

prior⌃⌃⌃
0
post =

2

4
0.091 0.0 0.287
0.0 1.0 0.0

0.287 0.0 0.909

3

5

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

Eigenvalues and eigenvectors of ⌃⌃⌃post = ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post,

� = 3.636,v =
⇥
0.707 0. 0.707

⇤

� = 0.0,v =
⇥
�0.707 0. 0.707

⇤

� = 2.0,v =
⇥
0. 1. 0.

⇤

Eigenvalues and eigenvectors of ⌃⌃⌃0
post = ⌃⌃⌃0

post⌃⌃⌃
0�1

prior⌃⌃⌃
0
post,

� = 0.0,v =
⇥
�0.953 0. 0.302

⇤

� = 1.0,v =
⇥
�0.302 0. �0.953

⇤

� = 1.0,v =
⇥
0. 1. 0.

⇤

B.2 Mixtures of Parameter Types

Here, we provide examples of a five parameter model containing a mixture of perfectly correlated, partially
correlated, and extrapolation parameters.

First we consider distinct blocks of perfectly and partially correlated parameters, as well as one extrapolation
parameter. In this situation both the perfectly correlated block and the extrapolation parameter posterior are
recovered exactly. The RMS approximate posterior of the partially correlated block is biased as per the general
case.

⌃⌃⌃post =

2

66664

1.0 1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 0.0
0.0 0.0 0.5 0.2 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.0 2.0

3

77775
⌃⌃⌃prior =

2

66664

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

3

77775
⌃⌃⌃post⌃⌃⌃

�1

prior⌃⌃⌃post =

2

66664

1.0 1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 0.0
0.0 0.0 0.145 0.13 0.0
0.0 0.0 0.13 0.34 0.0
0.0 0.0 0.0 0.0 2.0

3

77775

Secondly the perfectly correlated block overlaps with the partially correlated block. In this scenario, a small amount
of bias is introduced on the perfectly correlated block, but not in terms of the correlation. The extrapolation
parameter is una↵ected.

⌃⌃⌃post =

2

66664

1.0 1.0 0.1 0.2 0.0
1.0 1.0 0.1 0.2 0.0
0.1 0.1 0.5 0.2 0.0
0.2 0.2 0.2 0.8 0.0
0.0 0.0 0.0 0.0 2.0

3

77775
⌃⌃⌃prior =

2

66664

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

3

77775
⌃⌃⌃post⌃⌃⌃

�1

prior⌃⌃⌃post =

2

66664

1.03 1.03 0.15 0.29 0.0
1.03 1.03 0.15 0.29 0.0
0.15 0.15 0.16 0.15 0.0
0.29 0.29 0.15 0.38 0.0
0.0 0.0 0.0 0.0 2.0

3

77775

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

B.3 Example of Perfectly Correlated Parameters in a Neural Network

Section 4.2.2 stated that perfectly correlated parameters can exist in a NN. Here, we provide a concrete example
of such a case, and show that anchored ensembling does recover the true posterior for these parameters when
⌃⌃⌃anc = ⌃⌃⌃prior.

We consider finding the posterior of final layer weights in a small single layer ReLU NN of two hidden nodes for
a regression problem with two data points. (Choosing the final layer weights for our analysis allows analytical
equations associated with linear regression to be used, simplifying our analysis, though these results would also
apply to the first layer weights and biases.)

We design the problem such that the point where both hidden nodes becomes greater than zero (the elbow points
of ReLU units) falls in between the two data points, and the active half of the output is also shared, so that the
final layer weights are perfectly correlated.

Figure 9 illustrates our set up. Data points and NN parameters are as follows,

D = {x1 = �5, y1 = 0; x2 = 5, y2 = 0}, �
2

✏ = 0.01,

W1 = [�0.8, �0.4],b1 = [�1, 0.1], ŷ = WT
2
max(xW1 + b1, 0)

We set prior means to zero, with isotropic covariance according to 1/H,

⌃⌃⌃prior =


0.5 0.0
0.0 0.5

�

We print out matrices of interest,

⌃⌃⌃like =


�6.89e + 13 9.85e + 13
9.85e + 13 �1.40e + 14

�

⌃⌃⌃�1

like =


90.0 63.0
63.0 44.1

�

⌃⌃⌃post =


0.169 �0.231

�0.231 0.338

�

⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post =


0.166 �0.235

�0.235 0.338

�

The anchored ensembling posterior, ⌃⌃⌃post⌃⌃⌃
�1

prior⌃⌃⌃post, provides a close approximation of the true posterior
covariance (and would be exact discounting numerical rounding issues). Note the similarity of the posterior in
figure 9 (middle) with the perfect correlations example shown in figure 3 (B).

�2 �1 0 1 2
Param 1

�2

�1

0

1

2

P
ar
am

2

Figure 9: Left: Single layer NN of two hidden nodes. Middle: Draws in parameter space for prior (red), analytical
posterior (blue) and anchored posterior (green). Right: Posterior predictive distribution - dashed red lines are
elbows of ReLU units.

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

C Further Results

C.1 Uncertainty-Aware Model-Free Reinforcement Learning

A. Clear optimal action 10 20 30 40
Pred. Q-value

Right

Left

Bwd

Fwd

B. Goal achieved 10 20 30 40
Pred. Q-value

C. Never seen before 10 20 30 40
Pred. Q-value

Figure 10: Anchored ensembling creates uncertainty-
aware agents.

An anchored ensemble of 5xNNs, each with two hidden
layers, was trained to complete a discretised version of
FetchPush - an agent controls a robotic arm, with re-
wards received when a randomly placed cube is pushed
to a goal.

We used Bayesian Q-learning (Dearden et al., 1998),
similar to regular Q-learning, but with Q-values mod-
elled as distributions rather than point estimates - the
wider the distribution, the less certain the agent. This
is beneficial both to drive the exploration/exploitation
process via Thompson sampling, and for identifying
OOD examples.

Figure 10 shows the agent’s awareness of its uncertainty.
After training for 40, 000 episodes, its confidence over
actions was plotted for three scenarios: A) Cube and
goal are in positions often encountered during training,
the agent has learnt that it must move the arm left - the
narrow distributions with significantly di↵erent means
reflect its confidence in this. B) The goal has already
been achieved - narrow overlapping distributions with
higher means. C) A peculiar goal position that has
never been encountered - the broad distributions over
all actions reflect its high uncertainty.

C.2 Model-Based Reinforcement: Learning
in Noisy Environments

We tested the benefit of using an anchored ensemble in noisy RL environments. We modified the classic cartpole
swingup environment such that di↵erent levels of stochastic noise could be added to the future state; consider a
state action pair given by, s, a, and a noisy state, s̄ such that P (s̄t+1|at, st) = N (st+1, �

2

✏).

The value of �
2

✏ was given three settings: low, medium and high, �
2

✏ 2 {0.001, 0.002, 0.005}. The task was
learnt using a model-based RL approach similar to the heteroskedastic ensembles used by Chua et al. (2018).
Fully-connected three-layer NNs learnt to predict the dynamics of the environment given some state and action.
Planning was performed using the cross-entropy method, rolling out for a horizon of 25 steps, with 10 particles.

Figure 11 (A, B, C) shows learning curves for the three noise levels. All ensemble techniques perform similarly in
the low noise setting. As noise is increased the overall performance of all methods drops. Anchored ensembles
are most resiliant, followed by the unconstrained ensemble. In panel D, we compared against an unconstrained
ensemble employing early stopping - this corresponds to the proposal that applying early stopping to an ensemble
can produce approximate inference (Duvenaud et al., 2016). Whilst careful tuning did o↵er some improvement
over the default setting, a performance gap to anchored ensembling remained.

0 200 400 600 800 1000 1200 1400 1600 1800
0

25

50

75

100

125

150

175

200
8ncRnstUained
AnchRUed
5egulaUised

A. Low Noise

R
ew

ar
d

Time steps
0 200 400 600 800 1000 1200 1400 1600 1800

0

25

50

75

100

125

150

175

200

B. Medium Noise
0 200 400 600 800 1000 1200 1400 1600 1800

0

25

50

75

100

125

150

175

200

C. High Noise
0 200 400 600 800 1000 1200 1400 1600 1800

0

25

50

75

100

125

150

175

200
Early 200 eps
Early 50 eps
Early 20 eps
Early 5 eps
Anchored

D. Early Stopping

Figure 11: Anchored ensembling creates robust MBRL agents in noisy environments. Mean and standard error
over five runs.

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

C.3 Regression Benchmarking

Tables 3 & 4 show all experiments run on the regression benchmarking datasets. The below discussion focuses on
NLL results in table 4.

ERF GP refers to the equivalent GP for an infinite width, single-layer BNN with ERF activations. It was tuned
and implemented as for the ReLU GP. We were interested to discover how di↵erent activation functions would
a↵ect uncertainty estimates. In general the ReLU GP performed better than the ERF GP, with some exceptions,
such as for Wine. The target variable for Wine is ordinal, containing five factors, it is therefore understandable
that the ReLU GP, which extrapolates linearly, is at a slight disadvantage.

10x 50 NNs refers to an anchored ensemble of ten NNs with 50 hidden nodes. We find that these results fall in
between the 5x 50 NNs and the ReLU GP. This agrees with the convergence analysis done in section 5.2.

We also implemented an anchored ensemble of five two-layer NNs, 5x 50-50 NNs. Even with minimal hyperpa-
rameter tuning (section E) we found an extra layer gave a performance boost over the 5x 50 NNs. We expect
with more careful tuning this margin would increase.

Single 50 NN refers to a single regularised NN, of one hidden layer with 50 hidden nodes, for which we used a
constant value of predictive variance. Although this performs poorly in several cases, e.g. Boston and Yacht, the
results are surprisingly close to those achieved by both our method and Deep Ensembles, even surpassing them
on the Energy dataset. A method outputting constant predictive variance should not perform well in experiments
designed to test uncertainty quantification, and this raises questions over the validity of the benchmarks.

Table 5 compares anchored ensembles against results reported for other methods.

Table 3: Variants of our method on benchmark regression datasets, RMSE.

RMSE
N D ReLU GP ERF GP 5x 50 NNs 10x 50 NNs 5x 50-50 NNs Single 50 NN

Boston 506 13 2.86 ± 0.16 2.94 ± 0.18 3.09 ± 0.17 3.09 ± 0.17 3.00 ± 0.18 3.40 ± 0.20
Concrete 1,030 8 4.88 ± 0.13 5.21 ± 0.12 4.87 ± 0.11 4.73 ± 0.11 4.75 ± 0.12 5.17 ± 0.13
Energy 768 8 0.60 ± 0.02 0.78 ± 0.03 0.35 ± 0.01 0.34 ± 0.01 0.40 ± 0.01 0.40 ± 0.01
Kin8nm 8,192 8 0.07 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 0.07 ± 0.00
Naval 11,934 16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Power 9,568 4 3.97 ± 0.04 3.94 ± 0.04 4.07 ± 0.04 4.07 ± 0.04 4.03 ± 0.04 4.23 ± 0.04
Protein 45,730 9 4.34 ± 0.02 4.23 ± 0.02 4.36 ± 0.02 4.34 ± 0.02 4.23 ± 0.02 4.56 ± 0.02
Wine 1,599 11 0.61 ± 0.01 0.60 ± 0.01 0.63 ± 0.01 0.62 ± 0.01 0.62 ± 0.01 0.64 ± 0.01
Yacht 308 6 0.60 ± 0.08 1.48 ± 0.15 0.57 ± 0.05 0.54 ± 0.05 0.85 ± 0.08 0.81 ± 0.07
Song Year 515,345 90 9.01 ± NA 8.90 ± NA 8.82 ± NA 8.82 ± NA 8.66 ± NA 8.77 ± NA

Table 4: Variants of our method on benchmark regression datasets, NLL.

NLL
�̂
2

✏ ReLU GP ERF GP 5x 50 NNs 10x 50 NNs 5x 50-50 NNs Single 50 NN

Boston 0.08 2.45 ± 0.05 2.46 ± 0.05 2.52 ± 0.05 2.50 ± 0.05 2.50 ± 0.07 2.70 ± 0.05
Concrete 0.05 2.96 ± 0.02 3.06 ± 0.02 2.97 ± 0.02 2.94 ± 0.02 2.94 ± 0.02 3.08 ± 0.03
Energy 1e-7 0.86 ± 0.02 1.06 ± 0.03 0.96 ± 0.13 0.52 ± 0.06 0.61 ± 0.07 0.57 ± 0.03
Kin8nm 0.02 -1.22 ± 0.01 -1.17 ± 0.00 -1.09 ± 0.01 -1.16 ± 0.01 -1.25 ± 0.01 -1.17 ± 0.01
Naval 1e-7 -10.05 ± 0.02 -9.66 ± 0.04 -7.17 ± 0.03 -7.29 ± 0.02 -7.08 ± 0.13 -6.58 ± 0.04
Power 0.05 2.80 ± 0.01 2.79 ± 0.01 2.83 ± 0.01 2.83 ± 0.01 2.82 ± 0.01 2.86 ± 0.01
Protein 0.5 2.88 ± 0.00 2.86 ± 0.00 2.89 ± 0.01 2.88 ± 0.01 2.86 ± 0.01 2.94 ± 0.00
Wine 0.5 0.92 ± 0.01 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.97 ± 0.01
Yacht 1e-7 0.49 ± 0.07 1.50 ± 0.13 0.37 ± 0.08 0.18 ± 0.03 0.04 ± 0.08 1.50 ± 0.02
Song Year 0.7 3.62 ± NA 3.61 ± NA 3.60 ± NA 3.60 ± NA 3.57 ± NA 3.59 ± NA

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

Table 5: Comparison against inference methods on UCI benchmark regression datasets, log likelihood. Adapted
from Mukhoti et al. (2018).

Log Likelihood (not negative)
Anch. Ens. Drop conv. Drop tune VMG HS-BNN PBP-MV SGHMC tune SGHMC adap.

Boston �2.52 ± 0.05 �2.40 ± 0.04 �2.40 ± 0.04 �2.46 ± 0.09 �2.54 ± 0.15 �2.54 ± 0.08 �2.49 ± 0.15 �2.54 ± 0.04
Concrete �2.97 ± 0.02 �2.97 ± 0.02 �2.93 ± 0.02 �3.01 ± 0.03 �3.09 ± 0.06 �3.04 ± 0.03 �4.17 ± 0.72 �3.38 ± 0.24
Energy �0.96 ± 0.13 �1.72 ± 0.01 �1.21 ± 0.01 �1.06 ± 0.03 �2.66 ± 0.13 �1.01 ± 0.01 �� ��

Kin8nm 1.09 ± 0.01 0.97 ± 0.00 1.14 ± 0.01 1.10 ± 0.01 1.12 ± 0.03 1.28 ± 0.01 �� ��

Naval 7.17 ± 0.03 3.91 ± 0.01 4.45 ± 0.00 2.46 ± 0.00 5.52 ± 0.10 4.85 ± 0.06 �� ��

Power �2.83 ± 0.01 �2.79 ± 0.01 �2.80 ± 0.01 �2.82 ± 0.01 �2.81 ± 0.03 �2.78 ± 0.01 �� ��

Protein �2.89 ± 0.01 �2.87 ± 0.00 �2.87 ± 0.00 �2.84 ± 0.00 �2.89 ± 0.00 �2.77 ± 0.01 �� ��

Wine �0.95 ± 0.01 �0.92 ± 0.01 �0.93 ± 0.01 �0.95 ± 0.01 �0.95 ± 0.05 �0.97 ± 0.01 �1.29 ± 0.28 �1.04 ± 0.17
Yacht �0.37 ± 0.08 �1.38 ± 0.01 �1.25 ± 0.01 �1.30 ± 0.02 �2.33 ± 0.01 �1.64 ± 0.02 �1.75 ± 0.19 �1.10 ± 0.08

C.4 Fashion MNIST

Table 6 provides a breakdown of results from the OOD classification test in section 5.4 for fashion MNIST. Also
included are results for entropy, where high entropy represents high uncertainty. These correlated strongly with
the proportion metrics, which was true across all three OOD experiments.

Table 6: Fashion MNIST results: proportion of predictions made with � 90% probability, and entropy of
predicted categorical distribution. Also shown is relative advantage (percentage change) for each method compared
to anchored ensembles. Averaged over five runs/random seeds, mean ± 1 standard error. Best result in blue.

——-Edge Cases——- —Out-of-distribution— ————Natural Adversarial———— —Pure Adversarial—
Train Sneaker Trouser CIFAR MNIST Rotate Flip Invert Noise Sparse

Proportion � 90% (smaller better)
reg 1xNN 0.660 ± 0.006 0.739 ± 0.056 0.429 ± 0.047 0.143 ± 0.008 0.160 ± 0.007 0.609 ± 0.007 0.330 ± 0.009 0.349 ± 0.015 0.271 ± 0.007 0.456 ± 0.006
free 5xNN 0.733 ± 0.001 0.781 ± 0.015 0.380 ± 0.030 0.301 ± 0.013 0.104 ± 0.010 0.571 ± 0.011 0.300 ± 0.011 0.222 ± 0.052 0.042 ± 0.005 0.048 ± 0.003
reg 5xNN 0.634 ± 0.002 0.589 ± 0.054 0.269 ± 0.020 0.115 ± 0.004 0.072 ± 0.007 0.556 ± 0.007 0.256 ± 0.012 0.213 ± 0.002 0.112 ± 0.005 0.174 ± 0.005
anc 5xNN 0.631 ± 0.002 0.578 ± 0.049 0.325 ± 0.037 0.065 ± 0.002 0.041 ± 0.002 0.497 ± 0.003 0.215 ± 0.005 0.025 ± 0.010 0.006 ± 0.001 0.006 ± 0.001

Proportion Relative Advantage
1xNN Reg. to 5xNN Anch. -4.4% -21.8% -24.2% -54.5% -74.4% -18.4% -34.8% -92.8% -97.8% -98.7%
5xNN Uncons. to 5xNN Anch. -13.9% -26.0% -14.5% -78.4% -60.6% -13.0% -28.3% -88.7% -85.7% -87.5%
5xNN Reg. to 5xNN Anch. -0.5% -1.9% 20.8% -43.5% -43.1% -10.6% -16.0% -88.3% -94.6% -96.6%

Entropy (larger better)
1xNN Reg. 0.328 ± 0.005 0.253 ± 0.043 0.575 ± 0.050 1.176 ± 0.010 0.984 ± 0.015 0.484 ± 0.008 0.713 ± 0.009 0.836 ± 0.035 0.808 ± 0.010 0.580 ± 0.008
5xNN Uncons. 0.230 ± 0.001 0.161 ± 0.010 0.535 ± 0.021 0.688 ± 0.009 1.016 ± 0.021 0.453 ± 0.011 0.685 ± 0.011 0.573 ± 0.037 1.036 ± 0.014 0.992 ± 0.012
5xNN Reg. 0.352 ± 0.001 0.365 ± 0.039 0.707 ± 0.019 1.239 ± 0.009 1.161 ± 0.012 0.564 ± 0.008 0.807 ± 0.017 1.014 ± 0.014 1.048 ± 0.008 0.919 ± 0.009
5xNN Anch. 0.349 ± 0.001 0.327 ± 0.034 0.623 ± 0.042 1.251 ± 0.011 1.295 ± 0.013 0.624 ± 0.006 0.868 ± 0.002 1.098 ± 0.035 1.238 ± 0.013 1.191 ± 0.014

Entropy Relative Advantage
1xNN Reg. to 5xNN Anch. 6.4% 29.2% 8.3% 6.4% 31.6% 28.9% 21.7% 31.3% 53.2% 105.3%
5xNN Uncons. to 5xNN Anch. 51.7% 103.1% 16.4% 81.8% 27.5% 37.7% 26.7% 91.6% 19.5% 20.1%
5xNN Reg. to 5xNN Anch. -0.9% -10.4% -11.9% 1.0% 11.5% 10.6% 7.6% 8.3% 18.1% 29.6%

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

D Additional Material

D.1 Algorithms

Algorithm 1 Implementing anchored ensembles of NNs

Input: Training data, X & Y, test data point, x⇤, prior mean and covariance, µµµprior, ⌃⌃⌃prior, ensemble size,
M , data noise variance estimate, �̂

2

✏ (regression only).
Output: Estimate of mean and variance, ŷ, �̂

2

y for regression, or class probabilities, ŷ for classification.

Set regularisation matrix

��� (�̂
2

✏⌃⌃⌃
�1

prior (regression) OR ��� (
1

2
⌃⌃⌃�1

prior (classification)

Create ensemble

µµµanc (µµµprior,⌃⌃⌃anc (⌃⌃⌃prior

for j = 1 to M

✓✓✓anc,j ⇠ N (µµµanc,⌃⌃⌃anc) # Sample anchor points

NNj .create(���,✓✓✓anc,j) # Create custom regulariser

NNj .initialise() # Initialisations independent of ✓✓✓anc,j

Train ensemble

for j = 1 to M

NNj .train(X,Y), loss in eq. 8 (regression) or eq. 9 (classification) or eq. 7 (custom)

Predict with ensemble

for j = 1 to M

ŷj (NNj .predict(x⇤)

Regression - combine ensemble estimates

ŷ = 1

M

PM
j=1

ŷj , # Mean prediction

�̂
2

model = 1

M�1

PM
j=1

(ŷj � ŷ)2 # Epistemic var.

�̂
2

y = �̂
2

model + �̂
2

✏ # Total var. = epistemic + data noise

Classification - combine ensemble estimates

ŷ = 1

M

PM
j=1

ŷj , # Average softmax output

�̂
2

y = None # N/A for classification

return ŷ, �̂
2

y

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

E Experimental Details

E.1 Introduction to Anchored Ensembles

Experimental details for figure 1 are as follows.

Six randomly generated data points were used.

Hyperparameters: activation = ERF, �
2

✏ = 0.003, b1 variance = 1, W1 variance = 1, H = 100, M = 3 (number
of ensembles), optimiser = adam, epochs = 400, learning rate = 0.005.

E.2 Panel of Inference Methods

Experimental details for figure 4 are as follows.

Same six data points were used for all methods and activation functions, generated by y = x sin(5x), evaluated
at, [-0.8, -0.1, 0.02, 0.2, 0.6, 0.8].

Hyperparameters: b1 variance = 10, W1 variance = 10, H = 100, M = 10, epochs= 4,000, �
2

✏ = 0.001, leaky
ReLU ↵ = 0.2, optimiser = adam, MC Dropout probability = 0.4, MC Dropout samples = 200, HMC step size =
0.001, HMC no. steps = 150, HMC burn in = 500, HMC total samples = 1000, HMC predict samples = 50, VI
predict samples = 50, VI iterations = 2000, VI gradient samples = 200.

E.3 Ensembling Loss Functions

Experimental details for figure 6 are as follows.

E.3.1 Regression

Generated X by sampling 20 points linearly spaced from the interval [-1.5, 1.5], y = sin(2x)+✏ with ✏ ⇠ N (0, 0.22).
The y value corresponding to the largest x value was shifted -0.4 to produce a slight outlier.

Sub-plot A was trained via mean square error, B was regularised, C was anchored. D shows a ReLU GP.

Hyperparameters: activation = ReLU, �
2

✏ = 0.08, b1 variance = 10, W1 variance = 10, H = 1000, optimiser =
adam, epochs = 2,000, learning rate = 0.003, M = 10, hidden layers = 1.

E.3.2 Classification

Generated X using sklearn’s ‘make blobs’ function, n samples = 30.

Sub-plot A was trained via cross entropy, B was regularised, C was anchored. D shows inference with HMC.

Hyperparameters: activation = ReLU, b1 variance = 15/2, W1 variance = 15/2, b2 variance = 1/50, W2 variance
= 1/50, W3 variance = 10/50, H = 50, optimiser = adam, epochs = 100, learning rate = 0.001, M = 10, hidden
layers = 2.

E.4 1-D Convergence Plots

Experimental details for figure 8 are as follows.

Data as in section E.2 was used, with M = [3,5,10,20].

Hyperparameters: activation = ReLU, �
2

✏ = 0.001, b1 variance = 20, W1 variance = 20, H = 100, optimiser =
adam, epochs = 4,000, learning rate = 0.005.

E.5 KL Convergence Results

Experimental details for figure 7 are as follows.

Training was done on 50% of the data, with KL computed over the other 50%. Results were averaged over ten
runs. The ‘ideal’ line shows the metric when posterior samples from the GP itself, rather than anchored NNs,

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

were used.

The Boston Housing dataset was used, with 50% of data used for training, and testing on the other 50%.

Hyperparameters: activation = ReLU, �
2

✏ = 0.1, b1 variance = 2, W1 variance = 2, H = [4, 16, 64, 256, 1024],
M = [3,5,10,20,40], optimiser = adam, no. runs = 10, epochs = 1,000, learning rate = 0.001 when H < 20 else
learning rate = 0.0002.

E.6 Regression Benchmarking Experiments

We complied with the established protocol (Hernández-Lobato and Adams, 2015). Single-layer NNs of 50 nodes
were used, experiments repeated 20 times with random train/test splits of 90%/10%. The larger Protein and
Song datasets allow 100 node NNs, and were repeated five and one time respectively.

The hyperparameter tuning process and final settings for experiments in table 1, 3 & 4 are as follows.

E.6.1 Hyperparameter Tuning

Hyperparameter tuning was done on a single train/validation split of 80%/20%. We found it convenient to begin
by tuning data noise variance and prior variances. We restricted the prior variance search space by enforcing,
�
2

W1
= �

2

b1
/D, and �

2

W2
= 1/H. We therefore had only two hyperparameters to optimise initially: �

2

b1
and �

2

✏ .
We did this with the GP model, using grid search, maximising marginal log likelihood over the training portion,
and minimising NLL of the validation portion. For the larger datasets, when inference over the 80% training
portion was too slow, we reduced the training split to 2,000 data points.

Hyperparameters for priors and data noise estimates were shared between the GP and anchored ensembles.
Hyperparameters requiring tuning specifically for anchored ensembles were batch size, learning rate, number of
epochs and decay rate. This was done on the same 80%/20% split used to select data noise and prior variance.
We used random search, directed by our knowledge of the optimisation process (e.g. a lower learning rate requires
more epochs to converge), minimising NLL on the validation portion.

We did not retune hyperparameters from scratch for the double layer NN (5x 50-50 NNs). We used settings as for
the single-layer NNs (5x 50 NNs), but divided learning rate by 4, and multiplied epochs by 1.5.

For the single regularised NN with constant noise, we again used hyperparameters as for the single-layer ensemble
(5x 50 NNs), tuning only the constant amount of variance to be added on the same 80%/20% split.

E.6.2 Hyperparameter Settings

Table 7 provides the key hyperparameters used. The adam optimiser was used for all experiments. ReLU
activations were used for all except the ERF GP (prior variance was separately tuned for this, values aren’t given
in the table).

Table 7: Hyperparameters used for regression benchmark results.

N Batch Size Learn Rate �̂
2

✏ b1 variance W1 variance No. Epochs Decay Rate Single NN var.

Boston 506 64 0.05 0.06 10 0.77 3000 0.995 0.45
Concrete 1,030 64 0.05 0.05 40 5.00 2000 0.997 0.28
Energy 768 64 0.05 1e-7 12 1.50 2000 0.997 0.03
Kin8nm 8,192 256 0.10 0.02 40 5.00 2000 0.998 0.32
Naval 11,934 256 0.10 1e-7 200 12.50 1000 0.997 0.03
Power 9,568 256 0.20 0.05 4 1.00 1000 0.995 0.24
Protein 45,730 8192 0.10 0.5 50 5.56 3000 0.995 0.71
Wine 1,599 64 0.05 0.5 20 1.82 500 0.997 0.77
Yacht 308 64 0.05 1e-7 15 2.50 3000 0.997 0.10
Song Year 515,345 32768 0.01 0.7 2 0.02 500 0.996 0.84

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, Andy Neely

E.7 Out-of-Distribution Classification

E.7.1 Fashion MNIST

We trained a three-layer NN on eight of ten classes of Fashion MNIST. We trained on 48,000 examples, tested on
8,000.

Experiments were repeated 5 times with a di↵erent random seed for each run.

Data categories were created as suggested by their name in table 6. Examples are shown in figure 12.

Train Edge CIFARMNIST Distort Noise

Figure 12: Fashion MNIST OOD data examples.

• Distort comprised of rotations, vertical flips, and pixel value inversions.

• Noise comprised of iid Gaussian noise, mean = 0.0, standard deviation = 2.0.

• Sparse comprised of iid Bernoulli noise, pixles were given a value of 50.0 with p = 0.005, else 0.0.

Hyperparameters: activation = ReLU, optimiser = adam, epochs = 30, learning rate = 0.005, batch size = 256,
hidden layers = 3, hidden units = 100

E.7.2 CIFAR-10

CIFAR-10 contains 50,000 32x32 color training images, labelled over 10 categories, and 10,000 test images.

We removed 2 categories during training (ships, dogs) so trained over 40,000 examples.

OOD data classes are as show in the images in table 2.

• Scramble permuted each row of pixels in a given image.

• Invert took the negative of the pixel values.

• Noise sampled pixels from bernoulli distribution (p=0.005) of large magnitude (pixel value=50).

NN architecture: A convolutional NN was used, with the following structure, 64-64-maxpool-128-128-maxpool-
256-256-256-maxpool-512-512-512-maxpool-flatten-2048fc-softmax.

All convolutional kernels were [3 x 3 x number of channels in previous layer]. All maxpooling kernels were [2 x 2].
The total number of parameters was 8,689,472.

Hyperparameters: activation = ReLU, optimiser = adam, learning rate = 0.001 decreasing to 0.0005 after 10
epochs and to 0.0001 after 20 epochs, batch size = 300.

In order to bring test accuracies and confidence on the training dataset roughly in line, it was necessary to
train for a di↵erent number of training epochs for each method (this e↵ectively applies early stopping to the
unconstrained case). Anchored eps = 25, Regularise eps = 30, Unconstrained eps = 15.

Experiments were repeated 3 times with a di↵erent random seed for each run.

Uncertainty in Neural Networks: Approximately Bayesian Ensembling

E.7.3 IMDb

Dataset of 25,000 movie reviews, labelled as positive or negative.

Example: “this movie is the best horror movie bar none i love how stanley just dumps the women into the lake i

have been a fan of judd nelson’s work for many years and he blew me away its a blend of horror and ... ”

OOD data classes were generated as follows.

• Reuters - taken from the Reuters news dataset.

Example: “said it has started talks on the possible ... of the company with various parties that it did not

identify the company said the talks began after it ... ”

• Random 1 - A single integers sampled uniformly at random from {1...vocabulary size} and converted to a
repeated sequence of words.

Example: “member member member member member member member member member member member

member ... ”

• Random 2 - One integer per word sampled uniformly at random from {1...vocabulary size} and converted
to words.

Example: “twists mentally superb finest will dinosaur variety models stands knew refreshing member spock

might mode lose leonard resemble began happily names... ”

• Random 3 - As for Random 2, but now only sample from least commonly used 100 words.

Example: “computers towers bondage braveheart threatened rear triangle refuse detectives hangs bondage

firmly btw token 1990s mermaid reeves landed dylan remove hum natives insightful demonic... ”

NN architecture: used an embedding layer (outputting 20 dimensions), followed by 1D convolutional layer using
50 filters with kernel size of 3 words. Finally a hidden layer with 200 hidden nodes.

Hyperparameters: activation = ReLU, optimiser = adam, learning rate = 0.001, batch size = 64, max sentence
length = 200, vocabulary size = 6000

Experiments were repeated 5 times with a di↵erent random seed for each run.

E.8 Reinforcement Learning

E.8.1 Uncertainty-Aware Reinforcement Learning

The FetchPush environment from OpenAI Gym was used with the sparse rewards setting. We modified
the environment slightly. The goal was positioned at a fixed radius from the block (but at varying angle).
Actions were discretised and vertical movements removed so the agent had a choice of moving 0.4 units for-
ward/backwards/left/right. Gaussian noise was added to the actions to make the problem stochastic. Inputs were
preprocessed so that relative coordinates of gripper to cube and cube to goal were provided directly to the NNs.

We used fixed target NNs which were updated every 500 episodes.

The simulation was run for 40,000 episodes, with final average rewards around �0.4. Two-layer NNs of 50 nodes
were used. Learning rate = 0.001, batch size = 100, episodes in between training = 100, � = 0.98, bu↵er size =
100,000.

